MULTIPLICATIVE WEIGHTS UPDATE

Exercise Session 1

1. Given a finite set system (X, \mathcal{R}) with n = |X| and $m = |\mathcal{R}|$, re-consider the problem of two-coloring the elements of X sequentially to get a coloring of low discrepancy for \mathcal{R} . The new weight function, $\omega^t \colon X \to \mathbb{R}^+$, is

$$\omega^{t}(S) = (1 + \eta_{S})^{P_{S}^{t}} (1 - \eta_{S})^{N_{S}^{t}} + (1 - \eta_{S})^{P_{S}^{t}} (1 + \eta_{S})^{N_{S}^{t}},$$

where $\eta_S = \Theta\left(\sqrt{\frac{\ln m}{|S|}}\right)$, P_S^t is the number of elements of S colored with +1 at time t, and N_S^t is the number of elements of S colored with -1 at time t.

Show that there exists a two-coloring of (X, \mathcal{R}) where each set $S \in \mathcal{R}$ has discrepancy $O\left(\sqrt{|S| \ln m}\right)$.

2. Given a finite set system (X, \mathcal{R}) with n = |X| and $m = |\mathcal{R}|$, and a parameter $\epsilon > 0$, a multi-set $A \subseteq X$ is an ϵ -approximation of \mathcal{R} if for each $S \in \mathcal{R}$, we have

$$|S \cap A| = \frac{|S||A|}{|X|} \pm \epsilon |A|.$$

Use MWU technique to show that there exists an ϵ -approximation of \mathcal{R} of size $O\left(\frac{1}{\epsilon^2} \ln m\right)$.

3. Given a finite set system (X, \mathcal{R}) with n = |X| (assume n is even) and $m = |\mathcal{R}|$, consider the following 'discrepancy game' between two players, Alice and Bob.

The game has n/2 iterations, where in each iteration:

- (a) first, Alice choses an uncolored element, say denoted by $a^t \in X$, and colors it with +1, and
- (b) then, Bob choses an uncolored element, say denoted by $b^t \in X$, and colors it with -1.

Show that there is a strategy for Alice such that no matter how Bob plays, the final coloring has discrepancy at most $O\left(\sqrt{|S|\ln m}\right)$ for each $S \in \mathcal{R}$.

The weight function here for Alice is:

$$\sum_{S \in \mathcal{R}} \frac{\left(1/2\right) \exp\left(\eta_S \left(P_S^t - N_S^t\right)\right) + \exp\left(\eta_S \left(N_S^t - P_S^t\right)\right)}{\left(\left(1/2\right) \exp(\eta_S) + \exp(-\eta_S)\right)^{P_S^t + N_S^t}},$$

1

where $\eta_S = \Theta\left(\sqrt{\frac{\ln m}{|S|}}\right)$.