Exercise Session by Ádám Sagmeister and Márton Naszódi

Exercise 1. Let K be a convex body containing the origin in its interior and $\varepsilon \in (0,1)$. Let $X \subset \partial K$ be a finite set. Show that the polytope $P = \operatorname{conv}(X)$ satisfies $d(K,P) \leq \frac{1}{1-\varepsilon}$ if and only if, X intersects every cap of $\operatorname{depth} \varepsilon$, that is, every set of the form $\operatorname{cap}(x,\varepsilon) = \{y \in K : \langle y, \nu \rangle \geq (1-\varepsilon) \langle x, \nu \rangle \}$, where x is an arbitrary boundary point of K and ν is any outer unit normal vector of K at x.

Exercise 2. Show that if $\Lambda \subset \mathbb{R}^d$ is such that $\Lambda + \mathbf{B}^d(o, \varepsilon/2)$ is a maximal packing of $\varepsilon/2$ radius balls in $K + \mathbf{B}^d(o, \varepsilon/2)$, then $P = \operatorname{conv}(\Lambda)$ is a polytope satisfying $\delta_H(P, K) \leq \varepsilon$.

Exercise 3. Prove that there is a Λ with $\Lambda + \mathbf{B}^d(o, \varepsilon) \supseteq K$ of cardinality at most $\frac{\operatorname{vol}(K + \mathbf{B}^d(o, \varepsilon/2))}{\operatorname{vol}(\mathbf{B}^d(o, \varepsilon/2))}$.

Exercise 4. Prove that for any $\varepsilon > 0$ and dimension d, there is a polytope P with no more than roughly $\left(\frac{3}{\varepsilon}\right)^d$ vertices that is $(1+\varepsilon)$ -close to K+t in the geometric distance with an appropriate translation vector $t \in \mathbb{R}^d$.

Exercise 5. Prove that in the Bronshtein–Ivanov construction, for every $x \in \partial K$, we can find j such that $|x - x_j|^2 + |\nu_x - \nu_{x_j}|^2 \le \rho^2$.

Exercise 6. Show that if V is a (finite or infinite) subset of \mathbb{R}^d and \mathcal{G} is some (finite or infinite) set of half-spaces in \mathbb{R}^d , then the VC-dimension of $\mathcal{F} = \{G \cap V : G \in \mathcal{G}\}$ is at most d+1.

Exercise 7. (Grünbaum's theorem) Let K be a convex body in \mathbb{R}^d with centroid at the origin, and let F be a half-space containing o. Then

$$\operatorname{vol}(K \cap F) \ge \left(\frac{d}{d+1}\right)^d \operatorname{vol}(K).$$

Exercise 8. Let Δ denote a regular simplex in \mathbb{R}^d such that the ball $\mathbf{B}^d(o,1)$ is the largest volume ellipsoid in Δ . Prove that

vol
$$(\Delta) = \frac{d^{d/2}(d+1)^{(d+1)/2}}{d!}.$$

Exercise 9. (Dvoretzky–Rogers lemma) Assume that $w_1, \ldots, w_m \in \partial \mathbf{B}^d$ (o, 1) and $c_1, \ldots, c_m > 0$ form a John's decomposition of the identity. Then there is an orthonormal basis z_1, \ldots, z_d of \mathbb{R}^d , and a subset $\{v_1, \ldots, v_d\}$ of $\{w_1, \ldots, w_m\}$ such that

$$v_i \in \text{span}\{z_1, \dots, z_i\}, \text{ and } \sqrt{\frac{d-i+1}{d}} \le \langle v_i, z_i \rangle \le 1, \text{ for all } i = 1, \dots, d.$$

Exercise 10. Deduce the following result. Let C_1, \ldots, C_{3d} be finite families of convex bodies in \mathbb{R}^d . Assume that for any colorful selection of **2d sets**, $C_{i_k} \in C_{i_k}$ for each $k \in [2d]$ with $1 \leq i_1 < \cdots < i_{2d} \leq 3d$, the intersection $\bigcap_{k=1}^{2d} C_{i_k}$ is of volume at least **1**. Then, there is an $i \in [3d]$ such that $\bigcap_{C \in C_i} C$ is of volume at least $c^{d^2} d^{-5d^2/2-d}$ with an absolute constant $c \geq 0$.

Exercise 11. Show that for any convex set K in \mathbb{R}^d , there is a translation $t \in \mathbb{R}^d$ such that $K - t \subseteq d(t - K)$.

Exercise 12. Show the following.

1. The set \mathcal{P}^d of positive semi-definite $d \times d$ matrices (with real entries) form a convex cone with apex at the origin in the vector space $\mathbb{R}^{d(d+1)/2}$ of symmetric matrices.

- 2. Matrices of trace 1 form a hyperplane H_1 containing $\frac{1}{d}I$ in $\mathbb{R}^{d(d+1)/2}$.
- 3. The set $\mathcal{P}^d \cap H_1$ is a convex body in H_1 .

Exercise 13. (Symmetrization by Rademacher variables) Let q_1, \ldots, q_k be independent random vectors distributed according to (not necessarily identical) probability distributions $\mathcal{P}_1, \ldots, \mathcal{P}_k$ on a normed space X with $\mathbb{E}q_i = q$ for all $i \in [k]$.

Then

$$\mathbb{E}_{q_1,\dots,q_k} \left\| \frac{1}{k} \sum_{\ell=1}^k q_\ell - q \right\| \le \frac{2}{k} \mathbb{E}_{q_1,\dots,q_k} \mathbb{E}_{\mathbf{r}} \left\| \sum_{\ell=1}^k r_\ell q_\ell \right\|.$$