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Approximation of convex bodies by polytopes



Two notions of distance of convex sets

Convex body: compact convex set with nonempty interior in Rd

Convex polytope: the convex hull of finitely many points in Rd.
May assume: nonempty interior.

Hausdorff distance of two convex sets K and L:

δH(K, L) = inf{δ > 0 : K + Bd (o, δ) ⊆ L, L + Bd (o, δ) ⊆ K}.

Geometric distance of K and L:

d(K, L) = inf{α/β : α, β > 0, βK ⊆ L ⊆ αK}.

This definition is sensitive to the choice of the origin.
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Simplest approach: The packing bound
Claim (Maximal packing of balls yields Hausdorff
approximation — Exercise)
If Λ ⊂ Rd is such that Λ + Bd (o, ε/2) is a maximal packing of
ε/2 radius balls in K + Bd (o, ε/2), then P = conv (Λ) satisfies
δH(P,K) ≤ ε.

Claim (Volume bound for size of a packing of balls — Ex.)
If Λ + Bd (o, ε/2) ⊆ K + Bd (o, ε/2), then Λ is of cardinality at
most vold(K+Bd(o,ε/2))

vold(Bd(o,ε/2)) .

Theorem (Approximation in geometric distance — Ex.)

For any ε > 0 and d, there is a convex polytope P with .
(

3
ε

)d
vertices that is (1 + ε)-close to K + t in the geometric distance
with an appropriate translation vector t ∈ Rd.
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Approxiation in the geometric distance through hitting
caps

Figure: A cap
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Approxiation in the geometric distance through hitting
caps

Claim
K smooth convex body, o ∈ int (K), ε ∈ (0, 1).
X ⊂ K finite set.
Then P = conv (X) satisfies d(K,P) ≤ 1

1−ε if and only if, X
intersects every cap of depth ε, that is, every set of the form
cap (x, ε) = {y ∈ K : 〈y, ν〉 ≥ (1− ε) 〈x, ν〉}, where x ∈ ∂K and ν
is an outer unit normal vector of K at x.
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The Bronshtĕın–Ivanov net
K — convex body with smooth boundary, o ∈ K, K ⊂ Bd (o,R).
S := {x+ νx : x ∈ ∂K}, where νx : the outer unit normal to ∂K at x.
{xj + νxj : j ∈ [N]} — maximal ρ-separated set in S, i.e., any two
elements are at distance ≥ ρ (see Figure 1).
{xj : 1 ≤ j ≤ N} — the Bronshtein–Ivanov net of mesh ρ, where
ρ ∈ (0, 1/2).

x

νx
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Nice body −→ B-I net −→ approximation

K is a nice convex body, if it has smooth boundary,
Bd (o, 1) ⊂ K ⊂ Bd (o,R), and for every boundary point x ∈ ∂K,
there is a ball of radius Θ containing K whose boundary sphere
touches K at x.

Theorem (The B-I net yields approximation in the
geometric distance)
If K is a nice convex body with R = d2 and Θ = d5, then there is a
convex polytope P with no more than d100dε−

d−1
2 vertices

satisfying P ⊆ K ⊆ (1 + ε)P.

We prove this result.
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Claim (Exercise)
In the B–I construction, for every x ∈ ∂K, we can find j such that
|x− xj|2 + |νx − νxj |2 ≤ ρ2.

Lemma (1. Upper bound on the size of a B–I net)
We have N ≤ 2d(R + 3)dρ−d+1.

Lemma (2. Caps of nice bodies are of small diameter)
Let ε ∈

(
0, 1

2

)
. Assume that K is a nice convex body, x ∈ ∂K,

and ν is the outer normal to ∂K at x. If y ∈ K and
〈y, ν〉 ≥ (1− ε)〈x, ν〉, then |y − x| ≤

√
2ΘR ε.
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Lemma (3. Cap contained in cap)
Fix ε, ρ ∈

(
0, 1

2

)
. Let K be a nice convex body, x, x′, y ∈ ∂K; and

ν and ν ′ the outer unit normals to ∂K at x and x′ respectively.
Assume that |x− x′|2 + |ν − ν ′|2 ≤ ρ2 and 〈y, ν〉 ≥

(
1− ε

2
)
〈x, ν〉.

Then

〈y, ν ′〉 ≥
(
1− ε

2 − 2ρ(ρ + εR + |y − x|)
)
〈x′, ν ′〉.

Márton Naszódi Approximation in Geometry 7 / 48



Proof of the Theorem

Set ρ =
√
ε

10
√

ΘR .

L1: Cardinality of a B–I net is OK.

L3: If |x− x′|2 + |ν − ν ′|2 ≤ ρ2, then

Cap(x, ε/2) ⊆ Cap
(
x′, ε2 + 2ρ(ρ + εR + |y − x|)

)
.

By L2,
Cap(x, ε/2) ⊆ Cap (x′, ε) .

By the Claim, for every x′ ∈ ∂K there is x in the B–I net satisfying
the condition of L3.

Thus, points of the B–I net will pierce every ε-cap.
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Proof of Lemma 1

Let s′, s′′ ≥ 0.

|x′ + ν ′ + s′ν ′ − x′′ − ν ′′ − s′′ν ′′|2 = |x′ + ν ′ − x′′ − ν ′′|2+
|s′ν ′ − s′′ν ′′|2 + 2s′〈ν ′, x′ − x′′〉 + 2s′′〈ν ′′, x′′ − x′〉+

2(s′ + s′′)(1− 〈ν ′, ν ′′〉) ≥ |x′ + ν ′ − x′′ − ν ′′|2.

Thus, if the balls of radius ρ
2 centered at x′ + ν ′ and x′′ + ν ′′ are

disjoint, so are the balls of radius ρ
2 centered at x′ + (1 + s′)ν ′ and

x′′ + (1 + s′′)ν ′′. From here we conclude that the balls of radius ρ
2

centered at the points xj + (1 + kρ)νxj , 0 ≤ k ≤ 1
ρ are all disjoint

(see Figure 2) and contained in Bd (0,R + 3).
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Proof of Lemma 1 cont’d

x′

x′′

ν ′

ν ′′

ρ
2

ρ
2

Figure: The disjoint balls

The total number of these balls is at least N
ρ (since for every

point xj in the net, there is a chain of at least 1
ρ balls

corresponding to different values of k). Hence, N
ρ ≤

(
R+3

ρ
2

)d
.
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Proof of Lemma 2

L2: Cap of a nice body is small diameter.

Let Q be the ball of radius Θ containing K whose boundary
sphere touches K at x, that is, Q = Bd (x− Θν,Θ).

Since o ∈ K ⊂ Bd (0,R), we have 0 ≤ 〈x, ν〉 ≤ R. Thus,

Θ2 ≥ |y − x + Θν|2 = |y − x|2 + 2Θ〈y − x, ν〉 + Θ2,

so
|y − x|2 ≤ 2Θ〈x− y, ν〉 ≤ 2Θε〈x, ν〉 ≤ 2ΘRε.
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L3: If |x− x′|2 + |ν − ν ′|2 ≤ ρ2, then y ∈ Cap(x, ε/2)
=⇒ y ∈ Cap (x′, . . . ) .

〈y, ν ′〉 = 〈x, ν ′〉 + 〈y − x, ν ′〉 =
〈x′, ν ′〉 + 〈x− x′, ν ′〉 + 〈y − x, ν〉 + 〈y − x, ν ′ − ν〉 ≥
〈x′, ν ′〉 + 〈x− x′, ν ′ − ν〉 + 〈y − x, ν〉 + 〈y − x, ν ′ − ν〉 ≥

〈x′, ν ′〉 − ρ2 − ε

2〈x, ν〉 − ρ|y − x|.

We used 〈x− x′, ν〉 ≥ 0. Since Bd (o, 1) ⊂ K ⊂ Bd (o,R),
〈x, ν〉 = 〈x, ν ′〉 + 〈x, ν − ν ′〉 ≤ 〈x′, ν ′〉 + ρR

and 〈x′, ν ′〉 ≥ 1 > 1
2 . So

〈y, ν ′〉 ≥
(
1− ε

2

)
〈x′, ν ′〉 − ρ

(
ρ + εR

2 + |y − x|
)
≥(

1− ε

2 − 2ρ(ρ + εR + |y − x|)
)
〈x′, ν ′〉.
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Economic cap covering



Another notion of depth: by volume

Center of cap C: centroid of C ∩ L′.

Magnified cap, Cλ: the image of C un-
der the magnification about the cen-
ter of C by factor λ > 0.

depthK (x) = min{vold (K ∩ H) : H is a half-space containing x}.

cap (x): the minimal cap of x ∈ K: K ∩ H with minimum volume
among all half-spaces H containing x.

Fix t > 0.
Floating body: K≥t = {x ∈ K : depthK (x) ≥ t},

Wet part: K≤t = {x ∈ K : depthK (x) ≤ t}.
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Goal: Cover the wet part by caps

Theorem (Economic cap covering: Bárány and Larman)
vold (K) = 1, and 0 < ε< (2d)−2d.
Then there are caps C1, . . . ,Cm and pairwise disjoint convex
sets C′1, . . . ,C′m such that C′i ⊆ Ci, for each i, and
1. ⋃m

i=1 C′i ⊆ K≤ε ⊆
⋃m

i=1 Ci,
2. vold (C′i) > c(d)ε and vold (Ci) < C(d)ε for each i,
3. for each cap C with C ∩ K≥ε = ∅ there is a Ci containing C.
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Macbeath regions

Macbeath region of K at x ∈ K with parameter λ > 0:

MK(x, λ) = x + λ[(K − x) ∩ (x− K)].

Theorem (Bárány)
vold (K) = 1 and t ∈ (0, t0) (where t0 depends only on d).
Then there is a polytope P with K≥t ⊆ P ⊆ K with no more than

C(d)vold (K≤t)
t

facets, where C(d) > 0 depends only on d.
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Sketch of the proof

Set τ = λt, where λ = 6−d.
Choose x1, . . . , xm ∈ ∂K≥τ maximal with respect to the property
that the M(xi, 1/2) are pairwise disjoint.
One can show that

c(d)m <
vold (K≤τ )

τ
< C(d)vold (K≤t)

t ,

for some c(d),C(d) > 0.
Remove the magnified (by factor 6) minimal caps from K to
obtain

P = K \
m⋃
i=1

cap (xi)6 .

It can be shown that (1) no z ∈ ∂K belongs to P, and (2)
K≥t ⊆ P.
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VC-dimension and ε-nets



VC-dimension: a measure of complexity of a set family
Vapnik–Chervonenkis dimension of a set family F ⊂ 2V on a set
V is the size of the largest set A such that
F|A = {F ∩ A : F ∈ F} is the power set 2A of A.

Example: Any family of half-spaces in Rd has low (at most d + 1)
VC dimension.

Theorem (ε-net Theorem)
0 < ε < 1/e, and let D ∈ Z+, F a family of some measurable
subsets of a probability space (U, µ), where µ(F) ≥ ε for all
F ∈ F . Assume dimVC(F) ≤ D. Set

t :=
⌈
3D
ε

ln 1
ε

⌉
.

Choose t elements X1, . . . ,Xt of V randomly, independently
according to µ.
Then {X1,. . ., Xt} is a transversal of F with probability at least
1− (200ε)D.
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Approximation by polytope using the ε-net theorem
Theorem
Fix ϑ ∈ (0, 1), set

t =
⌈
3 (d + 1)e

(1− ϑ)d ln e
(1− ϑ)d

⌉
.

Then for any centered convex body K in Rd, if t points X1, . . . ,Xt
of K are chosen randomly, independently and uniformly, then

ϑK ⊆ conv (X1, . . . ,Xt) ⊆ K

with probability at least 1−
[
200

(
(1−ϑ)d

e

)]d+1
.

Proof: Hit all caps using the ε-net theorem. We need a measure
according to which all caps are big.
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Caps are of big volume

Theorem (Grünbaum’s theorem, exercise)
Centroid of K is o.
F — a half-space containing o. Then

vold (K ∩ F) ≥
( d
d + 1

)d
vold (K) >

vold (K)
e .

Lemma (Stability of Grünbaum’s theorem)
Centroid of K is o.
F — a half-space that supports ϑK from outside, with 0 < ϑ < 1.
Then

vold (K) (1− ϑ)d
e ≤ vold (K ∩ F) . (1)
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A better measure using polarity
K — smooth.
Polar of K ⊂ Rd: K◦ = {x ∈ Rd : 〈x, y〉 ≤ 1 for all y ∈ K}.
For C ⊂ ∂K, set C∗ = {x∗ ∈ ∂K◦ : x ∈ C}.
Consider the “cones” Cone(C) = {rx : x ∈ C,0 ≤ r ≤ 1} and
Cone(C∗) = {ry : y ∈ C∗,0 ≤ r ≤ 1}.

µ(C) = 1
2

(
vold(Cone(C))

vold(K) + vold(Cone(C∗))
vold(K◦)

)
.

Lemma
Assume that K (a smooth, convex body) contains o in int (K),
and satisfies the Santaló bound vold (K) vold (K◦) ≤ eO(d)d−d.
Then µ is a probability measure on ∂K invariant under linear
automorphisms of Rd and µ(cap (x, ε)) ≥ eO(d)ε

d−1
2 for all x ∈ ∂K

and all ε ∈ (0, 1
2 ).
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Best bound for fine approximation

Theorem (N., Nazarov, Ryabogin)
Let K be a convex body in Rd with the center of mass at the
origin, and let ε ∈

(
0, 1

2

)
. Then there exists a convex polytope P

with at most eO(d)ε−
d−1
2 vertices such that (1− ε)K ⊂ P ⊂ K.

Open:
I Good approximation in the intermediate range (not so fine,

not so rough)?
I Total complexity instead of number of vertices?
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Quantitative Helly-type questions



Bárány, Katchalski, Pach ’82

Quantitative Volume Theorem [BKP’82]
Let F be a finite family of convex sets in Rd such that any 2d of
them have intersection of volume at least 1.
Then ∩F is of volume at least d−2d2 .

Later: d−2d2 can be replaced by Cd−3d/2.

Open: Can we obtain Cd−d/2? We know this as an upper bound.

Márton Naszódi Approximation in Geometry 22 / 48



John decomposition of the identity
Definition
We say that a set of vectors w1, . . . ,wm ∈ Rd with weights
c1, . . . , cm > 0 form a John’s decomposition of the identity, if

m∑
i=1

ciwi = o and
m∑
i=1

ciwi ⊗ wi = I,

where I is the identity operator on Rd.

Lemma (John’s theorem)
K convex body in Rd.
If Bd is the max. volume ellipsoid in K then there are contact
points w1, . . . ,wm ∈ ∂Bd ∩ ∂K (and weights c1, . . . , cm > 0) that
form a John’s decomposition of the identity.
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John decomposition of the identity

Note: If w1, . . . ,wm ∈ ∂Bd (with weights c1, . . . , cm > 0) form a
John’s decomposition of the identity, then {w1, . . . ,wm}∗ ⊂ dB.
By polarity: 1

dB ⊂ conv ({w1, . . . ,wm}).
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Lemma (Dvoretzky-Rogers lemma)
w1, . . . ,wm ∈ ∂Bd (with c1, . . . , cm > 0) a John’s decomposition
of the identity. Then there is an orthonormal basis z1, . . . , zd of
Rd, and {v1, . . . , vd} ⊆ {w1, . . . ,wm}:

vi ∈ span{z1, . . . , zi}, and
√

d− i + 1
d ≤ 〈vi, zi〉 ≤ 1, (i = 1, . . . , d).

Lemma (Pivovarov’s estimate, 2010)
Select d vectors v1, . . . , vd randomly from the contact points
(each time each point chosen with probability ci/d). Then the
expected volume of the random simplex is

E vold (S1) = 1
d! ·
√
d!

dd/2 . (2)
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Proof of selecting 2d with “volume at least cdd2d”
Theorem [N.]
Let F be a finite family of convex sets in Rd such that any 2d of
them have intersection of volume at least 1.
Then ∩F is of volume at least Cd−2d.

Equivalently:
Let F be a finite family of convex sets in Rd. Then

vold (∩G)
vold (∩F)

≤ cd2d

for some 2d-member subfamily G of F .

May assume:
I F consists of closed half-spaces, ie., P := ∩F is a polytope.
I Bd ⊂ P is the ellipsoid of maximal volume in P.
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By John’s Thm.: There are contact points w1, . . . ,wm ∈ ∂B ∩ ∂P
(with c1, . . . , cm > 0) that form a John’s decomposition of the
identity.

Q := conv ({w1. . . . ,wm}).

By Dvoretzky-Rogers Lemma: There is an ONB z1, . . . , zd of Rd, and
{v1, . . . , vd} ⊆ {w1, . . . ,wm} st. {v1, . . . , vd} is “nicely aligned”
with z1, . . . , zd.

S1 := conv ({o, v1, v2, . . . , vd}).
E1: the largest volume ellipsoid in
S1.
u: center of E1.
`: ray from origin toward −u.
w: ` ∩ ∂Q.

By the “Note”: o ∈ int(Q). In fact, 1
dB ⊂

Q.
Hence, |w| ≥ 1/d.

S2 := conv ({w, v1, v2, . . . , vd}).

Q

B

v1

vd

w1

wk

o
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By the Claim: |w| ≥ 1/d.

S2 := conv ({w, v1, v2, . . . , vd}).
E2: contraction of E1 with center w,
ratio λ = |w|

|w−u| .
Now,

I E2 is centered at the origin
I λ ≥ 1

d+1
I E2 ⊆ S2.

Q

B
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vd

w1

wk

S1

S2

E1

E2

o
u

w
`

By Caratheodory’s theorem, (re-indexing) w ∈ conv ({w1, . . . ,wd}).

E2 ⊂ S2 ⊂ conv ({w1, . . . ,wk, v1, . . . , vd}) .

X := {w1, . . . ,wk, v1, . . . , vd}.
G : the family of those half-space which support B at the points
of X.

Finally, |G| ≤ 2d, and G ⊆ F , and ∩G = X∗ ⊂ E∗2.
After finally, volumes: E2 not small⇒ E∗

2 not big⇒∩G not big.
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Remarks

Easy: Cdcd is sharp.

Brazitikos ’16+ improved Cd−2d to Cd−1.5d.
The modification: Replace E1 by S1 ∩ (2g− S1), where
g = centroid(S1).
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Quantitative Colorful Helly Theorem

Theorem (Damásdi, Földvári, N.)
C1, . . . , C3d – finite families of convex bodies in Rd. Assume that
for any colorful choice of 2d sets, Cik ∈ Cik for each 1 ≤ k ≤ 2d

with 1 ≤ i1 < . . . < i2d ≤ 3d, the intersection
2d⋂
k=1

Cik contains an

ellipsoid of volume at least 1.
Then, there exists an 1 ≤ i ≤ 3d such that ⋂

C∈Ci
C contains an

ellipsoid of volume at least d−O(d2).

Open:
I 2d in place of 3d should hold.
I d−O(d) in place of d−O(d2)?
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Back to geometric distance — Quantitative
Steinitz theorem



The problem: Bound r(d)
Steinitz’s theorem
For any Q ⊂ Rd, if o ∈ int (conv (Q)), then there are at most 2d
points of Q whose convex hull contains the origin in the interior.

Quantitative Steinitz theorem: Bárány, Katchalski, Pach ’82
There exists r(d) > 0 such that for any Q ⊂ Rd, if Bd ⊆ conv (Q),
then there is Q′ ⊆ Q of size at most 2d with r(d)Bd ⊂ conv (Q′).
In fact, r(d) > d−2d.

Conjecture [Bárány, Katchalski, Pach ’82]

r(d) ≈ cd1/2.
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Results

Polynomial lower bound on r(d) [Ivanov, N.]
r(d) > 1/(6d2).

Upper bound on r(d) [Ivanov, N.]
r(d) < 2/d1/2.

Stronger:

The convex hull of a few unit vectors is small
u1, . . . , un ∈ Rd, |ui| = 1. ε > 0. Then

conv ({±ui}) 6⊃
(√

n
d + ε

)
Bd.
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The convex hull of a few unit vectors is small
u1, . . . , un ∈ Rd, |ui| = 1. ε > 0. Then

conv ({±ui}) 6⊃
(√

n
d + ε

)
Bd.

Similar flavor:

Conjecture
Let {u1, . . . , u2d} be unit vectors in Rd. Then there is a point in

2d⋂
i=1
{x ∈ Rd : 〈ui, x〉 ≤ 1}

with norm
√
d.
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Preparations for the proof of r(d) > 1/(6d2)
Goal: Q convex polytope, Q ⊃ Bd. Find 2d vertices whose conv

contains 1
6d2Bd.

Almendra–Hernández, Ambrus, Kendall, ’22
λ > 0, and L ⊂ Rd convex polytope with L ⊂ −λL.
Then there exist 2d vertices L′ of L

L ⊂ −(λ + 2)d · conv (L′).

Note: Choose o as centroid, or center of John’s ellipsoid, or
Santaló point, etc. =⇒ λ ≤ d.

Notation
For v ∈ Rd \ {o},

Hv =
{
x ∈ Rd : 〈x, v〉 ≤ 1

}
.
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Proof of A-HAK

Among all simplices with d vertices from L and one vertex at
the origin, take a simplex S = conv (0, v1, . . . , vd) with maximal
volume.

S =

x ∈ Rd : x = α1v1 + . . . + αdvd for αi ≥ 0 and
d∑
i=1
αi ≤ 1

 .
(3)

Set P = ∑
i∈[d]

[−vi, vi]. It is a paralletope:

P = {x ∈ Rd : x = β1v1+. . .+βdvd, βi ∈ [−1, 1]}.

Claim: L ⊂ P. (4)
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Let S′ = −2dS + (v1 + . . . + vd). By (3),

S′ =

x ∈ Rd : x = γ1v1 + . . . + γdvd for γi ≤ 1 and
d∑
i=1
γi ≥ −d

 ,
which yields

P ⊆ S′. (5)
Let y be the intersection of the ray emanating from 0 in the
direction −(v1 + · · · + vd) and the boundary of Q. By
Carathéodory’s theorem, we can choose k ≤ d vertices
{v′1, . . . , v′k} of L such that y ∈ conv

(
v′1, . . . , v′k

)
. Set

L′ = conv
(
v1, . . . , vd, v′1, . . . , v′k

)
. Clearly, v1+···+vd

d ∈ S ⊂ L. Thus,
0 ∈ L′, and consequently,

S ⊆ Q′. (6)

Since L ⊂ −λL, we also have that
v1 + · · · + vd

d ∈ −λ[y,0] ⊂ −λL′.



Proof of A-HAK completed

v1 + · · · + vd
d ∈ −λ[y,0] ⊂ −λL′.

Combining it with (4), (5), (6), we obtain

L ⊂ P ⊂ S′ = −2dS+(v1+· · ·+vd) ⊂ −2d L′−λd L′ = −(λ+2)d L′.
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Proof of r(d) > 1/(6d2)
K := Q◦ ⊂ Bd. K = ⋂

v∈vertQ
Hv.

By duality, it suffices to find 2d half-spaces Hv with v ∈ vertQ,
whose intersection is contained in the ball 6d2Bd.

The idea: Duality again! Let c be such that K − c ⊂ −d(K − c).
L := (K − c)◦. Clearly, L ⊂ −dL.

Apply A-HAK’22 for L with λ = d. There are w1, . . . ,w2d ∈ vertL:

L ⊂ −(d + 2)d · conv (
{
wi : i ∈ [2d]

}
) .

Since c ∈ K ⊂ Bd, one has that K − c ⊂ 2Bd thus, L ⊃ 1
2B

d.
So,

1
2Bd ⊂ L ⊂ −(d + 2)d · conv (

{
wi : i ∈ [2d]

}
) .

Take polar, and obtain ...
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(conv (
{
wi : i ∈ [2d]

}
))◦ ⊂ 2(d + 2)dBd.

Note: L◦ = K − c. Thus, for any w ∈ vertL, Hw = Hv − c for some
v ∈ vertQ. Thus,

(conv (
{
wi : i ∈ [2d]

}
))◦ =

⋂
vi∈[2d]

(Hvi − c)

for corresponding vi ∈ vertQ.

Thus,⋂
vi∈[2d]

Hvi =
⋂

vi∈[2d]
(Hvi − c)+c ⊂ 2(d+2)dBd+c ⊂ (2(d + 2)d + 1)Bd.

Thus, Q′ := conv (
{
vi : i ∈ [2d]

}
) is good.

Márton Naszódi Approximation in Geometry 39 / 48



(conv (
{
wi : i ∈ [2d]

}
))◦ ⊂ 2(d + 2)dBd.

Note: L◦ = K − c. Thus, for any w ∈ vertL, Hw = Hv − c for some
v ∈ vertQ. Thus,

(conv (
{
wi : i ∈ [2d]

}
))◦ =

⋂
vi∈[2d]

(Hvi − c)

for corresponding vi ∈ vertQ.

Thus,⋂
vi∈[2d]

Hvi =
⋂

vi∈[2d]
(Hvi − c)+c ⊂ 2(d+2)dBd+c ⊂ (2(d + 2)d + 1)Bd.

Thus, Q′ := conv (
{
vi : i ∈ [2d]

}
) is good.

Márton Naszódi Approximation in Geometry 39 / 48



Approximation of sums of matrices



Independent copies of an isotropic vector
A ∈ Rd×d (often, we simply have A = I) as a (positive) linear
combination of some other matrices.

Goal: Small subset of the matrices whose linear combination (with
new coefficients) yields a matrix close to A.
A random vector v in Rd is called isotropic, if Ev ⊗ v = I.

Rudelson’s theorem
If we take k independent copies y1, . . . , yk of an isotropic
random vector y in Rd for which |y|2 ≤ γ almost surely, with

k =
⌈cγ ln d

ε2

⌉
, then E

∥∥∥∥∥∥ 1k
k∑
i=1

yi ⊗ yi − I

∥∥∥∥∥∥ ≤ ε,
where ‖A‖ = max{〈Ax,Ax〉1/2 : x ∈ Rd, 〈x, x〉 = 1} denotes the
operator norm of the matrix A.
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In the language of John
Recall: John decomposition of the identity:

m∑
i=1

ciwi = o and
m∑
i=1

ciwi ⊗ wi = I.

Rudelson’s result applies in this setting: Taking αi = ci/d, we get
a probability distribution on [m].

Let σ = {i1, . . . , ik} be a multiset obtained by k independent
draws from [m] according to it, and set

1
k
∑
i∈σ

√
dui ⊗

√
dui.

Rudelson: In expectation, this average is not farther than ε from I in
the operator norm, provided that k is at least cd ln d

ε2
.
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A slightly more general form

Theorem (Rudelson’s theorem)
Let 0 < ε < 1 and Q1, . . . ,Qk be independent random matrices
distributed according to (not necessarily identical) probability
distributions P1, . . . ,Pk on the set Pd of d× d real positive
semi-definite matrices such that EQi = A for some A ∈ Pd and
all i ∈ [k]. Set γ = E(maxi∈[k] ‖Qi‖), and assume that

k ≥ cγ(1 + ‖A‖) ln d
ε2

,

where c is an absolute constant. Then

E

∥∥∥∥∥∥ 1k
∑
i∈[k]

Qi − A

∥∥∥∥∥∥ ≤ ε. (7)
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A breakthrough: ln d removed by an algorithmic
approach

Batson, Marcus, Spielman, Srivastava, Friedland, Youssef: We may
remove ln d in the special case of a John decomposition.

Open: Can we remove ln d in the special case of rank 2 orthogonal
projections?
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Claim
Exercise
1. The set Pd of positive semi-definite d× d matrices (with

real entries) form a convex cone with apex at the origin in
the vector space Rd(d+1)/2 of symmetric matrices.

2. Matrices of trace 1 form a hyperplane H1 containing 1
d I in

Rd(d+1)/2.
3. The set Pd ∩ H1 is a convex body in H1.
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Proof of Rudelson’s Theorem
The Schatten p-norm of a real d× d matrix A is defined as

‖A‖Cd
p

:=

 d∑
i=1

(si(A))p
1/p

,

where s1(A), . . . , sd(A) is the sequence of eigenvalues of the
positive semi-definite matrix

√
A∗A.

Recall: ‖A‖ ≤ ‖A‖Cd
p
for all p ≥ 1, and

‖A‖ ≤ ‖A‖Cd
p
≤ e ‖A‖ for p = ln d. (8)

r denotes a sequence of k Rademacher variables, that is,
r = (r1, . . . , rk), where the ri are random variables uniformly
distributed on {1,−1}, independent of each other and all other
random variables in the context.
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Lust–Piquard inequality
Theorem (Lust–Piquard)
2 ≤ p <∞. For any d and any Q1, . . . ,Qk (not necessarily
positive definite) square matrices of size d we have
E

r

∥∥∥∥∥∥
k∑
j=1

rjQj

∥∥∥∥∥∥
p

Cd
p


1/p

≤ c
√
pmax


∥∥∥∥∥∥∥
 k∑

j=1
QjQ∗j

1/2
∥∥∥∥∥∥∥
Cd
p

,

∥∥∥∥∥∥∥
 k∑

j=1
Q∗j Qj

1/2
∥∥∥∥∥∥∥
Cd
p


for a universal constant c > 0.

For any d× d matrix Q, the product Q∗Q is positive semi-definite.
Since, by Weyl’s inequality, the Schatten p-norm is monotone on
the cone of positive semi-definite matrices, we may deduce:E

r

∥∥∥∥∥∥
k∑
j=1

rjQj

∥∥∥∥∥∥
p

Cd
p


1/p

≤ c
√
p

∥∥∥∥∥∥∥
 k∑

j=1
QjQ∗j + Q∗j Qj

1/2
∥∥∥∥∥∥∥
Cd
p

. (9)
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Symmetrization by Rademacher variables

Lemma (Symmetrization by Rademacher variables)
Let q1, . . . ,qk be independent random vectors distributed
according to (not necessarily identical) probability distributions
P1, . . . ,Pk on a normed space X with Eqi = q for all i ∈ [k].
Then

E
q1,...,qk

∥∥∥∥∥∥ 1k
k∑
`=1

q` − q

∥∥∥∥∥∥ ≤ 2
k E

q1,...,qk
E
r

∥∥∥∥∥∥
k∑
`=1

r`q`

∥∥∥∥∥∥ .
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