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A. Some useful facts about log-concave probability measures

1. Let f : Rn → [0,∞) be a log-concave function with finite, positive integral. Then, there exist constants
A,B > 0 such that f(x) 6 Ae−B‖x‖2 for all x ∈ Rn. In particular, f has finite moments of all orders.

2. (Fradelizi) Let f : Rn → [0,∞) be a centered log-concave density. Then,

f(0) 6 ‖f‖∞ 6 enf(0).

3. (Grünbaum) Let µ be a centered log-concave probability measure on Rn. Then,

1

e
6 µ({x : 〈x, θ〉 > 0}) 6 1− 1

e

for every θ ∈ Sn−1.

4. Let f : Rn → [0,∞) be an isotropic log-concave density. Then

Lf = ‖f‖1/n∞ > c,

where c > 0 is an absolute constant.

5. (Borell’s lemma) Let µ be a log-concave probability measure on Rn. Then, for any symmetric convex set
A in Rn with µ(A) = α ∈ (0, 1) and any t > 1 we have

1− µ(tA) 6 α

(
1− α
α

) t+1
2

.

6. (Reverse Hölder inequalities for seminorms) Let µ be a log-concave probability measure on Rn. If
g : Rn → R is a seminorm then, for any q > p > 1, we have(∫

Rn

|g|p dµ
)1/p

6

(∫
Rn

|g|q dµ
)1/q

6 c
q

p

(∫
Rn

|g|p dµ
)1/p

,

where c > 0 is an absolute constant.
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Hints

1. Since
∫
f > 0, we can find t ∈ (0, 1) such that the set C := {x : f(x) > t} has positive Lebesgue measure. Note

that C is convex and this implies that C has non-empty interior. Working with f1(·) = f(·+x0) for some x0 ∈ int(C),
we may assume that rBn2 ⊆ C.

Show that K = {x : f(x) > t/e} is bounded (note that 0 < |K| <∞, K is convex and contains rBn2 ). So, we can
find R > 0 such that K ⊂ R

2
Bn2 . Then, for every x with ‖x‖2 > R we have R x

‖x‖2
/∈ K, and hence f(Rx/‖x‖2) 6 t/e,

while r x
‖x‖2

∈ C, which shows that f(rx/‖x‖2) > t. Moreover, we may write

Rx

‖x‖2
=
‖x‖2 −R
‖x‖2 − r

rx

‖x‖2
+

R− r
‖x‖2 − r

x.

Use the fact that f is log-concave to show that f(x) 6 te−
‖x‖2−r

R−r < e−‖x‖2/R for every x ∈ Rn with ‖x‖2 > R. On
the other hand, show that there exists M > 0 such that f(x) 6M for every x ∈ RBn2 . Combining the above, we can
find two constants A,B > 0, which depend on f , so that f(x) 6 Ae−B‖x‖2 for every x ∈ Rn.

2. We may assume that f is strictly positive and continuously differentiable. From Jensen’s inequality and using the
assumption that f is centered we have

log f(0) = log f

(∫
Rn

yf(y)dy

)
>
∫
Rn

f(y) log f(y)dy.

Let x ∈ Rn. Using the fact that f is log-concave we have that

− log f(x) > − log f(y) + 〈x− y,∇ (− log f) (y)〉 .

Multiplying both terms of the last inequality by f(y), and then integrating with respect to y, we get

− log f(x) > −
∫
Rn

f(y) log f(y)dy +

∫
Rn

〈x− y,−∇f(y)〉 dy

> −
∫
Rn

f(y) log f(y)dy − n,

where the last inequality follows if we integrate by parts (and since f(y) decays exponentially as ‖y‖2 → ∞).
Combining the above, we get

log f(0) >
∫
Rn

f(y) log f(y)dx > log f(x)− n,

for every x ∈ Rn. Taking the supremum over all x we get the result.

3. Without loss of generality we may assume that, for some M > 0,

µ({x : |〈x, θ〉| > M}) = 0.

The general case then follows by approximating a general log-concave measure by measures which have this property
in the direction of θ.

Let G(t) = µ({x : 〈x, θ〉 6 t}). Then, G is a log-concave increasing function and we have G(t) = 0 for t 6 −M
and G(t) = 1 for t >M . Since µ is centered, we have∫ M

−M
tG′(t)dt = 0,

and applying integration by parts we see that ∫ M

−M
G(t)dt = M.

We want to prove that

G(0) >
1

e
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(that G(0) 6 1−1/e as well will then follow by replacing θ with −θ and repeating the argument). Observe that logG
is a concave function, therefore

G(t) 6 G(0)eαt

with α = G′(0)/G(0). We may choose M large enough so that 1/α < M . Then, using that G(t) 6 G(0)eαt if t 6 1/α
and that, trivially, G(t) 6 1 if t > 1/α, we can write

M =

∫ M

−M
G(t)dt 6

∫ 1/α

−∞
G(0)eαtdt+

∫ M

1/α

1 dt =
eG(0)

α
+M − 1

α
.

We conclude that G(0) > 1/e as claimed.

4. Since f is isotropic, we may write

n =

∫
‖x‖22f(x) dx =

∫
Rn

(∫ ‖x‖22
0

1 dt

)
f(x) dx

=

∫ ∞
0

∫
Rn

1{x:‖x‖22>t}
(x)f(x) dx dt

=

∫ ∞
0

∫
Rn\
√
tBn

2

f(x) dx dt

=

∫ ∞
0

(
1−

∫
√
tBn

2

f(x)dx

)
dt

>
∫ (ωn‖f‖∞)−2/n

0

[1− ωn‖f‖∞tn/2] dt

= (ωn‖f‖∞)−2/n n

n+ 2
,

where ωn = |Bn2 |. Since ω
−1/n
n '

√
n, we get ‖f‖1/n∞ > c for some absolute constant c > 0.

5. Using the symmetry and convexity of A, check that

2

t+ 1
(Rn \ (tA)) +

t− 1

t+ 1
A ⊆ Rn \A.

for every t > 1.

6. Write ∫
Rn

|f |q dµ =

∫ ∞
0

qsq−1µ({x : |f(x)| > s}) ds.

Note that the set A = {x ∈ Rn : |f(x)| 6 3‖f‖p} is symmetric and convex. Also, for any t > 0 we have that
tA = {x ∈ Rn : |f(x)| 6 3t‖f‖p}, while µ(A) > 1− 3−p.
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