The Erdos Selfridge Strategy

Given a set system (X, R) with n = | X|, m = |R| and each set of R having size exactly &,
two players, say named Row PLAYER and COLUMN PLAYER, play the following game:

RoOw PLAYER starts, and picks an element of X.
Then COLUMN PLAYER picks one of the remaining elements of X.

Then it is again ROw PLAYER’s turn to pick a remaining element and so on.

Row PLAYER wins if it is able to collect all the elements of some set of R. COLUMN
PLAYER wins otherwise (that is, COLUMN PLAYER has a hitting set for R).

Clearly, the larger the number of sets, the easier it is for ROW PLAYER to win.

For example, if R is the powerset of X and k < 7, then clearly any strategy for Row
PLAYER wins after k steps, since ROW PLAYER would have collected & elements of X,
which is also a set in R.

In fact, there is even a set system with m = 2*~! sets such that the Row PLAYER has a
winning strategy:

take X to be the vertices of a perfectly balanced binary tree of depth £ — 1 and let R
consist of all root-to-leaf paths (each of length k). Then Row PLAYER picks the root vertex,
and then in the next turn, ROW PLAYER picks the root vertex of the left subtree if COLUMN
PLAYER had picked a vertex in the right subtree, and vice versa. Continuing like this, Row
PLAYER would eventually reach a leaf, completing that set.

Theorem 0.1. If m < 2871, then there is a winning strategy for COLUMN PLAYER.
Proof. COLUMN PLAYER will assign a weight to each set of R, and in its turn, pick an element

which is contained in the sets of maximum total weight.

The weight of all sets from which COLUMN PLAYER has already picked an element is set to 0.
Otherwise, here is the weight function:

w (S) — 2# of elements of S picked by Row PLAYER so far

Seting w' (S) = 1 forall S € R and Q'(R) = >4 w'(S). Then here is the algorithm for
iterations i =1, .. .:



1. Row PLAYER picks an element z; € X from the set of elements not already
picked.

2. Update the weight function: for each S € R containing z;, set

wT(S) =2-w'(9).

3. COLUMN PLAYER picks an element y; € X \ {z1,...,2;,y1,...,y;—1} that hits
the sets of maximum weight. That is, maximizing

Z Wit (S)

SER:
y; €S

4. For all S € R hit by y;, set w™1(S) = 0. We can just remove such sets from
R.

Here is the key claim.

Claim 0.2. Apart from the first iteration, the total weight of all sets are monotoni-
cally non-increasing.

Proof. At the (i + 1)-th iteration, the weight increase due to the choice of Row
PLAYER is:
QF(R) = QT (R)+ D W' (9). (0.3)
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Note that the element z;; was available to be picked by the COLUMN PLAYER in the
previous iteration i—with the goal of maximizing precisely the same summation
as the second term in the R.H.S. of Equation . Therefore it must be that the
weight of sets of R set to 0 in iteration ¢ was at least as large as the increase in
the total weight at iteration ¢ + 1. Thus

Wt decrease (COLUMN PLAYER) at iteration ¢ + Wt increase (ROW PLAYER) at iteration ¢ + 1 < 0.

Summing up over all iterations i completes the claim. O

Now, since all weights are non-negative, as long as the total weight of the sets does not
reach 2% in any iteration, the COLUMN PLAYER wins. To this end:

At the start, we have Q'(R) = m.

After the ROw PLAYER chooses 1, in the worst case, the weight of all sets could
have doubled and so we have Q*(R) < 2m.

From now onwards, the total weight of the sets do not increase due to Claim



Thus COLUMN PLAYER wins if

om < 28—  m <2

Bibliography and discussion. The algorithm and analysis is from [ES73].

[ES73] P. Erd6s and J. L. Selfridge. “On a combinatorial game”. In: Journal of Combina-
torial Theory, Series A 14.3 (1973), pp. 298-301.



Rounding via Duality and Epsilon-Nets

Let V be a set of n elements, and S a collection of m subsets of V. Further, let o > 0 be
a parameter such that for any weight function w: S — R™, there exists an element v € V'
hitting sets of total weight at least an a-th fraction of the total weight of S. That is,

) w<S>za-(Zw<S>>-

SeS: ves Ses
Then what is the size of a minimum hitting set of S?

A natural greedy algorithm constructs one of size O (®2):

«

add a point hitting the maximum number of sets in S to our hitting set, and reiterate on
the remaining unhit elements in S. After having added the first point, the number of unhit
sets in S is at most

8] —alS[=[S]- (1 —a).

And after adding the second point, the number of unhit sets in S is at most
[SI(1—a) —a-[S|(1-a)=18|- (1 -a)*.
And after adding ¢ points, the number of unhit sets in S is at most
S| (1—a)".

Setting ¢t = In@SD  the number of unhit sets in S after ¢ iterations is at most

o b

S]- (1= ) < IS]-exp(—at) = |S] - exp <_a1“2'3) 1<

That is, all sets are hit and thus the chosen points form a hitting set, of size t = O ( 1“7)

We now present a technique where, if an additional structural property is true, one can
construct a hitting set of size depending only on «. Here is the key insight, that follows
immediately from LP duality.

Lemma 0.4. Let V be a finite set of n elements, S a finite collection of subsets of V, and
a € (0,1] a parameter such that the following is true:

for any weight function w: S — R™, there exists an element v € V such that

> w<S>za-(Zw<S>).

SeS: veS Ses

Then there exists a weight function wy : V' — R™" such that for any S € S,

Zwv(v) > - (Zwv(v)> .

vES veV



Proof. We will use a LP to construct the weight function wy, and then prove that it satisfies
the required property using LP duality.

The covering LP below has |V| variables, while its dual packing LP has |S| variables. All
variables are non-negative.

Covering LP (Primal) Packing LP (Dual)
Minimize Z Ty Maximize Z ys
veV SeS
<—
subject to subject to
foreach S € S: quZI. foreachv e V: Z ys < 1.
u€eS SeES: veS

Claim 0.5. The dual LP—and thus the primal LP—has value at most +.

Proof. Let W =} s ys be the value of the dual LP.

By our input assumption applied to the weights given by the yq variables, there
exists an element v’ € V hitting sets of S with total weight at least alV.

On the other hand, the dual LP constraint implies that this is at most 1 for any
v € V, and thus

. : 1
a-W < E ys < 1, implying that W < —.

o
SeSw'eS

By LP duality, the value of primal LP is also at most é O

Now we can set the weight function wy :
wy (v) = x, for each v € V.

The primal LP has value at most 1/a by Claim and every S € S contains elements of
total weight at least 1. Thus each set of S has total weight at least an «a-th fraction of the
total weight under wy,, as desired. O

In game theory, the above lemma is typically stated in the setting of a 2-player game. From
a graph-theoretic point of view, V' and S are vertices of the bipartite incidence graph.



Lemma converts our initial problem into, in the language of sampling theory, an e-net
problem: our initial goal is reduced to computing a hitting set for a set system (V, S) where
each set of S contains an a-th fraction of the total weight.

The following sampling approach, while only giving the same bound as the greedy algorithm,
points us in the right direction:

Independently, with replacement, and with respect to the weights wy’s, choose a random
element of V' repeatedly ¢ times, to get a random sample R of size at most ¢. Then

Pr|a fixed S € S is not hit by R] < (1 — a)’ < exp (—at).
By the union bound,

Pr[some S € S is not hit by R] < |S| - exp (—at).

Now setting ¢ = %, the above probability becomes at most %, and so there exists a

hitting set of S of size O (2).

We next present three statements and their proofs, all of which follow the above formula:

1. Show the existence of a point hitting many sets.
2. Use LP duality to assign weights to points such that each set has high weight.

3. Show, using properties for the given scenario, that one can ‘round’ the weights to
integer ones to get a hitting set.

=

APPLICATION 1: THE (p, q)-THEOREM FOR CONVEX SETS

Theorem 0.6. Let C = {C},...,C,} be a set of n compact convex objects in RY, satisfying the
following (p, q)-property for given integers p > q > d + 1:

for any C' C C of size p, there exists a subset of C' of size ¢ that can be hit by a point
in R<,

N g1 d
Then there exists a Q C R%, |Q| = O ((pq_;) ), that is a hitting set for all sets in C.

Proof. As C is finite, let P be a finite set of points, one from each distinct cell in the
arrangement of C in R%. It suffices to restrict our hitting set for C to a subset of P.

The first step is to show, given the (p, ¢)-property, the following statement (stated without
proof):



Lemma 0.7. For any weight distribution w: C — R* with W = %" _, w (C), there
exists a point r € P such that

1
Z w(C) > apga- W, where apgd =2 <?> :

cec: reC pa—d

Now apply Lemma[0.4with V = P, S = C and « = o, ;4 as given by Lemma [0.7|to get the
following:

there exists a function wp: P — R™ such that each C' € C contains points with
total weight at least an «,, , 4-th fraction of the total weight of P under wp.

Finally we need the following theorem on weak e-nets (stated without proof):

Theorem 0.8. Given a finite set P of points in R? and a parameter ¢ > 0, there
exists a set () C R? such that any convex set in R? containing at least ¢ | P| points of
P contains at least one point of (), where

@1=0(5).

Applying Theorem to P with weights given by wp and with € = «, ,4, we get a set
@ C R that hits all sets of C, with

=0 (<%;)d> -o((=))

=

APPLICATION 2: SEPARATING POINTS FROM A CONVEX SET

Given a finite set P C R? and a convex set C, Carathéodory’s Theorem implies the following:
if the convex-hull of every (d + 1)-sized subset of P is disjoint from C, then P can be
separated from C' by one hyperplane. We now show that by using more than one hyperplane
to separate C' from P, one can extend this to low-dimensional intersections.

Theorem 0.9. Let C be a convex set in R and P a finite set of points in R? satisfying the
following property:



the convex-hull of any (| 2] + 1)-sized subset of P is disjoint from C.

Then C can be separated from P by a set Q of O (d*log d) hyperplanes; that is, for each p € P,
there exists a hyperplane in () separating p from C.

Proof. Given P and C, let H be a finite set of hyperplanes, all disjoint from C, such that
for any P’ C P where conv (P’) is separable from C' by a hyperplane, there exists a h € H
separating conv (P’) from C'. Thus it suffices to construct ) from the hyperplanes in #.

For each p € P, let #, C H be the hyperplanes separating p from C. Further, for each
h € H, let h* denote the half-space defined by 4 that does not contain C.

The first step is to prove the existence of a hyperplane separating many points of P from C.

Lemma 0.10. Given a rational weight function w: P — R* with W =3 _,w (p),
there exists a hyperplane h € ‘H such that

Z w(p) > ag- W, where ad:Q(1>.

a3
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Stated equivalently, letting S = {H,: p € P} with weights w (H,) = w (p), there
exists a h € H hitting sets of S of total weight at least an «g-th fraction of the total
weight of the sets of S.

Proof. Assume w (p) = w(p)/D, where w(p) and D are integers. Let P’ be the
point set constructed by replacing each p € P with w(p) copies of p. We need the
following (stated without proof).

Theorem 0.11. Given any finite set P in RY, there exists a set Q C P of size [%] + 1
such that any half-space containing () contains at least o - | P| points of P.

Apply Theorem to P’ to geta | 4] +1-sized set Q C P’ such that any half-space
containing () contains at least ay| P’| points of P’. As this applies to the half-space
h* corresponding to h € H separating conv (@) from C, we get

S owb=p Y )2 e Pl=a W

pEP: heHyp pEP: heH,

O

Apply Lemma [0.4with V = H, S = {#,: p € P}, and o = g from Lemma [0.10} to get:



there exists a function wy, : H — R™ such that for each p € P, the total weight of
all the hyperplanes in H separating p from C is at least an «,-th fraction of the
total weight of #.

Finally, we need the following theorem on e-nets for half-spaces:

Theorem 0.12. Given any finite set H of half-spaces in R¢ and an € > 0, there exists
a set @ C H of size O (%1log 1) such that any point of R? contained in at least ||
half-spaces of H is contained in some half-space of Q.

By applying Theorem to the half-spaces {h": h € H}, e = 1/ay, and weights given by
wyy, there exists a set ) C H of

O (glog%) =0(d-ag-logag) = O (d*logd)

hyperplanes such that each point of p is separated by some hyperplane in ). This completes
the proof. O

Bibliography and discussion.



LP Duality

Consider the following primal LP:

Primal LP

max c-x
zeR™

s.t.
Ax < b,

x> 0.

Here c € R", A is a m x n matrix, and b € R™.
Let ry,...,r,, be the m rows of A, and ¢y, ..., ¢, be the n columns of A.

The feasible region in R", denoted by C, is defined by the intersection of the m half-spaces
(called constraints), where the j-th half-space, j € [m], is defined by the inequality

Tj'.TSbj.

Any x € C satisfies all the above m inequalities.

We will assume that C is non-empty and compact, o € C, and that m > n.

Fact 0.13. Any positive linear combination of the constraints is also a half-space. Further; it
contains the feasible region C.

Proof. Lety; > 0,...,ym» > 0 be m non-negative coefficients for the m constraints. Then,
by definition, for any p € C, we have for all j € [m]:

’l“j-pﬁbj < yj(rj-p)ﬁyjbj.

Adding them up, we get that for any p € C,

S yi(riop) <D yiby,

j€[m] j€[m]
or equivalently,
Z ijj - p S Z yj bj. (014)
J€lm] Jj€m]

In words, as a p € C satisfies all the m constraints, it also satisfies the sum of their
non-negative linear combination given by Equation (0.14)), which is just the half-space



with the equation:

( >y )-xé > by
JE[mM]

j€[m]
a vector r’ €R™

Geometrically, this is the half-space with the normal vector .

The next, intuitively obvious, geometric claim is at the heart of the argument.

Fact 0.15. Let v € R" be a vertex of C that is the common intersection of n constraints, where
the k-th constraint is denoted by the half-space

h, : 72 < b

Then any half-space tangent to C at v and containing C, can be derived by a convex combination
of the above n constraints.

Proof.

Broadly, we take the geometric dual of each of these n hyperplanes with respect to the origin o
(recall that o € C). Then,

a) the dual of the convex-hull of these n dual points is exactly the space of all hyperplanes
tangent to C at v, and

b) a convex combination of the dual points corresponds to a convex combination of the
half-space constraints.

This is essentially where Farkas’ lemma comes into play—though it is applied to the geometric
dual space where the n constraints defining v become points.

For a hyperplane i C R", let A~ be the half-space defined by / and containing the origin o.

Let f () be the standard geometric duality function with respect to the origin o. That is,
f () maps

a) hyperplanes in R" not containing o — points in R™ \ {o}, and

b) points in R"\ {o} — hyperplanes in R",
such that this duality function has two properties:

Preserves sidedness. A half-space h~ contains a point p if and only if the half-space f(p)~
contains the point f(h).



Preserves convex combinations. For any hyperplane h and hyperplanes h;: r; - x = b;,
b; >0and i € [t]:

if f(h) is a convex combination of the f(h;)’s, then the hyperplane h is a convex
combination of the hyperplane h;’s. That is,

Jdag,...,ap >0: Zaizlandf(h) :Zaif(hi)

ielt] i€t]

30/1,...,04220:Z@Qzlandhcanbewrittenas Zagri ~x:204;bi.

i€[t] i€t i€(t]

Fix a hyperplane i containing the given vertex v. We now show that & intersects int(C) if
and only if the point f(h) does not lie in conv ({f(h1), ..., f(hn)})-

—f(h) does not lie in conv ({ f(h1),..., f(h,)}) = h intersects int(C):

1. By the dual property of sidedness preservation, the points f(h), f(h1),..., f(hy) lie
on the hyperplane f(v).

2. Applying Farkas’ lemma, in R”~!, to
f(h)7f(h1)7 e f(hn) C f(?)),

there is a (n — 2)-dimensional hyperplane 4’ C f(v) separating f(h) from
conv ({f(hl)a ce f(hn)}) :

3. We can extend /' to a (n — 1)-dimensional hyperplane, say denoted by f(q), that
separates f(h) from

conv (o U {f(hl),...,f(hn)}> .

4. Thatis, f(¢)~ contains {f(h1),..., f(hy,)} and does not contain f(h).

By the dual property of sidedness preservation,

(@ hi,...,h, contain ¢, and

(b) h~ does not contain gq.

5. Thus h must intersect int(C).

—h intersects int(C) = f(h) does not lie in conv ({f(h1),..., f(hn)}):



Then there is a point ¢ € C that is not contained in ~~. That is, the half-space
f(q)~ contains f(hi),..., f(hy) but it does not contain f(h). Therefore f(h)
cannot lie in conv ({f(h1), ..., f(hn)})-

Finally, the dual property of convex combination preservation completes the proof.

O

Remark: Rather than just using the n constraints around the vertex v, one can also do
the above proof, without any change, by using all the m half-space constraints defining C.
This gives the following (weaker) statement:

h intersects int(C) if and only if the point f(h) does not lie in conv ({ f(h1), ..., f(hm)}).

Note that then one uses Farkas’ Lemma in R" instead of R" 1.

Returning to our LP, let v, be the vertex of C that is extreme in the given direction c. Denote
the n constraints defining v, for k = 1,...,n, by:

Tj, * T S b]k
Then we have rj, - v. = b;, for all k € [n].

Let h~ be the half-space containing C that is tangent to C at v, and orthogonal to c. By
Fact|0.15] A~ can be written, for some y;, > 0,...,y;, >0, as:

Z Y5 Tip | =T < yjkbjk'
keln) ke[n]

The normal vector of this half-space—that is, }_, ., ¥;, rj,—is in direction c; by
scaling the y;,’s, we can assume that it is precisely c:

c= E :yjkrjk'

ke[n]

After scaling, the coefficients y,,’s are no longer convex—that is, their sum is no
longer 1—but are non-negative.

This proves strong duality: since v, lies on the bounding hyperplane of ~~, we have

Z Yir Vi | " Ve = Z Yi i, — € Ve = Z Yirbj.-

ke[n) ke[n] ke[n]



Formally, we have to also consider the coefficients of the other m — n constraints, which
are set to 0. That is, let y € R™ be a vector with the above y;,’s at their proper indices,
and set the remaining m — n indices to 0. Then we have

C- Ve = Zyjkrjk : Zyjk Tjk'vc>: Zyjkbjk_ Z yibj =b-y.

ke[n] ke[n] keln] jE[M]

Also, it is easy to see that y is a feasible dual solution.

Dual LP

min b -y
yeR™

s.t.

Remark: In our proof above, we are getting the stronger property y” A = c instead
of yTA > ¢ ... and this is not correct.

Indeed, the proof given above is incomplete: it ignores the case where the extremal
vertex in direction c is realized by constraints that include the coordinate planes,
due to our condition that = > 0.

To fix this, include these additional n constraints: fori=1,...,n,
—e; -z < 0.

The i-th constraint requires the i-th coordinate of x to be positive.

Then, as before, we can write ¢ as a non-negative linear combination of constraint
half-spaces, this time including the non-negativity constraints. That is, 4~ can be
written as

Zyjrj—i_zyz ez $<Zyjb+zyz

jE€[m)] i€[n]

J/

~~
C

Now removing the terms on the L.H.S. due to the non-negativity constraints gives



the required form:

Zyjrj o < Zyjbj'

Jjeml Jjeiml

&=

We note the primal and dual slackness conditions, and their geometric interpretations.

Let x € R™ and y € R™ be feasible primal and dual solutions. Then they are optimal if and
only if all these conditions hold:

Dual complementary slackness conditions. For each j € [m]:

eithery; =0or r; -z =0;.

Given y, keep the constraints whose corresponding y value is non-zero. Then x must
lie on each of these constraints. Usually there are n such constraints, representing a
vertex of C which should be the optimal solution .

Note that these conditions alone do not say that # must be maximum point of C in
the direction c—just that x, which lies in C by the feasibility assumption, must lie on
the common intersection of some (at most n) constraints.

Primal complementary slackness conditions. For each i € [n]:

either z; = 0 or Z yiri | = ¢-

J€[m] i

Assume, for the moment, that none of the z;’s are 0.

Then the linear combination—as given by the y;’s—of the normal vector r;’s of
the constraints (really, we just care here about those constraints with y; # 0) must
equal the vector c.

That is, the linear combination of the constraints of C with y; # 0 gives a half-space
with normal vector c.

Together, these two conditions fix the optimal = and y solutions:



the first set of conditions tells us that x must lie on the boundary of C, and the
second set of conditions tells us that there is a tangent half-space to this boundary
point x which is normal to the direction c.

Thus z must be the optimal bound in direction ¢, and y the precise coefficients
that give us the extremal half-space tangent to C that contains x.

Purely mechanically, each constraint in Primal corresponds to a variable in the Dual, and
each variable in the Primal corresponds to a constraint in the Dual. Then x and y, feasible
solutions, are optimal if and only if:

whenever a primal variable is not 0, its corresponding dual constraint is tight, and

whenever a dual variable is not 0, its corresponding primal constraint is tight.

Bibliography and discussion. See Schrijver’s A First Course in Combinatorial
Optimization, section 2.4.



Linear Classifiers: Winnow Algorithm

We are given m vectors V = {vq,...,v,} in R", with the property that there exists a
hyperplane through the origin that contains all of them on one side. In fact, we assume
something slightly stronger:

there exists a parameter ¢ > 0 and a vector v* > 0 with > " | (u*), = 1, such that

*

foralveV: u"-v>e

Then our goal is to find a vector u € R™ such that u - v; > 0, for all i € [m].

Let p be the absolute value of the largest coordinate in V. That is,

= maxmax |(v);].
p UE\;g ze[n)](‘( )‘

In this section, we show that one can find a separating vector « with the MWU technique.

Overview of ideas. To find an approximation to u*, we start with the candidate vector
w' = (1,...,1) € R™. Iteratively, at step ¢, we find a violating vector v' € V with w' - v* <
0 and compute the next point by modifying w'’, somewhat surprisingly, multiplicatively
coordinate-wise. That is, for each coordinate i € [m)],

(v")i

= (Wit w) - ﬁ—p .

(w

The key point is that now our standard weight function, Q' = ., .(w');, is decreasing:

1€[m]
Ul
QF = (W =) (@i + ) > (@i (@) < ) (wh =9
i€[m] i€[m] i€[m] 1€[m]

since w! - v! < 0.

As usual, computing upper and lower bounds for 7, we will arrive—ignoring secondary
quadratic terms for the moment—at the conclusion that for each coordinate i € [m],

T
(") _ pln

Z < ) (0.16)

— T Tn

In other words, each coordinate of the average point v = Zle v*/T is upper bounded by
the R. H. S. above, as a decreasing function of 7.

However, along the direction of the vector u* > 0, the projection lengths of all ¢ € [T] satisfy
u* - v' > ¢, and so by pigeonhole principle, one coordinate of © would become too large, for
T sufficiently large, going along direction «*. But this would contradict to Equation (0.16).
That is,

T t

v T vh); . T vt); Inn
2T - R e Te (S <5

t=1 t=1 ie[m i€[m] t=1
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The MWU algorithm is as follows.

Initialize w! € R" to be the all 1’s vector, and let ) be a scaling parameter to
be set later.

Then for iteration ¢t =1, .. .:

1. let v € V be a vector violating our constraints. That is,
vt wh < 0.
If there does not exist such a violating vector in V, we’re done:
— return w' as the desired vector.

2. update each coordinate of w': fori =1,...,n, set

Wit = o (1 + n—(”t”) |
p

for a small-enough parameter 7 to be set later.

We claim that there exists a large-enough value 7' such that the above algorithm succeeds
in at most 7’ iterations.

Let’s say the algorithm continues for 7" steps.

As usual, we upper and lower bound the total weight Q = >"" W

Upper bound. By the choice of ' at each step ¢, we have

n ¢
Q= Of + U(U)i_w;;:Qt+ﬂ ot wt) < QO
2 5 )

Lower bound.

wf“:ﬁ (1+n(vTj)i).

t=1

Thus we have, foreachi=1,...,n:



Taking logarithms and dividing by 7,

%ln (ﬁ (1+n(vTj)i)> < thn

Applying Lemma |0.54| with a, = (”Ti)" implies that, for each i € [1,n|,

vh); T vt); Inn
ST SR

—~ p p Ul

IN

Taking a convex combination of these n inequalities, where we weigh the i-th inequality
with (u*);, we get:

Writing in terms of dot products, we arrive at the final statement:

>t % _p Sl e

t=1 t=1 i=1 P N

Using u* - v > ¢, > o (u*); = 1, and |(v");| < p, it follows that

This gives the required bound:

Setting 7 = 5 gives that



Discrepancy: General Case

We give a MWU algorithm to compute a two-coloring with small discrepancy.

Theorem 0.41. Let (X, R) be a finite set system with X = {vy,...,v,} and m = |R|. Then
there is a deterministic MWU algorithm that computes a two-coloring of X with discrepancy

0 (m)

Overview of ideas. We will color the elements of X sequentially, in the order vy, ..., v,,
with a +1 or a —1 color. The elements that are so far uncolored will have color 0.

The idea is to maintain a weight for each set, where this weight depends exponentially on
the current discrepancy of that set.

Let n > 0 be a parameter to be set later.

Define the weight of any S € R as:
W (S) = exp (n - disc(S5))
where disc(S) denotes the current discrepancy of S. That is, with the so-far

uncolored elements having color 0.

Set

W(R)=>_ W(S)= exp(n-disc(5)).

SeR SeR

As with the MWU technique, when coloring element v;, we will assign it a color that
minimizes W (R).

The key technical lemma is to show that, at each iteration, there is a choice of color for v
such that the sum W (R) grows slowly.

This then implies that no set can have too large a discrepancy.
==

Assume we have colored the elements vy, ..., v;_; and now have to assign a color to v.

Let discy (-) be the discrepancy and W, (-) the weights, at the start of the k-th iteration.
Note that for all S € R,

discy (S) =0 and Wy (S) =1.
Claim 0.42. At the start of the k-th iteration, let R’ C R be the sets with discy(-) # 0O:
R' ={S € R: disci(S) # 0}.



Then we can assign a color to vy—that is, a +1 or a —1 value—such that

S Wi (S) < (en” n) RIAL

SeR’

Proof. Set the color of v to +1 or —1 with equal probability. Then note that for any
S € R with disc(S) # 0, the discrepancy of S increases by 1 or decreases by 1 with equal
probability. Thus for any S € R/,
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By linearity of expectation, we have

. [Z Wk+1(5)] _ Z E [Wy11(S)] = Z o1 discr (S) (677 4—2@17)
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Thus for one of the two choices for the color of v, the desired statement holds.

Remark: The use of probability in the above proof is purely for ‘implementing’ an
averaging argument. Essentially, we showed that

Z W(5| color(vg) = —I—l) + Z W(S| color(vy) = —1)
SeR/ SER/

Wi1(R’) assuming color(vg) = +1 Wi1(R’) assuming color(vg) = —1

= Z W (S| color(vg) = +1) + W (S| color(vg) = —1)
SeR!

= €T Wi(S) + e Wi(S)
SeR!
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and so one of the two sums must be at most % of the R.H.S. above.

For the moment, assume that for all S € R and £ > 0, we always have disc,(S) # 0. Then
we’re done:



Upper and lower bounding the total weight, we get

Woi(S) < Won (R) < Wh(R)- (EH")
Iglé%t% n+1 > n+1 = 1 2

Using the inequality e + e < 2¢7°/2? (Fact below), and that W;(R) = m,
exp (7] - max discp,41 (S)) < Wit (R) < m-e™ /2,
€
Taking logarithms,

max disc,41 (5) < e +5
The above is minimized by setting n = © (\ / me> , giving the desired upper bound
on the discrepancy for each set.

Fact 0.43.
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Proof. Using Taylor series at 0 gives, for any > 0,
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Adding them up cancels the linear term—so the quadratic term becomes the dominant
one for n < 1—and we get
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Using the fact that (2i)! > 244!,
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The above does not quite work—we used Claim [0.42| which only applies to sets of R with
disci(+) # 0. Indeed, the restriction to sets with disc(-) # 0 is necessary:

The key property in Claim is that the discrepancy of each S € R’ can both
increase or decrease by 1. This is what allows us to upper bound the average
multiplicative factor increase in the weight of each S € R’ by (e" + e ") /2.

However, this is not true when disc(.S) = 0—then the discrepancy of S can only
increase by 1, no matter what color is given to v, and so the multiplicative factor
becomes e, which is too big by a factor of roughly 2.

We now present two ways to get around this problem:

Bounding total increase in weights. The weight function is the same as earlier:
W (S) = exp (n - disc(9)) .
As before:

1. we choose the color of v, only by considering S € R with disc(S) > 0, and then
applying Claim[0.42]

2. The total weight of the sets with disc(S) > 0 increases by a multiplicative factor
of at most <%>

However, additionally, the weight of each set with disc(S) = 0 goes from 1 to . But
this is not really a problem:

the weight of S is already small when disc(S) = 0—it is ¢”° = 1, and will
become e”7. These small weights can be incorporated in the calculation
without significantly changing the upper bound.

Taking both into account, we have

T
Witi(R) <m - e’ + W - (e +2€ )



Opening it up inductively,
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Now the previous double-counting argument finishes the proof as before:

exp (77 - max discy 41 (S)) < Wpi1 (R) <2m-n-e- e/
€

Taking logarithms,

1
max disc,, (S) = O ( el —I—nn) :
SER n

Setting n = © (\/ In m/n) gives an upper bound of O (x/nln m>, assuming

m > n.

Using a different weight function. The trick here—on seeing the multiplicative factor of
<W>—is to slightly modify the weight function so that even when disc(.S) = 0,

the weight increases by a smaller multiplicative factor.

We set the new weight function, denoted by w (-), to be:

exp (n - disc(S)) + exp (—n - disc(S))‘

5 (0.44)

w(5) =
Now note that even when discy(S) = 0 with w,(S) = 1, we have

exp (1) + exp (—1)

wk’-i-l(s) = 2 )

which is the precise multiplicative increase we wanted.



Further, the general upper bound on the multiplicative weight increase continues to
hold, as before, for the case disc(.S) # 0:
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Now the previous double-counting argument finishes the proof.

Remark: Here is one way to naturally derive the weight function given in Equa-
tion (0.44).

Our goal is to minimize disc(S)—in other words, for each S € R, the number of
‘+1’ colors should not be too large, and neither should the number of ‘—1’ colors.

Our earlier weight function, exp (n disc(.5)), was capturing this compactly using the
absolute value function. But the drawback of this is that it made it insensitive to
the case when disc(5) = 0.

We can fix this by separately adding the two exponential constraints—one prohibit-
ing too many ‘+1’ colors, and the other prohibiting too many ‘—1’ colors:

For each S € R, let Ps be the number of elements of color ‘+1’°, and Ng
the number of elements of color ‘—1’.

Then we minimize the weight function

exp (7 (Ps — Ng)) + exp (n(Ns — Ps)).

This is exactly Equation (0.44]) scaled by a factor of 2! The constant 2 is not
important and could have been omitted—the calculation without it gives the same
bound.



Bibliography and discussion. Another way one can arrive at the function
2 (e"+ e is via the proof of the tail bound used to prove the O (\/ nln m)
bound for discrepancy via a random coloring (see [You95]]).

[You95] N.E. Young. “Randomized Rounding Without Solving the Linear Program”. In:
Proceedings of the Sixth Annual Symposium on Discrete Algorithms (SODA). 1995,
pp. 170-178.
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