MULTIPLICATIVE WEIGHTS UPDATE

Exercise Session 2

1. We are given m vectors $V = \{v_1, \ldots, v_m\}$ in \mathbb{R}^n , with the property that there exists a hyperplane through the origin that contains all of them on one side. In fact, we assume something slightly stronger:

there exists a parameter $\epsilon > 0$ and a vector $u^* \geq 0$ with $\sum_{i=1}^{n} (u^*)_i = 1$, such that

for all
$$v \in V$$
: $u^* \cdot v \ge \epsilon$.

Then use MWU to find a vector $u \in \mathbb{R}^n$ such that $u \cdot v_i \geq 0$, for all $i \in [m]$.

- 2. Given a set system (X, \mathcal{R}) , let OPT be the size of the minimum hitting set for \mathcal{R} . Then give a MWU algorithm that computes a weight function on the vertices such that each set contains vertices of weight $\frac{1}{\text{OPT}}$ -th of the total weight.
- 3. Recall that statement we proved in the lecture:

Lemma 1. Let V be a finite set of n elements, S a finite collection of subsets of V, and $\alpha \in (0,1]$ a parameter such that the following is true:

for any weight function $w: \mathcal{S} \to \mathbb{R}^+$, there exists an element $v \in V$ such that

$$\sum_{S \in \mathcal{S}: v \in S} w\left(S\right) \ge \alpha \cdot \left(\sum_{S \in \mathcal{S}} w\left(S\right)\right).$$

Then there exists a weight function $w_V : V \to \mathbb{R}^+$ such that for any $S \in \mathcal{S}$,

$$\sum_{v \in S} w_V(v) \ge \alpha \cdot \left(\sum_{v \in V} w_V(v)\right).$$

Analyse the following algorithm to give another proof of Lemma 1.

Initialize $\omega^1(v) = 1$ for all $v \in V$, and let $\epsilon \in (0,1)$. Further let $\eta > 0$ be a parameter to be set optimally later. For each iteration $t = 1, \ldots, T$:

- (a) let $S^t \in \mathcal{S}$ be a set with weight less than $((1-\epsilon)\alpha)$ -th fraction of the current total weight $\Omega^t = \sum_{v \in V} \omega^t(v)$. If no such set exists, we stop with success.
- (b) update the weights; that is, for each $v \in S^t$:

$$\omega^{t+1}\left(v\right) = \omega^{t}\left(v\right)\left(1+\eta\right).$$

1