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Lecture 1

Approximation of convex bodies by
polytopes

The Minkowski sum of two set A,B in Rd is denoted by A + B = {a + b : a ∈ A, b ∈ B}.
The origin is denoted o, the closed Euclidean ball centered at x ∈ Rd of radius ρ is denoted by
Bd (x, ρ). The boundary of a convex body K is denoted by ∂K. The centroid (or, center of
mass) of a convex body K is the point obtained as the following integral

1

vol (K)

∫
K

x dx,

where dx denotes integration with respect to the Lebesgue measure in the affine hull of K, and
vol (K) is the dim (K)-dimensional volume (Lebesgue measure) of K. In general, we mostly
use the notation in Schneider’s book, [Sch14].

1.1 Preliminaries

In order to define the problem of approximating a convex body (a compact convex set with
nonempty interior) by a convex polytope (the convex hull of finitely many points in Rd), we
need to have some notion of distance between convex sets. We will use two such notions.

The Hausdorff distance of two convex sets K and L in Rd is defined as

δH(K,L) = inf{δ > 0 : K +Bd (o, δ) ⊇ L,L+Bd (o, δ) ⊇ K}.

We will define the geometric distance of K and L as

d(K,L) = inf{α/β : α, β > 0, βK ⊆ L ⊆ αK}.
Note that this definition is sensitive to the choice of the origin, in other words, it is not
translation invariant.

In what follows, K is a given convex body in Rd, and our goal is to find a polytope which is
close to K in one of the two distances defined above.

Exercise 1.1.1. Let K be a smooth convex body containing the origin in its interior and ε ∈
(0, 1). Let X ⊂ K be a finite set. Show that the polytope P = conv (X) satisfies d(K,P ) ≤ 1

1−ε

if and only if, X intersects every cap of depth ε, that is, every set of the form cap (x, ε) = {y ∈
K : ⟨y, ν⟩ ≥ (1 − ε) ⟨x, ν⟩}, where x is an arbitrary boundary point of K and ν is any outer
unit normal vector of K at x.
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Approximation in Geometry

1.2 The packing bound

Goal: Find a polytope P with few vertices such that δH(P,K) ≤ ε.

Exercise 1.2.1. Show that if Λ ⊂ Rd is such that Λ+Bd (o, ε/2) is a maximal packing of ε/2
radius balls in K +Bd (o, ε/2), then P = conv (Λ) is a polytope satisfying δH(P,K) ≤ ε.

Exercise 1.2.2. Prove that there is a Λ with Λ+Bd (o, ε) ⊇ K of cardinality at most
vol(K+Bd(o,ε/2))
vol(Bd(o,ε/2))

.

Exercise 1.2.3. Prove that for any ε > 0 and dimension d, there is a polytope P with no

more than roughly
(
3
ε

)d
vertices that is (1+ ε)-close to K + t in the geometric distance with an

appropriate translation vector t ∈ Rd.

1.3 The Bronshtĕın–Ivanov net

Let ρ ∈
(
0, 1

2

)
. Let K be a convex body with smooth boundary containing the origin and

contained in Bd (o,R). Consider the set S of points {x + νx : x ∈ ∂K}, where νx is the outer
unit normal to ∂K at x. Let {xj + νxj

: 1 ≤ j ≤ N} be a maximal ρ-separated set in S, i.e.,
a set such that any two of its members are at distance at least ρ (see Figure 1.1). We call the
corresponding set {xj : 1 ≤ j ≤ N} a Bronshtein–Ivanov net of mesh ρ for the body K.

x

νx

Figure 1.1: The Bronshtĕın–Ivanov net

Exercise 1.3.1. In the construction above, for every x ∈ ∂K, we can find j such that |x −
xj|2 + |νx − νxj

|2 ≤ ρ2.

Lemma 1.3.1 (Upper bound on the size of a B–I net). We have N ≤ 2d(R + 3)dρ−d+1.

Proof. Assume that s′, s′′ ≥ 0. Write

|x′ + ν ′ + s′ν ′ − x′′ − ν ′′ − s′′ν ′′|2 = |x′ + ν ′ − x′′ − ν ′′|2+
|s′ν ′ − s′′ν ′′|2 + 2s′⟨ν ′, x′ − x′′⟩+ 2s′′⟨ν ′′, x′′ − x′⟩+

2(s′ + s′′)(1− ⟨ν ′, ν ′′⟩) ≥ |x′ + ν ′ − x′′ − ν ′′|2.

Thus, if the balls of radius ρ
2
centered at x′ + ν ′ and x′′ + ν ′′ are disjoint, so are the balls of

radius ρ
2
centered at x′ + (1 + s′)ν ′ and x′′ + (1 + s′′)ν ′′. From here we conclude that the balls
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LECTURE 1: Approximation of convex bodies by polytopes

x′

x′′

ν ′

ν ′′

ρ
2

ρ
2

Figure 1.2: The disjoint balls

of radius ρ
2
centered at the points xj + (1 + kρ)νxj

, 0 ≤ k ≤ 1
ρ
are all disjoint (see Figure 1.2)

and contained in Bd (0, R + 3).

The total number of these balls is at least N
ρ
(for every point xj in the net, there is a chain of

at least 1
ρ
balls corresponding to different values of k), whence N

ρ
≤
(

R+3
ρ
2

)d
and the desired

bound for N follows.

We will call K a nice convex body, if it has smooth boundary, Bd (o, 1) ⊂ K ⊂ Bd (o,R), and
for every boundary point x ∈ ∂K, there exists a ball of radius Θ containing K whose boundary
sphere touches K at x.

Lemma 1.3.2 (Caps of nice bodies are of small diameter). Let ε ∈
(
0, 1

2

)
. Assume that

K is a nice convex body, x ∈ ∂K, and ν is the outer normal to ∂K at x. If y ∈ K and
⟨y, ν⟩ ≥ (1− ε)⟨x, ν⟩, then |y − x| ≤

√
2ΘRε.

Proof. Let Q be the ball of radius Θ containing K whose boundary sphere touches K at x.
Then y ∈ Q and ν is the outer unit normal to Q at x, so Q is centered at x − Θν. Note also
that, since o ∈ K ⊂ Bd (0, R), we have 0 ≤ ⟨x, ν⟩ ≤ R. Now we have

Θ2 ≥ |y − x+Θν|2 = |y − x|2 + 2Θ⟨y − x, ν⟩+Θ2,

so

|y − x|2 ≤ 2Θ⟨x− y, ν⟩ ≤ 2Θε⟨x, ν⟩ ≤ 2ΘRε,

as required.

Lemma 1.3.3 (The cap about x may be replaced by the cap about x′). Fix ε, ρ ∈
(
0, 1

2

)
. Let

K be a nice convex body, x, x′, y ∈ ∂K; and ν and ν ′ the outer unit normals to ∂K at x and x′

respectively. Assume that |x− x′|2 + |ν − ν ′|2 ≤ ρ2 and ⟨y, ν⟩ ≥
(
1− ε

2

)
⟨x, ν⟩. Then

⟨y, ν ′⟩ ≥
(
1− ε

2
− 2ρ(ρ+ εR + |y − x|)

)
⟨x′, ν ′⟩.
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Approximation in Geometry

Proof. We have

⟨y, ν ′⟩ = ⟨x, ν ′⟩+ ⟨y − x, ν ′⟩ =
⟨x′, ν ′⟩+ ⟨x− x′, ν ′⟩+ ⟨y − x, ν⟩+ ⟨y − x, ν ′ − ν⟩ ≥

⟨x′, ν ′⟩+ ⟨x− x′, ν ′ − ν⟩+ ⟨y − x, ν⟩+ ⟨y − x, ν ′ − ν⟩ ≥
⟨x′, ν ′⟩ − ρ2 − ε

2
⟨x, ν⟩ − ρ|y − x|.

Here, when passing from the second line to the third one, we used the inequality ⟨x−x′, ν⟩ ≥ 0.

Note now that, since Bd (o, 1) ⊂ K ⊂ Bd (o,R), we have

⟨x, ν⟩ = ⟨x, ν ′⟩+ ⟨x, ν − ν ′⟩ ≤ ⟨x′, ν ′⟩+ ρR

and ⟨x′, ν ′⟩ ≥ 1 > 1
2
. So

⟨y, ν ′⟩ ≥
(
1 − ε

2

)
⟨x′, ν ′⟩ − ρ

(
ρ +

εR

2
+ |y − x|

)
≥
(
1 − ε

2
− 2ρ(ρ + εR + |y − x|)

)
⟨x′, ν ′⟩.

Combining Lemmas 1.3.1, 1.3.2 and 1.3.3, with the choice of ρ =
√
ε

10
√
ΘR

, we obtain the following
result.

Theorem 1.3.4. If K is a nice convex body with R = d2 and Θ = d5, then there is a convex
polytope P with no more than d100dε−

d−1
2 vertices satisfying P ⊆ K ⊆ (1 + ε)P .

Fact: Every convex body has an affine image that can be approximated by a nice convex body
with R = d2 and Θ = d5.

References: The packing bound is an old, standard argument, cf. [Nas18]. The Bronshtein–
Ivanov net appeared in [BI75].

1.4 Economic cap covering

In this section, we will use caps defined slightly differently. For a convex body K, we define
the depth function from K to R≥0 as

depthK (x) = min{vol (K ∩H) : H is a half-space containing x}.
For a point x ∈ K, we will denote its minimal cap, that is, the set K∩H with minimum volume
among all half-spaces H containing x with cap (x).

We will need the technical notion of themagnified cap defined as follows. Denote the hyperplane
that bounds the minimal half-space in the definition of cap (x) by L, and let L′ denote the
supporting hyperplane of cap (x) parallel to and distinct from L. We will call the centroid of
cap (x)∩L′ the center of the cap cap (x). Finally, for a λ > 0, we denote by cap (x)λ the image
of cap (x) under the magnification centered at the center of cap (x) by factor λ.

The floating body (respectively, the wet part) of K for t ≥ 0 is defined as the deep (resp.,
shallow) points of K, i.e.,

K≥t = {x ∈ K : depthK (x) ≥ t}, and K≤t = {x ∈ K : depthK (x) ≤ t}.

Our goal is to cover the wet part by small caps.
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LECTURE 1: Approximation of convex bodies by polytopes

Theorem 1.4.1 (Economic cap covering). There are constants c(d), C(d) > 0 depending only
on the dimension d such that the following hold. Assume K is a convex body in Rd with
vol (K) = 1, and 0 < ε < (2d)−2d. Then there are caps C1, . . . , Cm and pairwise disjoint convex
sets C ′

1, . . . , C
′
m such that C ′

i ⊆ Ci, for each i, and

1.
⋃m

i=1C
′
i ⊆ K≤ε ⊆

⋃m
i=1Ci,

2. vol (C ′
i) > c(d)ε and vol (Ci) < C(d)ε for each i,

3. for each cap C with C ∩K≥ε = ∅ there is a Ci containing C.

The central objects in the proof of the Economic cap covering theorem are Macbeath re-
gions.The Macbeath region of K at x ∈ K with parameter λ > 0 is the centrally symmetric
convex set

MK(x, λ) = x+ λ[(K − x) ∩ (x−K)].

Theorem 1.4.2 (Bárány). Let K be a convex body with vol (K) = 1 and t ∈ (0, t0) (where t0
depends only on d). Then there is a polytope P with K≥t ⊆ P ⊆ K with no more than

C(d)
vol (K≤t)

t

facets, where C(d) > 0 depends only on d.

Proof. Set τ = λt, where λ = 6−d, and choose a set of points {x1, . . . , xm} from ∂K≥τ maximal
with respect to the property that the M(xi, 1/2) are pairwise disjoint. One can show that

c(d)m <
vol (K≤τ )

τ
< C(d)

vol (K≤t)

t
,

for some c(d), C(d) > 0 depending only on d. Now, we remove the magnified (by factor 6)
minimal caps from K to obtain

P = K \
m⋃
i=1

cap (xi)
6 .

It can be shown that (1) no z ∈ ∂K belongs to P , and (2) K≥t ⊆ P .

References: The Economic Cap Covering theorem is due to Bárány and Larman [BL88, B8́9],
using the idea of Macbeath regions introduced by Macbeth [Mac52]. For a wonderful exposition,
see [Bár07].

1.5 VC-dimension and ε-nets

The Vapnik–Chervonenkis dimension (VC-dimension, in short) of a set family F ⊂ 2V on a set
V is the size of the largest set A such that F|A = {F ∩ A : F ∈ F} is the power set 2A of A.

Exercise 1.5.1. Show that if V is a (finite or infinite) subset of Rd and G is some (finite or
infinite) set of half-spaces in Rd, then the VC-dimension of F = {G ∩ V : G ∈ G} is at most
d+ 1.
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Approximation in Geometry

The main advantage of a set family F with low VC-dimension is that it is easy to find a
small subset U of V that intersects all members of F , provided that there is a measure on V
according to which each set in F is of not too small measure. More precisely, we have the
following fundamental result.

Theorem 1.5.1 (ε-net Theorem). Let 0 < ε < 1/e, and let D be a positive integer. Let F be
a family of some measurable subsets of a probability space (U, µ), where the probability of each
member F of F is µ(F ) ≥ ε. Assume that the VC-dimension of F is at most D. Set

t :=

⌈
3
D

ε
ln

1

ε

⌉
.

Choose t elements X1, . . . , Xt of V randomly, independently according to µ. Then {X1,. . ., Xt}
is a transversal of F with probability at least 1− δ, where

δ := (200ε)D.

In order to use it for approximation of a convex body by a polytope, we need to find a measure
according to which no relevant cap is too small.

First, we recall a classical result of Grünbaum as an exercise.

Exercise 1.5.2 (Grünbaum’s theorem). Let K be a convex body in Rd with centroid at the
origin, and let F be a half-space containing o. Then

vol (K ∩ F ) ≥
(

d

d+ 1

)d

vol (K) .

Note that the right hand side is greater than vol(K)
e

.

Lemma 1.5.2 (Stability of Grünbaum’s theorem). Let K be a convex body in Rd with centroid
at the origin. Let 0 < ϑ < 1, and F be a half-space that supports ϑK from outside. Then

vol (K)
(1− ϑ)d

e
≤ vol (K ∩ F ) . (1.1)

Theorem 1.5.3. Let ϑ ∈ (0, 1). Set

t =

⌈
3
(d+ 1)e

(1− ϑ)d
ln

e

(1− ϑ)d

⌉
.

Then for any centered convex body K in Rd, if t points X1, . . . , Xt of K are chosen randomly,
independently and uniformly, then

ϑK ⊆ conv (X1, . . . , Xt) ⊆ K

with probability at least 1− δ, where

δ =

[
200

(
(1− ϑ)d

e

)]d+1

.

References: The Espilon-net theorem was found by Haussler and Welzl [HW87] based on
ideas of Vapnik and Cervonenkis [VČ68] and then further developed to its sharpest form by
Komlós, Pach and Woeginger [KPW92], cf. [PA95, Mat02, Mus22] for recent developments.
Theorem 1.5.3 appeared in [Nas19].
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LECTURE 1: Approximation of convex bodies by polytopes

1.6 Other measures

For a Borel set C ⊂ ∂K, let C∗ = {x∗ ∈ ∂K◦ : x ∈ C} denote the corresponding points of the
polar of K.

Consider the “cones” Cone(C) = {rx : x ∈ C, 0 ≤ r ≤ 1} and Cone(C∗) = {ry : y ∈ C∗, 0 ≤
r ≤ 1}.

µ(C) =
1

2

(
vold(Cone(C))

vold(K)
+

vold(Cone(C
∗))

vold(K◦)

)
.

Using this measure, we have that each cap C of depth ε is at least of measure

µ(C) ≥ Cdε
d−1
2

Recall the notation cap (x, ε) from Exercise 1.1.1.

Lemma 1.6.1. Let K be a strictly convex body with smooth boundary. Assume that K contains
o in its interior and satisfies the Santaló bound vol (K) vol (K◦) ≤ eO(d)d−d. Then µ is a
probability measure on ∂K invariant under linear automorphisms of Rd and µ(cap (x, ε)) ≥
eO(d)ε

d−1
2 for all x ∈ ∂K and all ε ∈ (0, 1

2
).

The following result is shown in [NNR20]. For further developments, see [AdFM23, AM23].

Theorem 1.6.2. Let K be a convex body in Rd with the center of mass at the origin, and let
ε ∈

(
0, 1

2

)
. Then there exists a convex polytope P with at most eO(d)ε−

d−1
2 vertices such that

(1− ε)K ⊂ P ⊂ K.

9



Lecture 2

Quantitative Helly-type questions

The study of quantitative versions of Helly-type questions was initiated by Bárány, Katchalski
and Pach in [BKP82].

2.1 Rough approximation of the volume

The Quantitative Volume Theorem from [BKP82] states the following. Assume that the
intersection of any 2d members of a finite family F of convex sets in Rd is of volume at least
one. Then the volume of the intersection of all members of the family is of volume at least c(d),
a constant depending on d only.

In [BKP82], it is proved that one can take c(d) = d−2d2 and conjectured that it should hold
with c(d) = d−cd for an absolute constant c > 0. It was confirmed with c(d) ≈ d−2d in
[Nas16], whose argument was refined by Brazitikos [Bra17], who showed that one may take
c(d) ≈ d−3d/2. For more on quantitative Helly-type results, see the surveys [HW18, DLGMM19].
For recent quantitative variants of the Fractional Helly Theorem and the (p, q)-Theorem cf.
[RS17, DLLHRS17, SXS19].

2.1.1 Preliminaries for the proof of QVT

Definition 2.1.1. We say that a set of vectors w1, . . . , wm ∈ Rd with weights c1, . . . , cm > 0
form a John’s decomposition of the identity, if

m∑
i=1

ciwi = o and
m∑
i=1

ciwi ⊗ wi = I, (2.1)

where I is the identity operator on Rd.

We recall John’s theorem [Joh48] (see also [Bal97]).

Lemma 2.1.2 (John’s theorem). For any convex body K in Rd, there is a unique ellipsoid of
maximal volume in K. Furthermore, this ellipsoid is Bd (o, 1) if, and only if, there are points
w1, . . . , wm ∈ ∂Bd (o, 1) ∩ ∂K (called contact points) and corresponding weights c1, . . . , cm > 0
that form a John’s decomposition of the identity.
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LECTURE 2: Quantitative Helly-type questions

Q

B
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vd

w1

wk

S1

S2

E1

E2

o
u

w
`

Figure 2.1:

Exercise 2.1.1. Let ∆ denote a regular simplex in Rd such that the ball Bd (o, 1) is the largest
volume ellipsoid in ∆. Prove that

vol (∆) =
dd/2(d+ 1)(d+1)/2

d!
. (2.2)

A key tool in the proof is the Dvoretzky-Rogers lemma [DR50].

Lemma 2.1.3 (Dvoretzky-Rogers lemma). Assume that w1, . . . , wm ∈ ∂Bd (o, 1) and c1, . . . , cm >
0 form a John’s decomposition of the identity. Then there is an orthonormal basis z1, . . . , zd of
Rd, and a subset {v1, . . . , vd} of {w1, . . . , wm} such that

vi ∈ span{z1, . . . , zi}, and

√
d− i+ 1

d
≤ ⟨vi, zi⟩ ≤ 1, for all i = 1, . . . , d. (2.3)

Exercise 2.1.2. Prove Lemma 2.1.3.

2.1.2 Proof of QVT

Without loss of generality, we may assume that F consists of closed half-spaces, and 0 <
vol (∩F) < ∞ (that is, ∩F is a convex body in Rd), and F is a finite family. In short, we will
assume that P = ∩F is a d-dimensional convex polyhedron.

The problem is clearly affine invariant, so we may further assume that Bd (o, 1) ⊂ P is the
ellipsoid of maximal volume in P .

By John’s theorem, there are contact points w1, . . . , wm ∈ ∂Bd (o, 1) ∩ ∂Bd (o, 1) (and weights
c1, . . . , cm > 0) that form a John’s decomposition of the identity. We denote their convex hull
by Q = conv ({)w1. . . . , wm}. Lemma 2.1.3 yields that there is an orthonormal basis z1, . . . , zd
of Rd, and a subset {v1, . . . , vd} of the contact points {w1, . . . , wm} such that (2.3) holds.

Let S1 = conv ({) o, v1, v2, . . . , vd} be the simplex spanned by these contact points, and let E1

be the largest volume ellipsoid contained in S1. We denote the center of E1 by u. Let ℓ be
the ray emanating from the origin in the direction of the vector −u. Clearly, the origin is in
the interior of Q. In fact, by the remark following Lemma 2.1.2, 1

d
Bd (o, 1) ⊂ Q. Let w be

the point of intersection of the ray ℓ with ∂Q. Then |w| ≥ 1/d. Let S2 denote the simplex
S2 = conv ({)w, v1, v2, . . . , vd}. See Figure 2.1.
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Approximation in Geometry

We apply a contraction with center w and ratio λ = |w|
|w−u| on E1 to obtain the ellipsoid E2.

Clearly, E2 is centered at the origin and is contained in S2. Furthermore,

λ =
|w|

|u|+ |w| ≥
|w|

1 + |w| ≥
1

d+ 1
. (2.4)

Since w is on ∂Q, by Caratheodory’s theorem, w is in the convex hull of some set of at most d
vertices of Q. By re-indexing the vertices, we may assume that w ∈ conv ({)w1, . . . , wk} with
k ≤ d. Now,

E2 ⊂ S2 ⊂ conv ({)w1, . . . , wk, v1, . . . , vd}. (2.5)

Let X = {w1, . . . , wk, v1, . . . , vd} be the set of these unit vectors, and let G denote the family of
those half-space which support Bd (o, 1) at the points of X. Clearly, |G| ≤ 2d. Since the points
of X are contact points of P and Bd (o, 1), we have that G ⊆ F . By (2.5),

∩G = X∗ ⊂ E∗
2 . (2.6)

By (2.3),

vol (S1) ≥
1

d!
·
√
d!

dd/2
=

1√
d!dd/2

. (2.7)

Since Bd (o, 1) ⊂ ∩F , by (2.6) and (2.4), (2.2), (2.7) we have

vol (∩G)
vol (∩F)

≤ vol (E∗
2)

vol (Bd (o, 1))
=

vol
(
Bd (o, 1)

)
vol (E2)

≤ (d+ 1)d
vol
(
Bd (o, 1)

)
vol (E1)

= (d+ 1)d
vol (∆)

vol (S1)
(2.8)

=
dd/2(d+ 1)(3d+1)/2

d!vol (S1)
=

ddd3d/2e3/2(d+ 1)1/2

(d!)1/2
≤ ed+1d2d+

1
2 ,

where ∆ is as defined above (2.2). This completes the proof.

2.2 Colorful Quantitative Volume Theorem

We state the following colorful variant, which appeared in [DFN21]. See [SXS21] for further
results.

Theorem 2.2.1 (Colorful Quantitative Volume Theorem). Let C1, . . . , C3d be finite families of
convex bodies in Rd. Assume that for any colorful selection, Ci ∈ Ci for each i ∈ [3d], the

intersection
3d⋂
k=1

Ci contains an ellipsoid of volume at least 1. Then, there is an i ∈ [3d] such

that
⋂

C∈Ci
C contains an ellipsoid of volume at least cd

2
d−5d2/2 with an absolute constant c ≥ 0.

Exercise 2.2.1. Deduce the following result. Let C1, . . . , C3d be finite families of convex bodies
in Rd. Assume that for any colorful selection of 2d sets, Cik ∈ Cik for each k ∈ [2d] with

1 ≤ i1 < · · · < i2d ≤ 3d, the intersection
2d⋂
k=1

Cik is of volume at least 1. Then, there is an

i ∈ [3d] such that
⋂

C∈Ci
C is of volume at least cd

2
d−5d2/2−d with an absolute constant c ≥ 0.
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LECTURE 2: Quantitative Helly-type questions

2.3 Back to geometric distance

Next, we turn to the problem of (a rough) estimation of a polytope as the convex hull of a
well chosen small subset of its vertices. The followig theorem is due to Almendra-Hernández,
Ambrus and Kendall [AHAK23], improving a result in [IN22].

Theorem 2.3.1. Let λ > 0, and L ⊂ Rd be a convex polytope such that L ⊂ −λL. Then there
is a set of at most 2d vertices of L, whose convex hull L′ satisfies

L ⊂ −(λ+ 2)d · L′.

According to the next exercise, with the right choice of the origin, the assumption of the
Theorem always holds with λ = d.

Exercise 2.3.1. Show that for any convex set K in Rd, there is a translation t ∈ Rd such that
K − t ⊆ d(t−K).

Proof of Proposition 2.3.1. The condition L ⊆ −λL ensures that the origin belongs to the
interior of L. Among all simplices with d vertices from the set of vertices of L and one vertex
at the origin, consider a simplex S = conv (0, v1, . . . , vd) with maximal volume. The simplex S
can be represented as

S =

{
x ∈ Rd : x = α1v1 + . . .+ αdvd for αi ≥ 0 and

d∑
i=1

αi ≤ 1

}
. (2.9)

Define P =
∑
i∈[d]

[−vi, vi]. It is easy to see that P is a paralletope that can be represented as

P = {x ∈ Rd : x = β1v1 + . . .+ βdvd for βi ∈ [−1, 1]}. (2.10)

Since S is chosen maximally, equation (2.10) shows that for any vertex v of L, v ∈ P . By
convexity,

L ⊂ P. (2.11)

Let S ′ = −2dS + (v1 + . . .+ vd). By (2.9),

S ′ =

{
x ∈ Rd : x = γ1v1 + . . .+ γdvd for γi ≤ 1 and

d∑
i=1

γi ≥ −d

}
,

which, together with (2.10), yields
P ⊆ S ′. (2.12)

Let y be the intersection of the ray emanating from 0 in the direction −(v1 + · · ·+ vd) and the
boundary of Q. By Carathéodory’s theorem, we can choose k ≤ d vertices {v′1, . . . , v′k} of L
such that y ∈ conv (v′1, . . . , v

′
k). Set L

′ = conv (v1, . . . , vd, v
′
1, . . . , v

′
k). Clearly,

v1+···+vd
d

∈ S ⊂ L.
Thus, 0 ∈ L′, and consequently,

S ⊆ Q′. (2.13)

Since L ⊂ −λL, we also have that

v1 + · · ·+ vd
d

∈ −λ[y, 0] ⊂ −λL′.
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Combining it with (2.11), (2.12), (2.13), we obtain

L ⊂ P ⊂ S ′ = −2dS + (v1 + · · ·+ vd) ⊂ −2dL′ − λdL′ = −(λ+ 2)dL′, (2.14)

Completing the proof of Proposition 2.3.1.

We say that a convex body K is in John’s position, if the largest volume ellipsoid contained in
K is Bd (o, 1). It is well know that in this case, K ⊂ Bd (o, d).

Corollary 2.3.2. Let Q be a convex polytope in Rd in John’s position. Then there is a subset
of at most 2d vertices of Q whose convex hull Q′ satisfies

Q ⊆ −2d2Q′.
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Lecture 3

Approximation of sums of matrices

In the previous lecture, we saw how taking a John decomposition of the identity and selecting
a small subset of the unit vectors yields geometric results. In this lecture, we consider the
following general question. Given a matrix A (often, we simply have A = I) as a (positive)
linear combination of some other matrices. Can we select a small subset of the matrices whose
linear combination (with possibly new coefficients) yields a matrix close to A in some norm.

3.1 Rudelson’s theorem: a probabilistic approach

A random vector v in Rd is called isotropic, if Ev ⊗ v = I, where E denotes the expectation of
a random variable, and I is the identity operator on Rd.

According to Rudelson’s theorem [Rud99], if we take k independent copies y1, . . . , yk of an
isotropic random vector y in Rd for which |y|2 ≤ γ almost surely, with

k =

⌈
cγ ln d

ε2

⌉
, then E

∥∥∥∥∥1k
k∑

i=1

yi ⊗ yi − I

∥∥∥∥∥ ≤ ε,

where ∥A∥ = max{⟨Ax,Ax⟩1/2 : x ∈ Rd, ⟨x, x⟩ = 1} denotes the operator norm of the matrix
A.

Rudelson’s result applies in the setting of a John decomposition of the identity, see (2.1): if we
take αi = ci/d, we may interpret αi as the probability of a random unit vector taking the value
ui. Let σ = {i1, . . . , ik} be a multiset obtained by k independent draws from [m] according to
the distribution where Prob(i is drawn) = αi, and consider the following average of matrices
1
k

∑
i∈σ

√
dui ⊗

√
dui. It follows that, in expectation, this average is not farther than ε from I

in the operator norm, provided that k is at least cd ln d
ε2

, where c is some constant.

We state it in a slightly more general form as appeared in [INP20].

Theorem 3.1.1 (Rudelson’s theorem). Let 0 < ε < 1 and Q1, . . . , Qk be independent random
matrices distributed according to (not necessarily identical) probability distributions P1, . . . ,Pk

on the set Pd of d× d real positive semi-definite matrices such that EQi = A for some A ∈ Pd

and all i ∈ [k]. Set γ = E(maxi∈[k] ∥Qi∥), and assume that

k ≥ cγ(1 + ∥A∥) ln d
ε2

,
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where c is an absolute constant. Then

E

∥∥∥∥∥∥1k
∑
i∈[k]

Qi − A

∥∥∥∥∥∥ ≤ ε. (3.1)

Exercise 3.1.1. Show the following.

1. The set Pd of positive semi-definite d× d matrices (with real entries) form a convex cone
with apex at the origin in the vector space Rd(d+1)/2 of symmetric matrices.

2. Matrices of trace 1 form a hyperplane H1 containing 1
d
I in Rd(d+1)/2.

3. The set Pd ∩H1 is a convex body in H1.

3.1.1 Proof of Rudelson’s Theorem

Let Pd denote the cone of positive semi-definite symmetric matrices in Rd×d. The Schatten
p-norm of a real d× d matrix A is defined as

∥A∥Cd
p
:=

(
d∑

i=1

(si(A))
p

)1/p

,

where s1(A), . . . , sd(A) is the sequence of eigenvalues of the positive semi-definite matrix
√
A∗A.

We recall that ∥A∥ ≤ ∥A∥Cd
p
for all p ≥ 1, and we also have

∥A∥ ≤ ∥A∥Cd
p
≤ e ∥A∥ for p = ln d, (3.2)

where ln denotes the natural logarithm and e denotes its base.

From this point on, r denotes a sequence of k Rademacher variables, that is, r = (r1, . . . , rk),
where the ri are random variables uniformly distributed on {1,−1}, independent of each other
and all other random variables in the context.

We state the following inequality due to Lust–Piquard and Pisier [LP86, LPP91], essentially in
the form as it appears in the book [Pis98, Theorem 8.4.1].

Theorem 3.1.2 (Lust–Piquard). 2 ≤ p < ∞. For any d and any Q1, . . . , Qk (not necessarily
positive definite) square matrices of size d we haveE

r

∥∥∥∥∥
k∑

j=1

rjQj

∥∥∥∥∥
p

Cd
p

1/p

≤ c
√
pmax


∥∥∥∥∥∥
(

k∑
j=1

QjQ
∗
j

)1/2
∥∥∥∥∥∥
Cd

p

,

∥∥∥∥∥∥
(

k∑
j=1

Q∗
jQj

)1/2
∥∥∥∥∥∥
Cd

p


for a universal constant c > 0.

Note that for any d× d matrix Q, the product Q∗Q is positive semi-definite. Since, by Weyl’s
inequality, the Schatten p-norm is monotone on the cone of positive semi-definite matrices, we
may deduce from the theorem of Lust–Piquard the following inequalityE

r

∥∥∥∥∥
k∑

j=1

rjQj

∥∥∥∥∥
p

Cd
p

1/p

≤ c
√
p

∥∥∥∥∥∥
(

k∑
j=1

QjQ
∗
j +Q∗

jQj

)1/2
∥∥∥∥∥∥
Cd

p

. (3.3)
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Lemma 3.1.3 (Symmetrization by Rademacher variables). Let q1, . . . , qk be independent ran-
dom vectors distributed according to (not necessarily identical) probability distributions P1, . . . ,
Pk on a normed space X with Eqi = q for all i ∈ [k].

Then

E
q1,...,qk

∥∥∥∥∥1k
k∑

ℓ=1

qℓ − q

∥∥∥∥∥ ≤ 2

k
E

q1,...,qk
E
r

∥∥∥∥∥
k∑

ℓ=1

rℓqℓ

∥∥∥∥∥ .
Exercise 3.1.2. Prove Lemma 3.1.3.

Proof of Theorem 3.1.1. The argument follows very closely Rudelson’s.

Denote by D = 1
k

∑
i∈[k] Qi − A, and p = ln d. Then

E
Q1,...,Qk

∥D∥ ≤ E
Q1,...,Qk

∥D∥Cd
p

(S)
≤ 2

k
E

Q1,...,Qk

E
r

∥∥∥∥∥
k∑

ℓ=1

rℓQℓ

∥∥∥∥∥
Cd

p

(H)
≤ 2

k
E

Q1,...,Qk

E
r

∥∥∥∥∥
k∑

ℓ=1

rℓQℓ

∥∥∥∥∥
p

Cd
p

1/p
(L-P)
≤ c0

√
p

k
E

Q1,...,Qk

∥∥∥∥∥∥
(

k∑
ℓ=1

Q2
ℓ

)1/2
∥∥∥∥∥∥
Cd

p

(PSD)
≤ c0

√
p

k
E

Q1,...,Qk

max
ℓ∈[k]

∥Qℓ∥1/2 ·

∥∥∥∥∥∥
(

k∑
ℓ=1

Qℓ

)1/2
∥∥∥∥∥∥
Cd

p


≤ c1

√
p

k
E

Q1,...,Qk

max
ℓ∈[k]

∥Qℓ∥1/2 ·
∥∥∥∥∥
(

k∑
ℓ=1

Qℓ

)∥∥∥∥∥
1/2


(H)
≤ c1

√
γp

k

[
E

Q1,...,Qk

∥∥∥∥∥
(

k∑
ℓ=1

Qℓ

)∥∥∥∥∥
]1/2

≤ c1
√
γp√
k

[
E

Q1,...,Qk

∥D∥+ ∥A∥
]1/2

,

where c0 and c1 are positive constants. Here, we use Lemma 3.1.3 in step (S) and the inequality
(3.3) in step (L-P). The inequality (PSD) relies on the fact that the matrices Qi are positive
semi-definite, and (H) follows from Hölder’s inequality.

Thus, we obtain

E ∥D∥ ≤ c1
√
γ ln d√
k

√
E ∥D∥+ ∥A∥.

Denoting by α =
(

c1
√
γ ln d√
k

)2
, we have

(E ∥D∥)2 − αE ∥D∥ − α ∥A∥ ≤ 0.

Therefore, we get E ∥D∥ ≤ α +
√

α ∥A∥, and thus the inequality

E ∥D∥ ≤ c21γ ln d

k
+

c1
√
γ ∥A∥ ln d√

k
≤ ε

holds for k ≥ cγ(1+∥A∥) ln d
ε2

with sufficiently large c. Theorem 3.1.1 is proved.
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3.2 An algorithmic approach

If instead of considering the expectation of the average of randomly chosen ui ⊗ ui, we want
to show the existence of a small subset of the set of ui ⊗ ui whose average is close to I,
then the picture changes, as was shown by a completely different approach introduced in the
fundamental paper of Batson, Spielman and Srivastava [BSS14]. It was developed further by
Marcus, Spielman and Srivastava [MSS15] (see also [Sri12]), and by Friedland and Youssef
[FY17]. In [FY17], the following is shown.

Theorem 3.2.1. Let u1, . . . , um be unit vectors in Rd that yield a John decomposition of
I. Then there is a (deterministically obtained) multi-subset σ of [m] of size |σ| = cd

ε2
with∥∥∥ 1

|σ|
∑

i∈σ

√
dui ⊗

√
dui − I

∥∥∥ < ε.
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[DLGMM19] Jesús A. De Loera, Xavier Goaoc, Frédéric Meunier, and Nabil H. Mustafa, The
discrete yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and
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