Approximation in Geometry

Márton Naszódi

Alfréd Rényi Institute of Mathematics, and Dept. of Geometry, Eötvös Univ., Budapest

Convex and Discrete Geometry Summer School at the Erdős Center

2023 August



Two notions of distance of convex sets

Convex body: compact convex set with nonempty interior in \mathbb{R}^d

Convex polytope: the convex hull of finitely many points in \mathbb{R}^d . May assume: nonempty interior.

Hausdorff distance of two convex sets K and L:

$$\delta_H(K,L) = \inf\{\delta > 0 : K + \mathbf{B}^d(o,\delta) \subseteq L, L + \mathbf{B}^d(o,\delta) \subseteq K\}.$$

Geometric distance of K and L:

$$d(K, L) = \inf\{\alpha/\beta : \alpha, \beta > 0, \beta K \subseteq L \subseteq \alpha K\}.$$

This definition is sensitive to the choice of the origin.

Márton Naszódi Approximation in Geometry 1/48

Simplest approach: The packing bound

Claim (Maximal packing of balls yields Hausdorff approximation — Exercise)

If $\Lambda \subset \mathbb{R}^d$ is such that $\Lambda + \mathbf{B}^d$ $(o, \varepsilon/2)$ is a maximal packing of $\varepsilon/2$ radius balls in $K + \mathbf{B}^d$ $(o, \varepsilon/2)$, then $P = \operatorname{conv}(\Lambda)$ satisfies $\delta_H(P, K) \leq \varepsilon$.

Claim (Volume bound for size of a packing of balls - Ex.)

If $\Lambda + \mathbf{B}^d(o, \varepsilon/2) \subseteq K + \mathbf{B}^d(o, \varepsilon/2)$, then Λ is of cardinality at most $\frac{\operatorname{vol}_d(K+\mathbf{B}^d(o,\varepsilon/2))}{\operatorname{vol}_d(\mathbf{B}^d(o,\varepsilon/2))}$.

Theorem (Approximation in geometric distance -Ex.)

For any $\varepsilon > 0$ and d, there is a convex polytope P with $\lesssim \left(\frac{3}{\varepsilon}\right)^d$ vertices that is $(1 + \varepsilon)$ -close to K + t in the geometric distance with an appropriate translation vector $t \in \mathbb{R}^d$.

Márton Naszódi Approximation in Geometry

2/48

Approxiation in the geometric distance through hitting caps

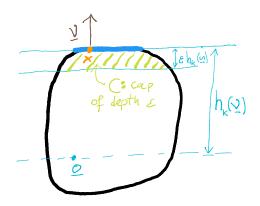
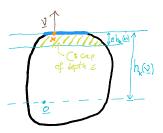


Figure: A cap

Márton Naszódi Approximation in Geometry 3 / 48

Approxiation in the geometric distance through hitting caps



Claim

 \emph{K} smooth convex body, $o \in \operatorname{int}(\emph{K})$, $\varepsilon \in (0,1)$.

 $X \subset K$ finite set.

Then $P = \operatorname{conv}(X)$ satisfies $d(K,P) \leq \frac{1}{1-\varepsilon}$ if and only if, X intersects every cap of $\operatorname{depth} \varepsilon$, that is, every set of the form $\operatorname{cap}(x,\varepsilon) = \{y \in K : \langle y,\nu \rangle \geq (1-\varepsilon) \langle x,\nu \rangle \}$, where $x \in \partial K$ and ν is an outer unit normal vector of K at x.

Márton Naszódi Approximation in Geometry 3 / 48

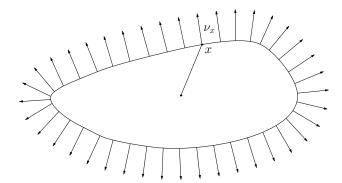
The Bronshtein-Ivanov net

K — convex body with smooth boundary, $o \in K$, $K \subset \mathbf{B}^d$ (o, R).

 $S := \{x + \nu_x : x \in \partial K\}$, where ν_x : the outer unit normal to ∂K at x.

 $\{x_j + \nu_{x_j} : j \in [N]\}$ — maximal ρ -separated set in S, i.e., any two elements are at distance $\geq \rho$ (see Figure 1).

 $\{x_j: 1 \le j \le N\}$ — the *Bronshtein–Ivanov net* of mesh ρ , where $\rho \in (0, 1/2)$.



Márton Naszódi Approximation in Geometry 4 / 48

Nice body \longrightarrow B-I net \longrightarrow approximation

K is a *nice convex body*, if it has smooth boundary, \mathbf{B}^d (o, 1) $\subset K \subset \mathbf{B}^d$ (o, R), and for every boundary point $x \in \partial K$, there is a ball of radius Θ containing K whose boundary sphere touches K at x.

Theorem (The B-I net yields approximation in the geometric distance)

If K is a nice convex body with $R = d^2$ and $\Theta = d^5$, then there is a convex polytope P with no more than $d^{100d}\varepsilon^{-\frac{d-1}{2}}$ vertices satisfying $P \subseteq K \subseteq (1 + \varepsilon)P$.

We prove this result.

Márton Naszódi Approximation in Geometry 5 / 48

Claim (Exercise)

In the B–I construction, for every $x \in \partial K$, we can find j such that $|x - x_j|^2 + |\nu_x - \nu_{x_j}|^2 \le \rho^2$.

Lemma (1. Upper bound on the size of a B-I net)

We have $N \leq 2^d (R + 3)^d \rho^{-d+1}$.

Lemma (2. Caps of nice bodies are of small diameter)

Let $\varepsilon \in \left(0, \frac{1}{2}\right)$. Assume that K is a nice convex body, $x \in \partial K$, and ν is the outer normal to ∂K at x. If $y \in K$ and $\langle y, \nu \rangle \geq (1 - \varepsilon) \langle x, \nu \rangle$, then $|y - x| \leq \sqrt{20 \, R \, \varepsilon}$.

Márton Naszódi Approximation in Geometry 6 / 48

Lemma (3. Cap contained in cap)

Fix $\varepsilon, \rho \in \left(0, \frac{1}{2}\right)$. Let K be a nice convex body, $x, x', y \in \partial K$; and ν and ν' the outer unit normals to ∂K at x and x' respectively. Assume that $|x-x'|^2 + |\nu-\nu'|^2 \leq \rho^2$ and $\langle y, \nu \rangle \geq \left(1 - \frac{\varepsilon}{2}\right) \langle x, \nu \rangle$. Then

$$\langle y, \nu' \rangle \geq \left(1 - \frac{\varepsilon}{2} - 2\rho(\rho + \varepsilon R + |y - x|)\right) \langle x', \nu' \rangle.$$

7/48

Márton Naszódi Approximation in Geometry

Proof of the Theorem

Set
$$\rho = \frac{\sqrt{\varepsilon}}{10\sqrt{\Theta R}}$$
.

L1: Cardinality of a B-I net is OK.

L3: If
$$|x - x'|^2 + |\nu - \nu'|^2 \le \rho^2$$
, then

$$\operatorname{Cap}(x,\varepsilon/2)\subseteq\operatorname{Cap}\left(x',\frac{\varepsilon}{2}+2\rho(\rho+\varepsilon R+|y-x|)\right).$$

By L2,

$$\operatorname{Cap}(\mathbf{x}, \varepsilon/\mathbf{2}) \subseteq \operatorname{Cap}(\mathbf{x}', \varepsilon)$$
.

By the Claim, for every $x' \in \partial K$ there is x in the B-I net satisfying the condition of L3.

Thus, points of the B-I net will pierce every ε -cap.

Márton Naszódi Approximation in Geometry 8 / 48

Proof of Lemma 1

Let $s', s'' \geq 0$.

$$|x' + \nu' + s'\nu' - x'' - \nu'' - s''\nu''|^2 = |x' + \nu' - x'' - \nu''|^2 + |s'\nu' - s''\nu''|^2 + 2s'\langle\nu', x' - x''\rangle + 2s''\langle\nu'', x'' - x'\rangle + 2(s' + s'')(1 - \langle\nu', \nu''\rangle) \ge |x' + \nu' - x'' - \nu''|^2.$$

Thus, if the balls of radius $\frac{\rho}{2}$ centered at $x' + \nu'$ and $x'' + \nu''$ are disjoint, so are the balls of radius $\frac{\rho}{2}$ centered at $x' + (1+s')\nu'$ and $x'' + (1+s'')\nu''$. From here we conclude that the balls of radius $\frac{\rho}{2}$ centered at the points $x_j + (1+k\rho)\nu_{x_j}$, $0 \le k \le \frac{1}{\rho}$ are all disjoint (see Figure 2) and contained in \mathbf{B}^d (0,R+3).

Márton Naszódi Approximation in Geometry 9 / 48

Proof of Lemma 1 cont'd

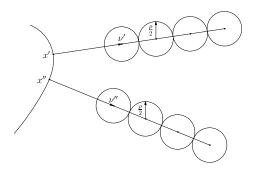


Figure: The disjoint balls

The total number of these balls is at least $\frac{N}{\rho}$ (since for every point x_j in the net, there is a chain of at least $\frac{1}{\rho}$ balls corresponding to different values of k). Hence, $\frac{N}{\rho} \leq \left(\frac{R+3}{\frac{P}{2}}\right)^d$.

Márton Naszódi Approximation in Geometry 10 / 48

Proof of Lemma 2

L2: Cap of a nice body is small diameter.

Let Q be the ball of radius Θ containing K whose boundary sphere touches K at x, that is, $Q = \mathbf{B}^d (x - \Theta \nu, \Theta)$.

Since
$$o \in K \subset \mathbf{B}^d$$
 (0, R), we have $0 \le \langle x, \nu \rangle \le R$. Thus,

$$\Theta^2 \ge |y - x + \Theta \nu|^2 = |y - x|^2 + 2\Theta \langle y - x, \nu \rangle + \Theta^2$$

so

$$|y-x|^2 \le 2\Theta\langle x-y,\nu\rangle \le 2\Theta\varepsilon\langle x,\nu\rangle \le 2\Theta R\varepsilon$$
.

11 / 48

Márton Naszódi Approximation in Geometry

L3: If
$$|x - x'|^2 + |\nu - \nu'|^2 \le \rho^2$$
, then $y \in \operatorname{Cap}(x, \varepsilon/2)$ $\Longrightarrow y \in \operatorname{Cap}(x', \ldots)$.

$$\begin{split} \langle y, \nu' \rangle &= \langle x, \nu' \rangle + \langle y - x, \nu' \rangle = \\ & \langle x', \nu' \rangle + \langle x - x', \nu' \rangle + \langle y - x, \nu \rangle + \langle y - x, \nu' - \nu \rangle \geq \\ & \langle x', \nu' \rangle + \langle x - x', \nu' - \nu \rangle + \langle y - x, \nu \rangle + \langle y - x, \nu' - \nu \rangle \geq \\ & \langle x', \nu' \rangle - \rho^2 - \frac{\varepsilon}{2} \langle x, \nu \rangle - \rho |y - x|. \end{split}$$

We used
$$\langle \mathbf{x} - \mathbf{x}', \nu \rangle \geq 0$$
. Since \mathbf{B}^d (o, 1) $\subset \mathbf{K} \subset \mathbf{B}^d$ (o, R), $\langle \mathbf{x}, \nu \rangle = \langle \mathbf{x}, \nu' \rangle + \langle \mathbf{x}, \nu - \nu' \rangle \leq \langle \mathbf{x}', \nu' \rangle + \rho R$ and $\langle \mathbf{x}', \nu' \rangle \geq 1 > \frac{1}{2}$. So

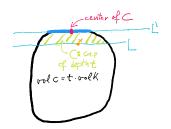
and
$$\langle x', \nu' \rangle \geq 1 > \frac{1}{2}$$
. So

$$\begin{split} \langle \mathbf{y}, \mathbf{\nu}' \rangle &\geq \left(1 - \frac{\varepsilon}{2} \right) \langle \mathbf{x}', \mathbf{\nu}' \rangle - \rho \left(\rho + \frac{\varepsilon R}{2} + |\mathbf{y} - \mathbf{x}| \right) \geq \\ & \left(1 - \frac{\varepsilon}{2} - 2\rho (\rho + \varepsilon R + |\mathbf{y} - \mathbf{x}|) \right) \langle \mathbf{x}', \mathbf{\nu}' \rangle. \quad \Box \end{split}$$

Márton Naszódi Approximation in Geometry

Economic cap covering

Another notion of depth: by volume



Center of cap C: centroid of $C \cap L'$.

Magnified cap, C^{λ} : the image of C under the magnification about the center of C by factor $\lambda > 0$.

 $\operatorname{depth}_{K}(x) = \min\{\operatorname{vol}_{d}(K \cap H) : H \text{ is a half-space containing } x\}.$

 $\operatorname{cap}(x)$: the minimal cap of $x \in K$: $K \cap H$ with minimum volume among all half-spaces H containing x.

Fix t > 0.

Floating body: $K_{>t} = \{x \in K : \operatorname{depth}_K(x) \geq t\},\$

Wet part: $K_{\leq t} = \{x \in K : \operatorname{depth}_K(x) \leq t\}.$

Márton Naszódi Approximation in Geometry 13 / 48

Goal: Cover the wet part by caps

Theorem (Economic cap covering: Bárány and Larman)

 $vol_d(K) = 1$, and $0 < \varepsilon < (2d)^{-2d}$.

Then there are caps C_1, \ldots, C_m and pairwise disjoint convex sets C'_1, \ldots, C'_m such that $C'_i \subseteq C_i$, for each i, and

- 1. $\bigcup_{i=1}^m C_i' \subseteq K_{\leq \varepsilon} \subseteq \bigcup_{i=1}^m C_i$,
- 2. $\operatorname{vol}_d(C_i') > c(d)\varepsilon$ and $\operatorname{vol}_d(C_i) < C(d)\varepsilon$ for each i,
- 3. for each cap C with $C \cap K_{\geq \varepsilon} = \emptyset$ there is a C_i containing C.

Márton Naszódi Approximation in Geometry 14 / 48

Macbeath regions

Macbeath region of K at $x \in K$ with parameter $\lambda > 0$:

$$M_K(x,\lambda) = x + \lambda [(K-x) \cap (x-K)].$$

Theorem (Bárány)

 $\operatorname{vol}_d(K) = 1$ and $t \in (0, t_0)$ (where t_0 depends only on d). Then there is a polytope P with $K_{>t} \subseteq P \subseteq K$ with no more than

$$C(d)\frac{\operatorname{vol}_d(K_{\leq t})}{t}$$

facets, where C(d) > 0 depends only on d.

Márton Naszódi Approximation in Geometry 15 / 48

Sketch of the proof

Set $\tau = \lambda t$, where $\lambda = 6^{-d}$.

Choose $x_1, \ldots, x_m \in \partial K_{\geq \tau}$ maximal with respect to the property that the $M(x_i, 1/2)$ are pairwise disjoint.

One can show that

$$c(d)m < \frac{\operatorname{vol}_d(K_{\leq \tau})}{\tau} < C(d)\frac{\operatorname{vol}_d(K_{\leq t})}{t},$$

for some c(d), C(d) > 0.

Remove the magnified (by factor 6) minimal caps from K to obtain

$$P=K\setminus\bigcup_{i=1}^m\operatorname{cap}\left(x_i\right)^6.$$

It can be shown that (1) no $z \in \partial K$ belongs to P, and (2) $K_{>t} \subseteq P$.

Márton Naszódi Approximation in Geometry 16 / 48

VC-dimension and arepsilon-nets

VC-dimension: a measure of complexity of a set family

Vapnik-Chervonenkis dimension of a set family $\mathcal{F}\subset 2^V$ on a set V is the size of the largest set A such that

 $\mathcal{F}|_A = \{F \cap A : F \in \mathcal{F}\}$ is the power set 2^A of A.

Example: Any family of half-spaces in \mathbb{R}^d has low (at most d+1) VC dimension.

Márton Naszódi Approximation in Geometry 17 / 48

VC-dimension: a measure of complexity of a set family

Vapnik-Chervonenkis dimension of a set family $\mathcal{F}\subset 2^V$ on a set V is the size of the largest set A such that

$$\mathcal{F}|_A = \{F \cap A : F \in \mathcal{F}\}$$
 is the power set 2^A of A .

Example: Any family of half-spaces in \mathbb{R}^d has low (at most d+1) VC dimension.

Theorem (ε -net Theorem)

 $0 < \varepsilon < 1/e$, and let $D \in \mathbb{Z}_+$, \mathcal{F} a family of some measurable subsets of a probability space (U, μ) , where $\mu(F) \geq \varepsilon$ for all $F \in \mathcal{F}$. Assume $\dim_{\mathrm{VC}}(\mathcal{F}) \leq D$. Set

$$t := \left[3 \frac{D}{\varepsilon} \ln \frac{1}{\varepsilon} \right].$$

Choose t elements X_1, \ldots, X_t of V randomly, independently according to μ .

Then $\{X_1, \ldots, X_t\}$ is a transversal of \mathcal{F} with probability at least $1-(200\varepsilon)^D$.

Márton Naszódi Approximation in Geometry 17 / 48

Approximation by polytope using the ε -net theorem

Theorem

Fix $\vartheta \in (0,1)$, set

$$t = \left[3 \frac{(d+1)e}{(1-\vartheta)^d} \ln \frac{e}{(1-\vartheta)^d} \right].$$

Then for any centered convex body K in \mathbb{R}^d , if t points X_1, \ldots, X_t of K are chosen randomly, independently and uniformly, then

$$\vartheta K \subset \operatorname{conv}(X_1,\ldots,X_t) \subset K$$

with probability at least $1 - \left[200 \left(\frac{(1-\vartheta)^d}{e}\right)\right]^{d+1}$.

Proof: Hit all caps using the ε -net theorem. We need a measure according to which all caps are big.

Márton Naszódi Approximation in Geometry 18 / 48

Caps are of big volume

Theorem (Grünbaum's theorem, exercise)

Centroid of K is o.

F — a half-space containing o. Then

$$\operatorname{vol}_d(K \cap F) \ge \left(\frac{d}{d+1}\right)^d \operatorname{vol}_d(K) > \frac{\operatorname{vol}_d(K)}{e}.$$

Lemma (Stability of Grünbaum's theorem)

Centroid of K is o.

F — a half-space that supports ϑK from outside, with $0<\vartheta<1$.

Then

$$\operatorname{vol}_{d}(K)\frac{(1-\vartheta)^{d}}{e} \leq \operatorname{vol}_{d}(K \cap F). \tag{1}$$

Márton Naszódi Approximation in Geometry 19 / 48

A better measure using polarity

K – smooth. Polar of $K \subset \mathbb{R}^d$: $K^{\circ} = \{x \in \mathbb{R}^d : \langle x, y \rangle \leq 1 \text{ for all } y \in K\}$. For $C \subset \partial K$, set $C^* = \{x^* \in \partial K^{\circ} : x \in C\}$. Consider the "cones" $\operatorname{Cone}(C) = \{rx : x \in C, 0 \leq r \leq 1\}$ and $\operatorname{Cone}(C^*) = \{ry : y \in C^*, 0 \leq r \leq 1\}$.

$$\mu(C) = \frac{1}{2} \left(\frac{\operatorname{vol}_d(\operatorname{Cone}(C))}{\operatorname{vol}_d(K)} + \frac{\operatorname{vol}_d(\operatorname{Cone}(C^*))}{\operatorname{vol}_d(K^\circ)} \right).$$

Lemma

Assume that K (a smooth, convex body) contains o in $\operatorname{int}(K)$, and satisfies the Santaló bound $\operatorname{vol}_d(K)\operatorname{vol}_d(K^\circ) \leq \operatorname{e}^{O(d)}d^{-d}$. Then μ is a probability measure on ∂K invariant under linear automorphisms of \mathbb{R}^d and $\mu(\operatorname{cap}(x,\varepsilon)) \geq \operatorname{e}^{O(d)}\varepsilon^{\frac{d-1}{2}}$ for all $x \in \partial K$ and all $\varepsilon \in (0,\frac{1}{2})$.

Márton Naszódi Approximation in Geometry 20 / 48

Best bound for fine approximation

Theorem (N., Nazarov, Ryabogin)

Let K be a convex body in \mathbb{R}^d with the center of mass at the origin, and let $\varepsilon \in \left(0,\frac{1}{2}\right)$. Then there exists a convex polytope P with at most $\mathrm{e}^{O(d)}\varepsilon^{-\frac{d-1}{2}}$ vertices such that $(1-\varepsilon)K\subset P\subset K$.

Open:

- Good approximation in the intermediate range (not so fine, not so rough)?
- Total complexity instead of number of vertices?

Márton Naszódi Approximation in Geometry 21 / 48

Quantitative Helly-type questions

Bárány, Katchalski, Pach '82

Quantitative Volume Theorem [BKP'82]

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^d such that any 2d of them have intersection of volume at least 1.

Then $\cap \mathcal{F}$ is of volume at least d^{-2d^2} .

Later: d^{-2d^2} can be replaced by $Cd^{-3d/2}$.

Open: Can we obtain $Cd^{-d/2}$? We know this as an upper bound.

Márton Naszódi Approximation in Geometry 22 / 48

John decomposition of the identity

Definition

We say that a set of vectors $w_1, \ldots, w_m \in \mathbb{R}^d$ with weights $c_1, \ldots, c_m > 0$ form a *John's decomposition of the identity*, if

$$\sum_{i=1}^{m} c_i \mathbf{w}_i = o \quad \text{and} \quad \sum_{i=1}^{m} c_i \mathbf{w}_i \otimes \mathbf{w}_i = I,$$

where *I* is the identity operator on \mathbb{R}^d .

Lemma (John's theorem)

K convex body in \mathbb{R}^d .

If \mathbf{B}^d is the max. volume ellipsoid in K then there are contact points $w_1, \ldots, w_m \in \partial \mathbf{B}^d \cap \partial K$ (and weights $c_1, \ldots, c_m > 0$) that form a John's decomposition of the identity.

Márton Naszódi Approximation in Geometry 23 / 48

John decomposition of the identity

```
Note: If w_1, \ldots, w_m \in \partial \mathbf{B}^d (with weights c_1, \ldots, c_m > 0) form a John's decomposition of the identity, then \{w_1, \ldots, w_m\}^* \subset d\mathbf{B}. By polarity: \frac{1}{d}\mathbf{B} \subset \operatorname{conv}(\{w_1, \ldots, w_m\}).
```

Márton Naszódi Approximation in Geometry 24 / 48

Lemma (Dvoretzky-Rogers lemma)

 $w_1, \ldots, w_m \in \partial \mathbf{B}^d$ (with $c_1, \ldots, c_m > 0$) a John's decomposition of the identity. Then there is an orthonormal basis z_1, \ldots, z_d of \mathbb{R}^d , and $\{v_1, \ldots, v_d\} \subseteq \{w_1, \ldots, w_m\}$:

$$v_i \in \operatorname{span}\{z_1,\ldots,z_i\}, \quad \operatorname{and} \quad \sqrt{\frac{d-i+1}{d}} \leq \langle v_i,z_i \rangle \leq 1, (i=1,\ldots,d).$$

Lemma (Pivovarov's estimate, 2010)

Select d vectors v_1, \ldots, v_d randomly from the contact points (each time each point chosen with probability c_i/d). Then the expected volume of the random simplex is

$$\mathbb{E}\operatorname{vol}_{d}(S_{1}) = \frac{1}{d!} \cdot \frac{\sqrt{d!}}{d^{d/2}}.$$
 (2)

Márton Naszódi Approximation in Geometry 25 / 48

Proof of selecting 2d with "volume at least $c^d d^{2d}$ "

Theorem [N.]

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^d such that any 2d of them have intersection of volume at least 1.

Then $\cap \mathcal{F}$ is of volume at least Cd^{-2d} .

Equivalently:

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^d . Then

$$\frac{\operatorname{vol}_d\left(\cap\mathcal{G}\right)}{\operatorname{vol}_d\left(\cap\mathcal{F}\right)} \leq \operatorname{cd}^{2d}$$

for some 2*d*-member subfamily \mathcal{G} of \mathcal{F} .

Proof of selecting 2d with "volume at least $c^d d^{2d}$ "

Theorem [N.]

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^d such that any 2d of them have intersection of volume at least 1.

Then $\cap \mathcal{F}$ is of volume at least Cd^{-2d} .

Equivalently:

Let \mathcal{F} be a finite family of convex sets in \mathbb{R}^d . Then

$$\frac{\operatorname{vol}_d\left(\cap\mathcal{G}\right)}{\operatorname{vol}_d\left(\cap\mathcal{F}\right)} \leq \operatorname{cd}^{2d}$$

for some 2*d*-member subfamily \mathcal{G} of \mathcal{F} .

May assume:

▶ \mathcal{F} consists of closed half-spaces, ie., $P := \cap \mathcal{F}$ is a polytope.

26 / 48

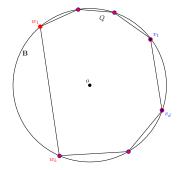
▶ \mathbf{B}^d $\subset P$ is the ellipsoid of maximal volume in P.

Márton Naszódi Approximation in Geometry

By John's Thm.: There are contact points $w_1, \ldots, w_m \in \partial \mathbf{B} \cap \partial P$ (with $c_1, \ldots, c_m > 0$) that form a John's decomposition of the identity.

 $Q := conv(\{w_1, ..., w_m\}).$

By Dvoretzky-Rogers Lemma: There is an ONB z_1, \ldots, z_d of \mathbb{R}^d , and $\{v_1, \ldots, v_d\} \subseteq \{w_1, \ldots, w_m\}$ st. $\{v_1, \ldots, v_d\}$ is "nicely aligned" with z_1, \ldots, z_d .



By John's Thm.: There are contact points $w_1, \ldots, w_m \in \partial \mathbf{B} \cap \partial P$ (with $c_1, \ldots, c_m > 0$) that form a John's decomposition of the identity.

 $Q := conv(\{w_1, ..., w_m\}).$

By Dvoretzky-Rogers Lemma: There is an ONB z_1, \ldots, z_d of \mathbb{R}^d , and $\{v_1, \ldots, v_d\} \subseteq \{w_1, \ldots, w_m\}$ st. $\{v_1, \ldots, v_d\}$ is "nicely aligned" with z_1, \ldots, z_d .

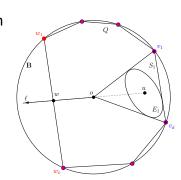
 $S_1 := conv(\{o, v_1, v_2, \dots, v_d\}).$

 E_1 : the largest volume ellipsoid in S_1 .

u: center of E_1 .

 ℓ : ray from origin toward -u.

 $w: \ell \cap \partial Q$.



By John's Thm.: There are contact points $w_1, \ldots, w_m \in \partial \mathbf{B} \cap \partial P$ (with $c_1, \ldots, c_m > 0$) that form a John's decomposition of the identity.

 $Q := conv(\{w_1, ..., w_m\}).$

By Dvoretzky-Rogers Lemma: There is an ONB z_1, \ldots, z_d of \mathbb{R}^d , and $\{v_1, \ldots, v_d\} \subseteq \{w_1, \ldots, w_m\}$ st. $\{v_1, \ldots, v_d\}$ is "nicely aligned" with z_1, \ldots, z_d .

$$S_1 := \text{conv}(\{o, v_1, v_2, \dots, v_d\}).$$

 E_1 : the largest volume ellipsoid in S_1 .

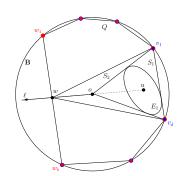
u: center of E_1 . ℓ : ray from origin toward -u.

 ℓ : ray from origin toward -u w: $\ell \cap \partial Q$.

By the "Note": $o \in int(Q)$. In fact, $\frac{1}{d}\mathbf{B} \subset Q$.

Hence, $|w| \ge 1/d$.

 $S_2 := conv(\{w, v_1, v_2, \dots, v_d\}).$



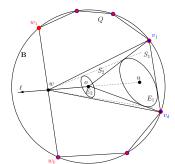
By the Claim: $|w| \ge 1/d$.

 $S_2 := conv(\{w, v_1, v_2, \dots, v_d\}).$ E_2 : contraction of E_1 with center w,

ratio $\lambda = \frac{|w|}{|w-u|}$.

Now,

- ► E₂ is centered at the origin
- $\lambda \geq \frac{1}{d+1}$
- \triangleright $E_2 \subset S_2$.



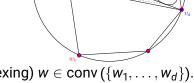
By the Claim: $|w| \ge 1/d$.

 $S_2 := conv(\{w, v_1, v_2, \dots, v_d\}).$

 E_2 : contraction of E_1 with center w, ratio $\lambda = \frac{|w|}{|w-u|}$.

Now,

- ► E₂ is centered at the origin
- $\lambda \geq \frac{1}{d+1}$
- ightharpoonup $E_2 \subseteq S_2$.



By Caratheodory's theorem, (re-indexing) $w \in \text{conv}(\{w_1, \dots, w_d\})$.

$$E_2 \subset S_2 \subset \operatorname{conv}(\{w_1, \ldots, w_k, v_1, \ldots, v_d\})$$
.

 $X := \{w_1, \dots, w_k, v_1, \dots, v_d\}.$

 \mathcal{G} : the family of those half-space which support **B** at the points of X.

Finally, $|\mathcal{G}| \leq 2d$, and $\mathcal{G} \subseteq \mathcal{F}$, and $\cap \mathcal{G} = X^* \subset E_2^*$.

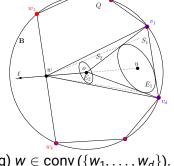
By the Claim: $|w| \ge 1/d$.

 $S_2 := conv(\{w, v_1, v_2, \dots, v_d\}).$

 E_2 : contraction of E_1 with center w, ratio $\lambda = \frac{|w|}{|w-u|}$.

Now,

- ► E₂ is centered at the origin
- $\lambda \geq \frac{1}{d+1}$
- ightharpoonup $E_2 \subseteq S_2$.



By Caratheodory's theorem, (re-indexing) $w \in \text{conv}(\{w_1, \dots, w_d\})$.

$$E_2 \subset S_2 \subset \operatorname{conv}(\{w_1, \ldots, w_k, v_1, \ldots, v_d\})$$
.

 $X := \{w_1, \dots, w_k, v_1, \dots, v_d\}.$

 \mathcal{G} : the family of those half-space which support **B** at the points of X.

Finally, $|\mathcal{G}| \leq 2d$, and $\mathcal{G} \subseteq \mathcal{F}$, and $\cap \mathcal{G} = X^* \subset E_2^*$.

After finally, volumes: E_2 not small $\Rightarrow E_2^*$ not big $\Rightarrow \cap \mathcal{G}$ not big.

Remarks

Easy: Cd^{cd} is sharp.

Brazitikos '16+ improved Cd^{-2d} to $Cd^{-1.5d}$. The modification: Replace E_1 by $S_1 \cap (2g - S_1)$, where $g = \text{centroid}(S_1)$.

Márton Naszódi Approximation in Geometry 29 / 48

Quantitative Colorful Helly Theorem

Theorem (Damásdi, Földvári, N.)

 $\mathcal{C}_1,\ldots,\mathcal{C}_{3d}$ – finite families of convex bodies in \mathbb{R}^d . Assume that for any colorful choice of 2d sets, $C_{i_k} \in \mathcal{C}_{i_k}$ for each $1 \leq k \leq 2d$ with $1 \leq i_1 < \ldots < i_{2d} \leq 3d$, the intersection $\bigcap\limits_{k=1}^{2d} C_{i_k}$ contains an ellipsoid of volume at least 1. Then, there exists an $1 \leq i \leq 3d$ such that $\bigcap\limits_{C \in \mathcal{C}_i} C$ contains an

Open:

▶ 2*d* in place of 3*d* should hold.

ellipsoid of volume at least $d^{-O(d^2)}$.

 $ightharpoonup d^{-O(d)}$ in place of $d^{-O(d^2)}$?

Márton Naszódi Approximation in Geometry 30 / 48

Back to geometric distance — Quantitative Steinitz theorem

The problem: Bound r(d)

Steinitz's theorem

For any $Q \subset \mathbb{R}^d$, if $o \in \text{int}$ (conv (Q)), then there are at most 2d points of Q whose convex hull contains the origin in the interior.

Quantitative Steinitz theorem: Bárány, Katchalski, Pach '82

There exists r(d) > 0 such that for any $Q \subset \mathbb{R}^d$, if $\mathbf{B}^d \subseteq \operatorname{conv}(Q)$, then there is $Q' \subseteq Q$ of size at most 2d with $r(d)\mathbf{B}^d \subset \operatorname{conv}(Q')$. In fact, $r(d) > d^{-2d}$.

Conjecture [Bárány, Katchalski, Pach '82]

$$r(d) \approx cd^{1/2}$$
.

Márton Naszódi Approximation in Geometry 31 / 48

Results

Polynomial lower bound on r(d) [Ivanov, N.]

$$r(d) > 1/(6d^2)$$
.

Upper bound on r(d) [Ivanov, N.]

$$r(d) < 2/d^{1/2}$$
.

Márton Naszódi Approximation in Geometry 32 / 48

Results

Polynomial lower bound on r(d) [Ivanov, N.]

$$r(d) > 1/(6d^2)$$
.

Upper bound on r(d) [Ivanov, N.]

$$r(d) < 2/d^{1/2}$$
.

Stronger:

The convex hull of a few unit vectors is small

$$u_1,\ldots,u_n\in\mathbb{R}^d, |u_i|$$
 = 1. $\varepsilon>0$. Then
$$\operatorname{conv}\left(\{\pm u_i\}\right)
ot\supset \left(\frac{\sqrt{n}}{d}+\varepsilon\right) \mathbf{B}^d.$$

Márton Naszódi Approximation in Geometry 32 / 48

The convex hull of a few unit vectors is small

$$u_1,\ldots,u_n\in\mathbb{R}^d, |u_i|$$
 = 1. $\varepsilon>0$. Then
$$\operatorname{conv}\left(\{\pm u_i\}\right)
ot\supset \left(\frac{\sqrt{n}}{d}+\varepsilon\right) \mathbf{B}^d.$$

The convex hull of a few unit vectors is small

$$u_1,\ldots,u_n\in\mathbb{R}^d, |u_i|$$
 = 1. $\varepsilon>0$. Then
$$\operatorname{conv}\left(\{\pm u_i\}\right)
ot\supset \left(\frac{\sqrt{n}}{d}+\varepsilon\right) \mathbf{B}^d.$$

Similar flavor

Conjecture

Let $\{u_1, \ldots, u_{2d}\}$ be unit vectors in \mathbb{R}^d . Then there is a point in

$$\bigcap_{i=1}^{2d} \{x \in \mathbb{R}^d : \langle u_i, x \rangle \leq 1\}$$

with norm \sqrt{d} .

Preparations for the proof of $r(d) > 1/(6d^2)$

Goal: Q convex polytope, $Q \supset \mathbf{B}^d$. Find 2d vertices whose convex contains $\frac{1}{6d^2}\mathbf{B}^d$.

Almendra-Hernández, Ambrus, Kendall, '22

 $\lambda > 0$, and $L \subset \mathbb{R}^d$ convex polytope with $L \subset -\lambda L$.

Then there exist 2d vertices L' of L

$$L \subset -(\lambda + 2)d \cdot \operatorname{conv}(L').$$

Note: Choose o as centroid, or center of John's ellipsoid, or Santaló point, etc. $\Rightarrow \lambda \leq d$.

Notation

For $v \in \mathbb{R}^d \setminus \{o\}$,

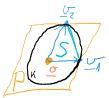
$$H_v = \left\{ x \in \mathbb{R}^d \ : \ \langle x, v
angle \leq 1
ight\}.$$

Márton Naszódi Approximation in Geometry 34 / 48

Proof of A-HAK

Among all simplices with d vertices from L and one vertex at the origin, take a simplex $S = \text{conv}(0, v_1, \dots, v_d)$ with maximal volume.

$$S = \left\{ x \in \mathbb{R}^d : x = \alpha_1 v_1 + \dots + \alpha_d v_d \quad \text{for } \alpha_i \ge 0 \text{ and } \sum_{i=1}^d \alpha_i \le 1 \right\}.$$
(3)



Set $P = \sum_{i \in [d]} [-v_i, v_i]$. It is a paralletope:

$$P = \{x \in \mathbb{R}^d \ : \ x = \beta_1 v_1 + \ldots + \beta_d v_d, \, \beta_i \in [-1, 1]\}.$$

Claim: $L \subset P$. (4)

Márton Naszódi Approximation in Geometry 35 / 48

Let $S' = -2dS + (v_1 + ... + v_d)$. By (3),

$$S' = \left\{ x \in \mathbb{R}^d \ : \ x = \gamma_1 v_1 + \ldots + \gamma_d v_d \quad \text{ for } \gamma_i \leq 1 \text{ and } \sum_{i=1}^d \gamma_i \geq -d \right\},$$

which yields

$$P\subseteq S'$$
. (5)

Let y be the intersection of the ray emanating from 0 in the direction $-(v_1+\cdots+v_d)$ and the boundary of Q. By Carathéodory's theorem, we can choose $k \leq d$ vertices $\{v'_1,\ldots,v'_k\}$ of L such that $y \in \operatorname{conv}(v'_1,\ldots,v'_k)$. Set $L' = \operatorname{conv}(v_1,\ldots,v_d,v'_1,\ldots,v'_k)$. Clearly, $\frac{v_1+\cdots+v_d}{d} \in S \subset L$. Thus, $0 \in L'$, and consequently,

$$S \subseteq Q'$$
. (6)

Since $L \subset -\lambda L$, we also have that

$$\frac{\mathsf{v}_1 + \cdots + \mathsf{v}_d}{d} \in -\lambda[\mathsf{y}, \mathsf{0}] \subset -\lambda L'.$$

Proof of A-HAK completed

$$\frac{v_1+\cdots+v_d}{d}\in -\lambda[y,0]\subset -\lambda L'.$$

Combining it with (4), (5), (6), we obtain

$$L \subset P \subset S' = -2dS + (v_1 + \cdots + v_d) \subset -2dL' - \lambda dL' = -(\lambda + 2)dL'$$
.

Márton Naszódi Approximation in Geometry 37 / 48

Proof of $r(d) > 1/(6d^2)$

$$K := Q^{\circ} \subset \mathbf{B}^{d}$$
. $K = \bigcap_{v \in \text{vert } O} H_{v}$.

By duality, it suffices to find 2d half-spaces H_v with $v \in \text{vert}Q$, whose intersection is contained in the ball $6d^2\mathbf{B}^d$.

Márton Naszódi Approximation in Geometry 38 / 48

Proof of $r(d) > 1/(6d^2)$

$$K:=Q^{\circ}\subset \mathbf{B}^{d}.\ K=\bigcap_{v\in\mathrm{vert}O}H_{v}.$$

By duality, it suffices to find 2d half-spaces H_v with $v \in \text{vert}Q$, whose intersection is contained in the ball $6d^2\mathbf{B}^d$.

The idea: Duality again! Let c be such that $K - c \subset -d(K - c)$. $L := (K - c)^{\circ}$. Clearly, $L \subset -dL$.

Márton Naszódi Approximation in Geometry 38 / 48

Proof of $r(d) > 1/(6d^2)$

$$K:=Q^{\circ}\subset \mathbf{B}^{d}.\ K=\bigcap_{v\in\mathrm{vert}O}H_{v}.$$

By duality, it suffices to find 2d half-spaces H_v with $v \in \text{vert}Q$, whose intersection is contained in the ball $6d^2\mathbf{B}^d$.

The idea: Duality again! Let c be such that $K - c \subset -d(K - c)$. $L := (K - c)^{\circ}$. Clearly, $L \subset -dL$.

Apply A-HAK'22 for L with $\lambda = d$. There are $w_1, \ldots, w_{2d} \in \text{vert} L$:

$$L \subset -(d+2)d \cdot \operatorname{conv}(\{w_i : i \in [2d]\}).$$

Since $c \in K \subset \mathbf{B}^d$, one has that $K - c \subset 2\mathbf{B}^d$ thus, $L \supset \frac{1}{2}\mathbf{B}^d$. So,

$$\frac{1}{2}\mathbf{B}^d\subset L\subset -(d+2)d\cdot \operatorname{conv}\left(\{w_i\ :\ i\in [2d]\}\right).$$

Take polar, and obtain ...

Márton Naszódi Approximation in Geometry 38 / 48

$$(\text{conv}(\{w_i : i \in [2d]\}))^{\circ} \subset 2(d+2)d\mathbf{B}^d.$$

Note: $L^{\circ} = K - c$. Thus, for any $w \in \text{vert}L$, $H_w = H_v - c$ for some $v \in \text{vert}Q$. Thus,

$$(\text{conv}(\{w_i : i \in [2d]\}))^\circ = \bigcap_{v_i \in [2d]} (H_{v_i} - c)$$

for corresponding $v_i \in \text{vert} Q$.

Márton Naszódi Approximation in Geometry 39 / 48

$$(\text{conv}(\{w_i : i \in [2d]\}))^{\circ} \subset 2(d+2)d\mathbf{B}^d.$$

Note: $L^{\circ} = K - c$. Thus, for any $w \in \text{vert}L$, $H_w = H_v - c$ for some $v \in \text{vert}Q$. Thus,

$$(\text{conv}(\{w_i : i \in [2d]\}))^\circ = \bigcap_{v_i \in [2d]} (H_{v_i} - c)$$

for corresponding $v_i \in \text{vert} Q$.

Thus,

$$\bigcap_{v_i \in [2d]} H_{v_i} = \bigcap_{v_i \in [2d]} (H_{v_i} - c) + c \subset 2(d+2)d\mathbf{B}^d + c \subset (2(d+2)d+1)\mathbf{B}^d.$$

Thus, $Q' := \operatorname{conv}(\{v_i : i \in [2d]\})$ is good.

Márton Naszódi Approximation in Geometry 39 / 48

Approximation of sums of matrices

Independent copies of an isotropic vector

 $A \in \mathbb{R}^{d \times d}$ (often, we simply have A = I) as a (positive) linear combination of some other matrices.

Goal: Small subset of the matrices whose linear combination (with new coefficients) yields a matrix close to A.

A random vector v in \mathbb{R}^d is called *isotropic*, if $\mathbb{E}v \otimes v = I$.

Rudelson's theorem

If we take k independent copies y_1, \ldots, y_k of an isotropic random vector y in \mathbb{R}^d for which $|y|^2 \le \gamma$ almost surely, with

$$k = \left\lceil \frac{c\gamma \ln d}{\varepsilon^2} \right\rceil$$
, then $\mathbb{E} \left\| \frac{1}{k} \sum_{i=1}^k y_i \otimes y_i - I \right\| \le \varepsilon$,

where $||A|| = \max\{\langle Ax, Ax \rangle^{1/2} : x \in \mathbb{R}^d, \langle x, x \rangle = 1\}$ denotes the operator norm of the matrix A.

Márton Naszódi Approximation in Geometry 40 / 48

In the language of John

Recall: John decomposition of the identity:

$$\sum_{i=1}^{m} c_i \mathbf{w}_i = o \quad \text{and} \quad \sum_{i=1}^{m} c_i \mathbf{w}_i \otimes \mathbf{w}_i = I.$$

Rudelson's result applies in this setting: Taking $\alpha_i = c_i/d$, we get a probability distribution on [m].

Let $\sigma = \{i_1, \dots, i_k\}$ be a multiset obtained by k independent draws from [m] according to it, and set

$$\frac{1}{k}\sum_{i\in\sigma}\sqrt{d}u_i\otimes\sqrt{d}u_i.$$

Rudelson: In expectation, this average is not farther than ε from I in the operator norm, provided that k is at least $\frac{cd \ln d}{\varepsilon^2}$.

Márton Naszódi Approximation in Geometry 41 / 48

A slightly more general form

Theorem (Rudelson's theorem)

Let $0 < \varepsilon < 1$ and Q_1, \ldots, Q_k be independent random matrices distributed according to (not necessarily identical) probability distributions $\mathcal{P}_1, \ldots, \mathcal{P}_k$ on the set \mathcal{P}^d of $d \times d$ real positive semi-definite matrices such that $\mathbb{E}Q_i = A$ for some $A \in \mathcal{P}^d$ and all $i \in [k]$. Set $\gamma = \mathbb{E}(\max_{i \in [k]} \|Q_i\|)$, and assume that

$$k \geq \frac{c\gamma(1+\|A\|)\ln d}{\varepsilon^2},$$

where c is an absolute constant. Then

$$\mathbb{E}\left\|\frac{1}{k}\sum_{i\in[k]}Q_i-A\right\|\leq\varepsilon.\tag{7}$$

Márton Naszódi Approximation in Geometry 42 / 48

A breakthrough: In *d* removed by an algorithmic approach

Batson, Marcus, Spielman, Srivastava, Friedland, Youssef: We may remove In d in the special case of a John decomposition.

Open: Can we remove ln d in the special case of rank 2 orthogonal projections?

Márton Naszódi Approximation in Geometry 43 / 48

Claim

Exercise

- 1. The set \mathcal{P}^d of positive semi-definite $d \times d$ matrices (with real entries) form a convex cone with apex at the origin in the vector space $\mathbb{R}^{d(d+1)/2}$ of symmetric matrices.
- 2. Matrices of trace 1 form a hyperplane H_1 containing $\frac{1}{d}I$ in $\mathbb{R}^{d(d+1)/2}$.
- 3. The set $\mathcal{P}^d \cap H_1$ is a convex body in H_1 .

Márton Naszódi Approximation in Geometry 44 / 48

Proof of Rudelson's Theorem

The Schatten p-norm of a real $d \times d$ matrix A is defined as

$$||A||_{C^d_p} := \left(\sum_{i=1}^d (s_i(A))^p\right)^{1/p},$$

where $s_1(A), \ldots, s_d(A)$ is the sequence of eigenvalues of the positive semi-definite matrix $\sqrt{A^*A}$.

Recall: $\|A\| \leq \|A\|_{\mathcal{C}^d_p}$ for all $p \geq 1$, and

$$||A|| \le ||A||_{C_p^d} \le e ||A|| \text{ for } p = \ln d.$$
 (8)

r denotes a sequence of *k* Rademacher variables, that is, $\mathbf{r} = (r_1, \dots, r_k)$, where the r_i are random variables uniformly distributed on $\{1, -1\}$, independent of each other and all other random variables in the context.

Márton Naszódi Approximation in Geometry 45 / 48

Lust-Piquard inequality

Theorem (Lust-Piquard)

 $2 \le p < \infty$. For any d and any Q_1, \ldots, Q_k (not necessarily positive definite) square matrices of size d we have

$$\left[\mathbb{E} \left\| \sum_{j=1}^{k} r_j Q_j \right\|_{C_p^d}^p \right]^{1/p} \le c \sqrt{p} \max \left\{ \left\| \left(\sum_{j=1}^{k} Q_j Q_j^* \right)^{1/2} \right\|_{C_p^d}, \left\| \left(\sum_{j=1}^{k} Q_j^* Q_j \right)^{1/2} \right\|_{C_p^d} \right\}$$
 for a universal constant $c > 0$.

For any $d \times d$ matrix Q, the product Q^*Q is positive semi-definite. Since, by Weyl's inequality, the Schatten p-norm is monotone on the cone of positive semi-definite matrices, we may deduce:

$$\left[\mathbb{E} \left\| \sum_{j=1}^{k} r_{j} Q_{j} \right\|_{C_{p}^{d}}^{p} \right]^{1/p} \leq c \sqrt{p} \left\| \left(\sum_{j=1}^{k} Q_{j} Q_{j}^{*} + Q_{j}^{*} Q_{j} \right)^{1/2} \right\|_{C_{p}^{d}}.$$
(9)

Márton Naszódi Approximation in Geometry 46 / 48

Symmetrization by Rademacher variables

Lemma (Symmetrization by Rademacher variables)

Let q_1,\ldots,q_k be independent random vectors distributed according to (not necessarily identical) probability distributions $\mathcal{P}_1,\ldots,\mathcal{P}_k$ on a normed space X with $\mathbb{E}q_i$ = q for all $i\in[k]$. Then

$$\mathbb{E}_{q_1,\ldots,q_k}\left\|\frac{1}{k}\sum_{\ell=1}^k q_\ell-q\right\|\leq \frac{2}{k}\mathbb{E}_{q_1,\ldots,q_k}\mathbb{E}_{\mathbf{r}}\left\|\sum_{\ell=1}^k r_\ell q_\ell\right\|.$$

Márton Naszódi Approximation in Geometry 47 / 48

