
Discrepancy: Lower Bound for the Greedy Algorithm

Given a set system (X,R), a two-coloring of X, say denoted by χ, is an assigment of a ‘−1’
or a ‘+1’ color to each vertex of X. That is,

χ : X → {−1,+1} .

Then the discrepancy of R with respect to χ, is defined as:

discχ(R) = max
S∈R

∣∣∣∣∣∑
v∈S

χ(v)

∣∣∣∣∣ .
Our goal is to compute a two-coloring of X with low discrepancy. Consider the following
‘greedy’ algorithm to compute such a coloring:

We will color the elements of X sequentially—in the order v1, . . . , vn—with a ‘+1’ or a
‘−1’ color. At the start, each element is uncolored, and considered to have a color of 0.

Then for i = 1, . . . , n:

1. Among all the sets of R containing vi, pick the one with maximum discrepancy
(pick an arbitrary one if several choices), and denote this set by Si. That is,

Si = arg max
S∈R :
vi∈S

disc(S).

2. Assign vi a color that decreases the discrepancy of Si.

The result of this section is the following.

Theorem 0.59. Given integers m and n with m ≥ n ≥ 1, there exists a set system (X,R)
with |X| = n and |R| = m, such that the coloring constructed by the above algorithm has
discrepancy at least n

2
.

Overview of ideas. Interestingly, one arrives at the counter-example of Theorem 0.59 by
also using the MWU technique—somewhat reminiscent of the fact that the probabilistic
method can be used to prove both upper and lower bounds. Basically, we will

1. assign, for each S ∈ R, the weight

ω(S) = exp (disc(S)) ,

2. construct sets so that assigning colors by following the above algorithm
increases the total weight substantially at each iteration i, and

3. argue that at the end, by the pigeonhole principle, one set of R must have

weight at least 1
m

-th of the total weight, which then gives a lower bound on
the discrepancy of this set.

This works because the weight function is exponential, and so dividing by m causes
only a logm additive loss. That is, the logarithm of the total weight essentially
gives a lower bound on the discrepancy of the maximum set.

As with adversarial arguments, we will incrementally construct the counter-example set
system R over the n iterations. This is possible since the greedy algorithm, at the i-th
iteration, ignores the elements vi+1, . . . , vn, and so we don’t need to have the set system
fully constructed at the very start. Specifically,

on receiving the element vi ∈ X in the i-th iteration, we will add vi to the sets
of R such that the greedy algorithm is forced to assign vi a color that makes our
total weight go up by a large amount—in fact, almost double.

Therefore, roughly speaking, at the end, the total weight is Ω (2n), and so due to
our choice of the weight function, one set of R must have discrepancy at least

ln
Ω (2n)

m
= Ω(n− lnm) .

Proof of Theorem 0.59. We adaptively constructing the sets as the algorithm proceeds with
the n iterations. We will maintain the following invariant:

at all times, exactly half the sets of R will have positive discrepancy, and exactly
half will have negative discrepancy.

By relabeling, say that R consists of the 2m sets:

P1, . . . , Pm, N1, . . . , Nm.

Initially, these 2m sets are empty and we now allocate vertices to them in the order v1, . . . , vn.

v1 : Add v1 to P1, . . . , Pm. Set χ(v1) = +1.

↓

0

1

2

3

P1 N1Pm Nm

4

5

v2 : Add v2 to P1 and N1, . . . , Nm. To minimize disc(P1), set χ(v2) = −1.

↓

0

1

2

3

P1 N1Pm Nm

4

5

v3 : Add v3 to N1 and P1, . . . , Pm. To minimize disc(N1), set χ(v3) = +1.

↓

0

1

2

3

P1 N1Pm Nm

4

5

v4 : Add v4 to P2 and N1, . . . , Nm. To minimize disc(P2), set χ(v4) = −1.

↓

0

1

2

3

P1 N1Pm Nm

4

5

v5 : Add v5 to N2 and P1, . . . , Pm. To minimize disc(N2), set χ(v5) = +1.

↓

0

1

2

3

P1 N1Pm Nm

4

5

v6 : Add v6 to P3 and N1, . . . , Nm. To minimize disc(P3), set χ(v6) = −1.

↓

0

1

2

3

P1 N1Pm Nm

4

5

...

v2j : Add v2j to Pj and N1, . . . , Nm. To minimize disc(Pj), set χ(v2j) = −1.

v2j+1 : Add v2j+1 to Nj and P1, . . . , Pm. To minimize disc(Nj), set χ(v2j+1) = −1.

At each iteration, we alternately increase the discrepancy of Pm or Nm by 1. Thus
at the end, for m ≥ n, we will have

disc(Pm) = disc(Nm) =
n

2
.

2

Remark: If the 2m constructed sets are not distinct, we can always take an additional
logm elements, and add a distinct subset of these elements to distinct sets of R. This
makes each set of R distinct, and can only change the discrepancy by an additive factor
of logm.

Remark: The construction is basically using a maximum discrepancy set as a ‘lever’ to
increase the discrepancy of half the sets at each iteration:

alternately, we raise the discrepancy of all negative sets by using a positive
discrepancy set, and raise the discrepancy of all positive sets by using a negative
discrepancy set.

Bibliography and discussion. This example was constructed by the authors for
pedagogical reasons. Similar constructions are well-known for other problems.

Discrepancy: Polynomial Function Bounds

Now, the question is whether an iterative coloring approach yields a coloring with the
desired total discrepancy. More precisely, let us try the following approach.

We color the elements in order v1, . . . , vn, guided by their weights:

for a parameter c ≥ 1 to be fixed later, set the weight of each S ∈ R as

W (S) = disc(S)c,

where disc(S) is the current discrepancy of S. Then the total weight is

W (R) =
∑
S∈R

W (S) =
∑
S∈R

disc(S)c.

Now, let W i+1 be the value of W (R) after coloring vi. At the start of the algorithm each
S has discrepancy 0, and so W 1 = 0. In step i, we color element vi in such a way that
minimizes W i+1. In particular,

for a S ∈ R containing vi and with disc(S) ̸= 0, the average weight of S after
coloring vi, over the two possible color choices, is

E
[(
disci+1(S)

)c]
=

1

2
(disc(S) + 1)c +

1

2
(disc(S)− 1)c

= disc(S)c
(
1

2

(
1 +

1

disc(S)

)c

+
1

2

(
1− 1

disc(S)

)c)

≤ disc(S)c
(
1

2

(
exp

(
c

disc(S)

)
+ exp

(
− c

disc(S)

)))
Using Fact 0.52,

≤ disc(S)c · exp
(

c2

2 disc(S)2

)
.

We consider two cases, for a parameter a to be fixed later:

disc (S) < a. In this case, regardless of the color given to vi, we have

disci+1(S) ≤ a =⇒
(
disci+1(S)

)c ≤ ac.

disc (S) ≥ a. Then we have

E
[(
disci+1(S)

)c] ≤ (disci(S))c · exp(c2

2a2

)
.

From the discussion so far, it follows that there is a choice of a color for vi such that

W i+1 ≤ E

[∑
S∈R

W i+1(S)

]
=
∑
S∈R

E
[
W i+1(S)

]
=

∑
S∈R :

disci(S)<a

E
[(
disci+1(S)

)c]
+

∑
S∈R :

disci(S)≥a

(
disci+1(S)

)c

≤
∑
S∈R :

disci(S)<a

ac +
∑
S∈R :

disci(S)≥a

(
disci(S)

)c · exp(c2

2a2

)

≤ mac + exp

(
c2

2a2

)
·W i

Setting a =
√
nc,

≤ m(nc)
c
2 + exp

(c

2n

)
·W i.

Using W 1 = 0 and unrolling the induction, we obtain

W n+1 =
n−1∑
i=0

exp

(
c i

2n

)
·m(nc)c/2 ≤ n exp

(c
2

)
·m(nc)c/2.

Thus at the end of the algorithm, for each S ∈ R, we have

disc(S)c ≤ W n+1 ≤ n exp
(c
2

)
m(nc)c/2,

implying that

disc(S) ≤ (nm)
1
c exp

(
1

2

)
(nc)

1
2 .

Setting c = lnnm, we get the desired result—assuming that m ≥ n.

Bibliography and discussion. The algorithm and its analysis was constructed
here for pedagogical purposes.

Discrepancy: General Case

Given a set system (X,R), a two-coloring of X, say denoted by χ, is an assigment of a ‘−1’
or a ‘+1’ color to each vertex of X. That is,

χ : X → {−1,+1} .

Then the discrepancy of χ with respect to R, is defined as:

discχ(R) = max
S∈R

∣∣∣∣∣∑
v∈X

χ(v)

∣∣∣∣∣ .
We give a MWU algorithm to compute a two-coloring with small discrepancy.

Theorem 0.50. Let (X,R) be a finite set system with X = {v1, . . . , vn} and m = |R|. Then
there is a deterministic MWU algorithm that computes a two-coloring of X with discrepancy
O
(√

n lnm
)

.

Overview of ideas. We will color the elements of X sequentially, in the order v1, . . . , vn,
with a +1 or a −1 color. The elements that are so far uncolored will have color 0.

The idea is to maintain a weight for each set, where this weight depends exponentially on
the current discrepancy of that set.

Let η > 0 be a parameter to be set later.

Define the weight of any S ∈ R as:

W (S) = exp (η · disc(S)) ,

where disc(S) denotes the current discrepancy of S. That is, with the so-far
uncolored elements having color 0.

Set
W (R) =

∑
S∈R

W (S) =
∑
S∈R

exp (η · disc(S)) .

As with the MWU technique, when coloring element vi, we will assign it a color that
minimizes W (R).

The key technical lemma is to show that, at each iteration, there is a choice of color for vk
such that the sum W (R) grows slowly.

This then implies that no set can have too large a discrepancy.

Assume we have colored the elements v1, . . . , vk−1 and now have to assign a color to vk.

Let disck (·) be the discrepancy and Wk (·) the weights, at the start of the k-th iteration.
Note that for all S ∈ R,

disc1(S) = 0 and W1 (S) = 1.

Claim 0.51. At the start of the k-th iteration, let R′ ⊆ R be the sets with disck(·) ̸= 0:

R′ = {S ∈ R : disck(S) ̸= 0} .

Then we can assign a color to vk—that is, a +1 or a −1 value—such that∑
S∈R′

Wk+1(S) ≤
(
eη + e−η

2

)
·
∑
S∈R′

Wk(S).

Proof. Set the color of vk to +1 or −1 with equal probability.

If a S ∈ R does not contain vk, its discrepancy does not change, and so for these sets, we
have

Wk+1(S) = Wk(S) ≤
(
eη + e−η

2

)
Wk(S).

Otherwise, for any S ∈ R containing vk and with disc(S) ̸= 0, the discrepancy of S increases
by 1 or decreases by 1 with equal probability. Thus for any S ∈ R′ containing vk,

E
[
Wk+1(S)

]
=

1

2
· eη(disck(S)+1) +

1

2
· eη(disck(S)−1)

= eη disck(S) ·
(
eη + e−η

2

)
.

By linearity of expectation, we have

E

[∑
S∈R′

Wk+1(S)

]
=
∑
S∈R′

E [Wk+1(S)] ≤
∑
S∈R′

eη disck(S)
(
eη + e−η

2

)

=

(
eη + e−η

2

)
·
∑
S∈R′

Wk(S).

Thus for one of the two choices for the color of vk, the desired statement holds.

2

Remark: The use of probability in the above proof is purely for ‘implementing’ an
averaging argument. Essentially, we showed that∑

S∈R′

W
(
S | color(vk) = +1

)
︸ ︷︷ ︸
Wk+1(R′) assuming color(vk) = +1

+
∑
S∈R′

W
(
S | color(vk) = −1

)
︸ ︷︷ ︸
Wk+1(R′) assuming color(vk) = −1

=
∑
S∈R′

W
(
S | color(vk) = +1

)
+W

(
S | color(vk) = −1

)
≤
∑
S∈R′

eη ·Wk(S) + e−η ·Wk(S)

=
(
eη + e−η

)
·
∑
S∈R′

Wk(S),

and so one of the two sums must be at most 1
2 of the R.H.S. above.

For the moment, assume that for all S ∈ R and k > 0, we always have disck(S) ̸= 0. Then
we’re done:

Upper and lower bounding the total weight, we get

max
S∈R

Wn+1(S) ≤ Wn+1 (R) ≤ W1(R) ·
(
eη + e−η

2

)n

.

Using the inequality eη + e−η ≤ 2eη
2/2 (Fact 0.52 below), and that W1(R) = m,

exp

(
η ·max

S∈R
discn+1 (S)

)
≤ Wn+1 (R) ≤ m · enη2/2.

Taking logarithms,

max
S∈R

discn+1 (S) ≤
lnm

η
+

nη

2
.

The above is minimized by setting η = Θ
(√

lnm
n

)
, giving the desired upper bound

on the discrepancy for each set.

Fact 0.52. For η ∈ R,
eη + e−η

2
≤ eη

2/2.

Proof. Using Taylor series at 0 gives, for any η > 0,

eη = 1 +
η

1!
+

η2

2!
+

η3

3!
+

η4

4!
+ · · ·

e−η = 1− η

1!
+

η2

2!
− η3

3!
+

η4

4!
+ · · ·

Adding them up cancels the linear term—so the quadratic term becomes the dominant
one for η < 1—and we get

eη + e−η = 2

(
1 +

η2

2!
+

η4

4!
+

η6

6!
+

η8

8!
+ · · ·

)
Using the fact that (2i)! ≥ 2ii!,

< 2

(
1 +

(
η2
)

21 · 1!
+

(
η2
)2

22 · 2!
+

(
η2
)3

23 · 3!
+

(
η2
)4

24 · 4!
+ · · ·

)

= 2

(
1 +

(
η2/2

)
1!

+

(
η2/2

)2
2!

+

(
η2/2

)3
3!

+

(
η2/2

)4
4!

+ · · ·

)

= 2 eη
2/2.

2

The above does not quite work—we used Claim 0.51 which only applies to sets of R with
disck(·) ̸= 0. Indeed, the restriction to sets with disck(·) ̸= 0 is necessary for Claim 0.51 to
be correct:

The key property in Claim 0.51 is that the discrepancy of each S ∈ R′ can both
increase or decrease by 1. This is what allows us to upper bound the average
multiplicative factor increase in the weight of each S ∈ R′ by (eη + e−η) /2.

However, this is not true when disc(S) = 0—then the discrepancy of S can only
increase by 1, no matter what color is given to vk, and so the multiplicative factor
becomes eη. This is too big—by a factor of roughly 2 at each iteration, and so with
a 2n factor at the end that gives a useless bound.

We now present two ways to get around this problem:

Bounding total increase in weights. The weight function is the same as earlier:

W (S) = exp (η · disc(S)) .

As before:

1. we choose the color of vk by considering S ∈ R with disc(S) > 0, and then
applying Claim 0.51.

2. The total weight of the sets with disc(S) > 0 increases by a multiplicative factor
of at most

(
eη+e−η

2

)
.

However now, additionally, the weight of each set with disc(S) = 0, goes from 1 to eη.
But this is not really a problem:

the weight of S is already small when disc(S) = 0—it is eη·0 = 1, and
will become eη. This is small-enough to be incorporated in the calculation
without significantly changing the upper bound.

Taking both types of weight changes into account, we have

Wk+1(R) ≤ meη +Wk ·
(
eη + e−η

2

)
Opening it up inductively,

Wn+1(R) ≤ meη +

(
m · eη +Wn−1 ·

(
eη + e−η

2

))
·
(
eη + e−η

2

)

= meη +m · eη ·
(
eη + e−η

2

)
+Wn−1 ·

(
eη + e−η

2

)2

...

≤

(
n−1∑
i=0

meη ·
(
eη + e−η

2

)i
)

+m ·
(
eη + e−η

2

)n

≤ mneη ·
(
eη + e−η

2

)n

+m ·
(
eη + e−η

2

)n

≤ 2mneη
(
eη + e−η

2

)n

.

Now the previous double-counting argument finishes the proof as before:

exp

(
η ·max

S∈R
discn+1 (S)

)
≤ Wn+1 (R) ≤ 2mneη enη

2/2.

Taking logarithms,

max
S∈R

discn (S) = O

(
lnmn

η
+ nη

)
.

Setting η = Θ
(√

lnmn
n

)
gives an upper bound of O

(√
n lnm

)
, assuming

m ≥ n.

Using a different weight function. The trick here—on seeing the multiplicative factor of(
eη+e−η

2

)
—is to slightly modify the weight function so that even when disc(S) = 0,

the weight increases by a smaller multiplicative factor.

We set the new weight function, denoted by ω (·), to be:

ω (S) =
exp (η · disc(S)) + exp (−η · disc(S))

2
. (0.53)

Now note that even when disck(S) = 0 with ωk(S) = 1, we have

ωk+1(S) =
exp (η) + exp (−η)

2
,

which is the precise multiplicative increase we wanted.

Further, the general upper bound on the multiplicative weight increase continues to
hold, as before, for the case disc(S) ̸= 0:

E
[
ωk+1(S)

]
=

1

2

(
eη·(disck(S)+1) + e−η·(disck(S)+1)

2

)
+

1

2

(
eη·(disck(S)−1) + e−η·(disck(S)−1)

2

)

=
eη disck(S) · eη

4
+

e−η disck(S) · e−η

4
+

eη disck(S) · e−η

4
+

e−η disck(S) · eη

4

=
eη disck(S)

2

(
eη + e−η

2

)
+

e−η disck(S)

2

(
eη + e−η

2

)

=

(
eη disck(S) + e−η disck(S)

2

)
·
(
eη + e−η

2

)

= ωk (S) ·
(
eη + e−η

2

)
.

Now the previous double-counting argument finishes the proof.

Remark: Here is one way to naturally derive the weight function given in Equa-
tion (0.53).

Our goal is to minimize disc(S)—in other words, for each S ∈ R, the number of
‘+1’ colors should not be too large, and neither should the number of ‘−1’ colors.

Our earlier weight function, exp (η disc(S)), was capturing this compactly using the
absolute value function. But the drawback of this is that it made it insensitive to
the case when disc(S) = 0.

We can fix this by separately adding the two exponential constraints—one prohibit-
ing too many ‘+1’ colors, and the other prohibiting too many ‘−1’ colors:

For each S ∈ R, let PS be the number of elements of color ‘+1’, and NS

the number of elements of color ‘−1’.

Then we minimize the weight function

exp
(
η (PS −NS)

)
+ exp

(
η(NS − PS)

)
.

This is exactly Equation (0.53) scaled by a factor of 2! The constant 2 is not
important and could have been omitted—the calculation without it gives the same
bound.

Bibliography and discussion. The hyperbolic cosine algorithm is from [Bec81;
BF81].
Another way one can arrive at the function 1

2
(eη + e−η) is via the proof of the

tail bound used to prove the O
(√

n lnm
)

bound for discrepancy via a random
coloring; see [You95].

[BF81] József Beck and Tibor Fiala. ““Integer-making” theorems”. In: Discrete Applied
Mathematics 3.1 (1981), pp. 1–8.

[Bec81] József Beck. “Van der waerden and Ramsey type games”. In: Combinatorica 1.2
(1981), pp. 103–116.

[You95] N. E. Young. “Randomized Rounding Without Solving the Linear Program”. In:
Proceedings of the Sixth Annual Symposium on Discrete Algorithms (SODA). 1995,
pp. 170–178.

	pbs@ARFix@108:
	pbs@ARFix@109:
	pbs@ARFix@110:
	pbs@ARFix@111:
	pbs@ARFix@112:
	pbs@ARFix@151:
	pbs@ARFix@152:
	pbs@ARFix@97:
	pbs@ARFix@98:
	pbs@ARFix@99:
	pbs@ARFix@100:
	pbs@ARFix@101:
	pbs@ARFix@102:
	pbs@ARFix@103:

