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Abstract

Let u be a log-concave probability measure on R™ and for any N > n consider the random
polytope Ky = conv{Xjy,..., Xy}, where X3, X5,... are independent random points in R"
distributed according to u. We study the question if there exists a threshold for the expected
measure of K. Our approach is based on the Cramer transform A}, of u. We establish, under
some conditions, a sharp threshold for the expectation E,~ [(K )] of the measure of Ky: it is
close to 0 if In N < E,,(A};) and close to 1 if In N > E, (A}).

1 Introduction

In these notes we study the question how to obtain a threshold for the expected measure of a random
polytope defined as the convex hull of independent random points with a log-concave distribution. The
general formulation of the problem is the following. Given a log-concave probability measure p on R™, let
X1, X5, ... be independent random points in R™ distributed according to p and for any N > n define the
random polytope

Ky =conv{Xy,...,Xn}.

Then, consider the expectation E,,~[1(K )] of the measure of Ky, where p¥ = 1 ®---® p (N times). This
is an affinely invariant quantity, so we may assume that p is centered, i.e. the barycenter of y is at the origin.
Given ¢ € (0,1) we say that u satisfies a “d-upper threshold” with constant g if

(1.1) sup{E,~ [u(Kn)] : N < exp(ein)} < 6
and that p satisfies a “d-lower threshold” with constant go if
(1.2) inf{E, ~[u(Kn)] : N > exp(g2n)} > 1—6.

Then, we define g1 (p,0) = sup{o1 : (1.1) holds true} and g2(u,d) = inf{p2 : (1.2) holds true}. Our main
goal is to obtain upper bounds for the difference

Q(:U’v 6) =02 (Mv 6) — 01 (/’L’ 5)

for any fixed ¢ € (O, %)

One may also consider a sequence {u,}52; of log-concave probability measures p, on R™. Then, we
say that {pu,}>2; exhibits a “sharp threshold” if there exists a sequence {4, }>2 ; of positive reals such that
0n — 0 and o(n,d,) — 0 as n — oo. This terminology may be used to describe a variety of results that have
been obtained for specific sequences of measures (in most cases, product measures or rotationally invariant
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measures) starting with the classical work [15] of Dyer, Fiiredi and McDiarmid, which concerns the uniform
measure on the discrete cube and the solid cube.

Our aim is to describe a general approach to the problem, that was proposed in [10], working with
an arbitrary log-concave probability measure 1 on R™. We present the main ideas, the progress that has
been achieved (especially in the case of the uniform measure on a convex body) and several remaining open
questions.

2 The origin of the method: the case of the discrete cube

Our starting point is the work of Dyer, Fiiredi and McDiarmid [I5], who established a threshold for the
volume of random 0/1 polytopes.
Let X be a random vector in R™ whose coordinates are independent and take each of the values 1 and

—1 with probability % Given N > n, we consider N independent copies X1, ..., Xy of the random vector
X. This procedure defines the random 0/1 polytope
(2.1) KN :COHV{Xl,...,XN}.

Theorem 2.1 (Dyer-Fiiredi-McDiarmid). Let k = In2 —% and let K the random polytope defined by (2.1)).
For every e € (0,k) we have that

(2.2) ILm sup {27 "E|Kn|: N <exp((k —&)n)} =0

and

(2.3) lim inf {27"E|Ky|: N > exp((k+¢&)n)} = 1.
n—00

In this section we present the basic points of the proof of Theorem Several of the lemmas that are
used will be proved in a more general and stronger form later on. The next function plays a key role in the
argument.

Definition 2.2. For every € (—1,1)", we set
(2.4) ¢(z) := inf {Prob(X € H): x € H, H closed half-space}.
Also, for every origin symmetric convex body A C (—1,1)™ we define

(2.5) pe(A) = supp(x) and ¢ (4)= inf o(x).
¢ A T€

Note that the infimum in is determined by those half-spaces H for which = € 9(H).

Lemma 2.3. Let N > n and let A be an origin symmetric convex body contained in (—1,1)". Then,
E(lEn|) <[A]+ N2"p1(A).

Proof. We write

(2.6) E(IEn)) =E(Ex N A]) +E(Ky \ A]) <[A[+E([Ex \ A]).

Note that if H is a closed half-space containing x, and if z € K, then we may find ¢+ < N such that X; € H
(otherwise, we would have x € Ky C H’, where H' is the complementary half-space of H). It follows that

Prob(m c KN) < N - p(z).
Using Fubini’s theorem we see that
E(|Kn \ A]) = / Prob(z € Ky)de < | Ne(a)de < Ny (A)|C\ A,
C\A a\A

where C' = [—1,1]™. For the last inequality we use the fact that ¢(z) < ¢4 (A) for every z ¢ A. Going back
to (2.6) we get the lemma. O



Note. For the proof of (2.1) we shall choose suitable A (depending on N and n) such that for N <
exp((k — e)n) we will have simultaneously |A| /2™ — 0 and Ny (A) — 0 as n — oo.

The second basic observation is the following.

Lemma 2.4. Let A be an origin symmetric convex body contained in (—1,1)". Then,

1 —Prob(Ky 2 A) < (JD 27 (N=n) 49 (f) (1—p (4" ™

We shall prove a more general version of Lemma in Section |5 (see Lemma . What is important
is that Lemma allows us to use the function ¢ in order to prove . Indeed, if we choose suitable
A (depending on N and n) so that for N > exp((k + €)n) we have simultaneously |A| /2" — 1 and 1 —
Prob(KN 2 A) — 0 as n — oo, then we get .

Given a bounded random variable X, consider the moment generating function of X,
M(t):=E (")  (teR)
and the logarithmic moment generating function of X,
A(t) :=In M (¢).

Since X is bounded, we see that M (t) < oo for every ¢t € R. By the symmetry of X it also follows that M
and A are even functions. Note that

eA(/\FF(l*)\)S) _ M()\t + (1 _ )\)S) —E (eAtXe(lf)\)sX)

< (E etX)/\ (E esX)lfA — ADFA=NA(s)

for every t,s € R and every 0 < A < 1, therefore A is convex. It follows that M is also convex. We easily
check that M is C*° on R. The n-th derivative of M is the function

MM (t) =E (X"eX).
Returning to our case, where X takes the values +1 with probability %, direct computation shows that
M(t) :=E [e"*] = cosh(t)

and
A(t) :=In M(t) = Incosh(t).

Condider the Legendre transform of A: this is the function
f(z) :=sup {tx — A(t): t € R}, xz € (-1,1).

Lemma 2.5. The function f is even and strictly convex on (—1,1). For every x € (—1,1) we have
f(@)=3(1+2z)In(l+2z)+ (1 —2)In(l — ).

Moreover, acl_lglt1 f(z)=In2.

Proof. We observe that

(2.7 f(z) = ot —Incosh(t), where tanht = z.

From tanht = x we see that

) 1
et — %, or equivalently, t = h(z) = £ In (1 J—r i) '



We also have .
e

cosht =

1+a
Going back to (2.7) we see that

f(w) = at —Incosht = wt —t 4+ In(l +2) = In(1 + 2) - (1 _x>;1n(i+ﬁ>
=In(l+z)— (1 -2)3In(1+2z)+ 3(1 —z)In(1 - =z),

and the lemma follows. O

As a relatively simple consequence of Markov’s inequality we get the next upper bound for ¢(z) in terms
of 3.0 | f(wi), for every x € (—1,1)™.

Lemma 2.6. For every x € (—1,1)" we have that ¢(x) < exp (— > 1, f(x:)).
Proof. Let H be a closed half-space such that 2 € 9(H). Then, there exists ¢t € R such that
H=H(t) = {y: (ty— ) > 0}.

From Markov’s inequality,

i=1 e
n

= HIE [exp(t;(X; — z;)] = HBA(ti)_tizi.
i=1 |

From the definition of ¢(z) we have
n

n n
(,0(1‘) < inf eA(ti)*tiIi _ H e~ sup{tz; —A(t): teR} _ Heff(ml)
i=1 =1

teR™ -
=1

This proves the lemma. O

We extend f continuously on [—1,1] setting f(+1) =In2 and for every x = (x1,...,x,) € C we set

1 n
Fa)= 5" fro)
i=1
For every 0 < a < 1n2, we define
F={ze(-1,1)": F(z) < a}.

Since f is even and convex on (—1,1), the set F'* is an origin symmetric convex body contained in (—1,1)™.
From the definition of F'* we see that > ., f(z;) = nF(z) = an for all x € d(F*). Therefore, Lemma
proves the next fact.

Lemma 2.7. Let 0 < a < In2. For every x € O(F%) we have
o(x) < exp(—an).

In other words,
P+ (F*) < exp(—an).



Let Uy,...,U, be independent random variables, uniformly distributed in (—1,1). Then, for every
0<a<lIn?2,

1 n
27" |F“| = Prob((U1,...,U,) € F*) = Prob(n Zf(UZ-) < a) .
i=1

Note that )
k=E(f(h)) = %/1 f(z)dz =In2— 1.
By the law of large numbers we conclude the following.
Lemma 2.8. For every o € (0, k) we have
nhﬁn;(} 27" FY =0,
and, similarly, for every a € (k,In2) we have
nhHH;O 27 FY = 1.
Now, we can prove the first part of the theorem of Dyer, Fiiredi and McDiarmid.
Proposition 2.9. For every ¢ € (0, k),
nll)ngo sup {27 "E(|Kn|): N < exp((k —e)n)} = 0.
Proof. We choose a@ = k — ¢/2. From Lemma we have that
nh_>n;0 27" |F* = 0.
On the other hand, if N < exp((k — €)n), then Lemma[2.7] gives
N (F%) < exp(—en/2).
Applying Lemma [2.3] with A = F'* we get
27"E (|Kn]) <277 [F] 4 exp(—en/2),
and the right hand side tends to 0 as n — co. O
For the proof of we need to estimate ¢(x) from below in order to use Lemma The basic
technical step is the next proposition, which will be discussed, in a more general context, in Section [7}

Proposition 2.10. For every ¢ > 0, there exists n(e) € N, depending only on e, such that for every
0 < a<In2 and every n > n(e) we have

o (F*) > exp(~a(l + ).
Then, the proof of (2.2) is simple.
Proposition 2.11. For every ¢ > 0,

lim inf {27"E (|[Kn|): N > exp((k +e)n)} = 1.

n—roo
Proof. Fix € > 0 choose o = k + £/3. Combining Lemma [2.4] with Proposition we see that if n > n(e)
and N > exp((k +€)n) > exp((a + 2¢/3)n), then

E(|Kn|) > |F|-Prob(Ky 2 F*) > |F*|(1 —27"1).
Since a > k, Lemma [2.8| shows that
lim 27" |F°| = 1.

n—oo

The result follows. O



3 Notation and background information

In this section we introduce notation and terminology that we use throughout these notes, and provide
background information on isotropic convex bodies and log-concave probability measures. We write (-, -)
for the standard inner product in R™ and denote the Euclidean norm by |- |. In what follows, BY is the
Euclidean unit ball, S*~! is the unit sphere, and ¢ is the rotationally invariant probability measure on S™~1.
Lebesgue measure in R"™ is denoted by | - [. The letters ¢,c’,¢;, ¢} ete. denote absolute positive constants
whose value may change from line to line.

We refer to Schneider’s book [35] for basic facts from the Brunn-Minkowski theory and to the book [2]

for basic facts from asymptotic convex geometry. We also refer to [I1] for more information on isotropic
convex bodies and log-concave probability measures.
2.1. Convex bodies. A convex body in R" is a compact convex set K C R™ with non-empty interior.
We often consider bounded convex sets K in R™ with 0 € int(K); since the closure of such a set is a convex
body, we shall call these sets convex bodies too. We say that K is centrally symmetric if —K = K and that
K is centered if the barycenter bar(K) = ﬁ fK zdx of K is at the origin. We shall use the fact that if K
is a centered convex body in R” then

(3.1) max |K (1 (y +€5)] < e[ K Ne|
y n

for all ¢ € S"~! where ¢+ = {z € R” : (1,&) = 0}. This is a result of Fradelizi; for a proof see [L1]
Proposition 6.1.9]. The radial function gx of K is defined for all z # 0 by gk (x) = sup{\ > 0: Az € K}
and the support function of K is given by hg (z) = sup{(z,y) : y € K} for all x € R™. The polar body K°
of a convex body K in R" with 0 € int(K) is the convex body

K°:={yeR": (z,y) <lforallze K}.

A convex body K in R" is called isotropic if it has volume 1, it is centered, and its inertia matrix is a multiple
of the identity matrix: there exists a constant Ly > 0, the isotropic constant of K, such that

1O, ) = /K (2,€)2de = L%

for all £ € S™~1.

2.2. Log-concave probability measures. A Borel measure p on R” is called log-concave if u(AA +
(1 = AN)B) > w(A)*u(B)'=> for any compact subsets A and B of R” and any A € (0,1). A function
f:R™ = [0,00) is called log-concave if its support {f > 0} is a convex set in R™ and the restriction of In f to
it is concave. If f has finite positive integral then there exist constants A, B > 0 such that f(z) < Ae~ Bl
for all z € R™ (see [II, Lemma 2.2.1]). In particular, f has finite moments of all orders. It is known (see
[6]) that if a probability measure p is log-concave and pu(H) < 1 for every hyperplane H in R™, then u has
a log-concave density f,. We say that u is even if u(—B) = u(B) for every Borel subset B of R™ and that
w is centered if

bar(u) = [ (o €duta) = [ (@) o)z =0
n Rn
for all £ € S”~!. We shall use the fact that if ; is a centered log-concave probability measure on R¥ then

(3.2) | fulloo < € £,(0).

This is a result of Fradelizi from [16]. Note that if K is a convex body in R™ then the Brunn-Minkowski
inequality implies that the indicator function 1 of K is the density of a log-concave measure, the Lebesgue
measure on K.

Given Kk € [—00,1/n] we say that a measure p on R™ is x-concave if

(3.3) H((1 = NA+AB) > (1 N (A) + M (B)) "



for all compact subsets A, B of R™ with p(A)u(B) > 0 and all A € (0,1). The limiting cases are defined
appropriately. For k = 0 the right hand side in becomes 1(A)'~*u(B)* (therefore, 0-concave measures
are the log-concave measures). In the case kK = —oo the right hand side in becomes min{u(A), u(B)}.
Note that if u is k-concave and k1 < k then p is k1-concave.

Next, let v € [—00,00]. A function f : R™ — [0,00) is called 7-concave if

FIA =Nz +Xy) = (1= N (@) + A ()Y

for all z,y € R™ with f(z)f(y) > 0 and all A € (0,1). Again, we define the cases v = 0, +00 appropriately.
Borell [7] studied the relation between k-concave probability measures and y-concave functions and showed
that if p is a measure on R™ and the affine subspace F' spanned by the support supp(u) of 1 has dimension
dim(F) = n then for every —oo < k < 1/n we have that p is k-concave if and only if it has a non-negative
density ¢ € L (R™, dz) and 1 is y-concave, where v = = € [~1/n,+00).

Let p and v be two log-concave probability measures on R™. Let T : R®™ — R™ be a measurable function
which is defined v-almost everywhere and satisfies

for every Borel subset B of R™. We then say that T pushes forward v to p and write Ty = u. It is easy to
see that T,v = p if and only if for every bounded Borel measurable function g : R® — R we have

[ s@iutz) = [ arw)iv.

If 11 is a log-concave measure on R™ with density f,, we define the isotropic constant of ;1 by

o ($Wrere S @\
L,l.—(fRnfu(x)dx) [det Cov(u)]=r,

where Cov(u) is the covariance matrix of p with entries

_ fw zix; fu(z) de B fRn z; fu(z) dz fRn zjfu(z) de
fRn fu(z)dx I]Rn fu(z)dz f]Rn fu(z)dz ~

We say that a log-concave probability measure p on R™ is isotropic if it is centered and Cov(u) = I,,, where
I, is the identity n x n matrix. In this case, L, = || fu||cl>é" For every p there exists an affine transformation
T such that T, u is isotropic. The hyperplane conjecture asks if there exists an absolute constant C' > 0 such

that

Cov(p)i; :

L, :=max{L, : p is an isotropic log-concave probability measure on R"} < C

for all n > 1. Bourgain [§] established the upper bound L,, < ¢/nlnn; later, Klartag, in [23], improved this
estimate to L, < c¢/n. In a breakthrough work, Chen [I3] proved that for any & > 0 there exists ng(g) € N
such that L, < nf for every n > ng(g). Subsequently, Klartag and Lehec [26] showed that L, < c(Inn)?,
and very recently Klartag [25] achieved the best known bound L,, < cvInn.

2.3. Centroid bodies. Let p be a log-concave probability measure on R™. For any ¢ > 1 we define the
Li-centroid body Z; (1) of p as the centrally symmetric convex body whose support function is

i = ([ i)

Note that Z;(u) is always centrally symmetric, and Zy(Twp) = T(Zi(p)) for every T € GL(n) and t > 1.
Note also that a centered log-concave probability measure p is isotropic if and only if Zs(u) = BY. The next
result of Paouris (see [1I, Theorem 5.1.17]) provides upper bounds for the volume of the L;-centroid bodies
of isotropic log-concave probability measures.



Theorem 3.1. If p is a centered log-concave probability measure on R™, then for every 2 < t < n we have
that

|Ze()['/" < e/t/nldet Cov(p)] 7,
where ¢ > 0 is an absolute constant. In particular, if p is isotropic then | Z; ()| < e\/t/n for all2 < t < n.

A variant of the L;-centroid bodies of i is defined as follows. For every ¢t > 1 we consider the convex
body Z,"(u) with support function

1/t
hzt W) = (2 /R <x,y>ifﬂ(x)d:ﬂ> ,
where a; = max{a,0}. When f, is even, it is clear that Z;" (1) = Z;(1). In any case, we easily verify that
Z (1) € 2Y4 2, ().

Moreover, if p is isotropic then Zj (1) 2 ¢BY for an absolute constant ¢ > 0. One can also check that if
1<t < sthen

1

2\ % —2\ 7% s
() Z?(M)QZJ(M)201< . ) ~ 2 (),

e

The right-hand side inequality gives
(3.4) B, (2(2,6)%) = [t (O < C* sy (1 = C¥ B (202, )P,

for all £ € S"~1, where C' > 1 is an absolute constant. For a proof of all these claims see [20].
2.4. The bodies B;(i). Let p be a probability measure on R”. We define

M, (v) := /n e dp(z) = exp(A,(v))

Au(v) =In ( / n e<”’m>d,u(x)>

is the logarithmic Laplace transform of p. We also define

where

N0 = £0,)(0) = sup { () < [ (o)},

u€ERn

where, given a convex function g : R™ — (—o00, 00|, the Legendre transform L£(g) of g is defined by

L(g)(x) := sup {{(z,y) — g(v)}.

yeR?

The function AJ, is called the Cramer transform of u and plays a crucial role in the theory of large deviations.
For every t > 1 we define

Mi() = {v CR": / (0, &) du(z) < 1}.

Note that

n

e S L |

For every t > 0 we also set

|(v, y)|"du(y) for allv € R"} .

By(p) :=={v e R" : A} (v) < t}.



We say that a measure p on R" is a-regular if for any s > ¢ > 2 and every v € R",

</ “Kv’wd”(x))l/sga ( / n|<u,x>tdu<x))”t_

For all s > ¢t we have M(u) C My(p) and Zy(u) € Zg(u). If the measure p is a-regular, then M(p) C
afM(p) and Zs(p) € afZy(pu) for all s > t > 2. Moreover, for every centered probability measure p we
have A% (0) = 0 by Jensen’s inequality, and the convexity of A}, implies that B;(u) C Bs(p) € $ B¢ () for all
s>t>0.

Recall that, by Borell’s lemma, every log-concave probability measure is c-regular (see [I1, Theorem 2.4.6)
for a proof).

~+ | ®»

Proposition 3.2. FEvery log-concave probability measure is c-reqular, where ¢ > 1 is an absolute constant.
The next proposition compares B;(u) with Z; () when p is a-regular.
Proposition 3.3. If u is a-regular for some a > 1, then for any t > 2 we have

Bi(p) € deaZ(p).

tu
Al — ) <t
H <26a)
We fix u € M;(p) and set @ := 5. Then,

( [ tatae) = o ([ watae)

which is bounded by 5_— if k¥ <t and by % if £ > t. It follows that

ex

(@) g </ )] gy / d
e dp(x) < p(x me:
/n D<), Zk' Nl duz)

eZea =+ 1

Proof. We first check that if u € My(p) then

and the claim follows.
Now, let v ¢ deaZ; (). We can find v € M;(u) such that (v, u) > 4ea and then

tu tu t
A* ><,—>7At ) > dea—t =t
u(v) Y 2ea ! <26a) ” Zea
Therefore, v ¢ By(). O

By Proposition we have that Proposition holds true (with an absolute constant in place of 4ea)
for every log-concave probability measure.

2.5. Ball’s bodies K;(u). If i is a log-concave probability measure on R™ then, for every ¢ > 0, we define

Ki(p) = Ki(f,) = {xeR"'/Ooortlfu(rx)dr> f“(o)}.

t



From the definition it follows that the radial function of K;(u) is given by

1/t

(3.5) 0, (@) = ( f:(O) /0 Tl ) dr)

for  # 0. The bodies K;(u) were introduced by K. Ball who also established their convexity. If u is also
centered then, for every 0 < ¢ < s,
Lt+1)7
I'(s+1):

(3.6) K(p) C Ki(p) C et ™5 Kq(p).

Py

A proof is given in [I1], Proposition 2.5.7]. It is easily checked that

(3.7 KaDIp0) = [ Sulo)de =1
(see e.g. [IIl Lemma 2.5.6]) and then we can use the inclusions (3.6) in order to estimate the volume of

K;(u). For every t > 0 we have

n-+t
e .
n

+

ol
N

3=

(3.8) e < £u(0) 5T Ky ()]

We are mainly interested in the convex body K, 11(n). We shall use the fact that K,,+1(p) is centered (see
[11} Proposition 2.5.3 (v)]) and that

(3.9) Ju(O) [ Knpa(p)] = 1.

The last estimate follows immediately from and .

4 Expected value of the half-space depth

Let u be a probability measure on R™. For any « € R™ we denote by H(x) the set of all half-spaces H of R™
containing x. The function
pul@) = inf{u(H) : H € H(x)}

is called Tukey’s half-space depth. The first work in statistics where some form of the half-space depth
appears is an article of Hodges [21] from 1955. Tukey introduced the half-space depth for data sets in [37] as
a tool that enables efficient visualization of random samples in the plane. The term “depth” also comes from
Tukey’s article. We refer the reader to the survey article of Nagy, Schiitt and Werner [28] for an overview of
this topic, with an emphasis on its connections with convex geometry, and many references.

Tukey’s half-space depth plays a key role in the problem that we study in these notes. In this section
we prove the basic results that are relevant to our study, starting with the expectation

Bu(en) = [ oula) (o)

of ¢,, with respect to p. The following question was asked in [27]: Does there exist an absolute constant
¢ € (0,1) such that E,(¢,) < ¢” for all n > 1 and all log-concave probability measures p on R™?
The next theorem from [J] provides an affirmative answer (up to a Inn-term).

Theorem 4.1. Let pu be a log-concave probability measure on R™, n > ng. Then, E,(¢,) < exp (fcn/LZ)
where L,, is the isotropic constant of u and ¢ > 0, ng € N are absolute constants.

The quantity E,(¢,) is affinely invariant and hence for the proof of Theorem we may assume that p
is isotropic. In fact, we can prove a more general result.

10



Theorem 4.2. Let pu and v be two isotropic log-concave probability measures on R™, n = ng. Then,

E,(¢u) = /Rn ou(z) dv(z) < exp (—cn/Lz) ,

where ¢ > 0, ng € N are absolute constants.

Note that if p and v are two log-concave probability measures on R™ with the same barycenter, and if
T : R™ — R™ is an invertible affine transformation and T,y is the push-forward of u defined by T.u(A) =
w(T~1(A)), then or, ,(z) = ¢, (T~ (z)) for all x € R™, and hence

| era@itoe) = [t @)itta) = [ pu@dvta).

n

Therefore, Theorem is a consequence of Theorem To see this, starting with a log-concave probability
measure 4 on R™, we may consider an affine transformation 7" such that T, is isotropic and then apply
Theorem [£.2] to the measures Ty and v = T, pu.

We will use the next basic (and simple) lemma.

Lemma 4.3. Let p be a Borel probability measure on R™. For every x € R™ we have ¢,,(r) < exp(—A}(7)).
In particular,

Proof. Let x € R™. For any £ € R™ the half-space {z : (z — z,£) > 0} is in H(z), therefore
pul@) <ul{z: (2,6 2 (2,6}) <emPIE, () = exp (- [(z,€) — Au(9)]),
and taking the infimum over all £ € R™ we see that ¢, (x) < exp(—A}, (7)), as claimed. O

Proof of Theorem[4.2] Consider two isotropic log-concave probability measures u, v on R™. We will show
that

/ ou(x)dv(z) < e—en/Ly

for some absolute constant ¢ > 0. Using Lemma [£.3] we write

| e@w@ < [ N @i = [ ( [ )e-tdt> fw)da
= i e_t/Rn lBt(H)(x)fl,(x)dxdt:/o e 'w(By(p)) dt.

Fix b € (2/n,1/2] which will be chosen appropriately. Since v(B:()) < 1 and also v(B: (1)) < || fo|loo| Be(1)]
for all ¢ > 0, we may write

00 bn
| @@ < [t il [ Bl a

n

00 2 bn
g/ et dt—|—L’VL/ e*t|Bt(u)|dt+Lﬁ/ e t|By(p)| dt
b 0 2

n

bn
e LBy + LY [ e Bal] e
2

Applying Proposition [3:3] and Theorem [3.1] we get

Bi(w)[V™ < 1 Zo ()" < eav/t/m
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for all 2 < t < n, where ¢1,cy > 0 are absolute constants. It is also known that L, > c¢3 where ¢3 > 0 is an
absolute constant (see [IT, Proposition 2.3.12] for a proof). So, we may assume that cpL, > v/2. Choosing
bo :=1/(caL,)? < 1/2 we write

bon bon bon
L? / e By(p)| dt < BL? / (t/n)"2e~tdt = (coL,)" / (t/n)™2e~tdt,
2 2 2
and since bon < n/2 and the function t — t"/2¢~ is increasing on [0,7,/2], we get
bon
(CQLV)n/ e !|By(p)| dt < (bon —2) - (CQLL,)"bg/Ze_bO" = (bon — 2)e~bom,
2

Moreover, |Ba(u)|Y/™ < ¢2+/2/n, therefore
L}|By(p)| < (caLl/m)"/? < e7bom,
because C4L12,/n < e 2 if n > ny. Combining the above we get
/ ou(x)dv(x) < e 4 et 4 (bgn — 2)eb0m,
and hence
/ ou(z) dv(z) < nexp (—n/(ch,,)Q)

which implies the result. O

Next, we show that the exponential estimate of Theorem [4.1]is sharp. We consider first the case where p
is the uniform measure on a convex body K in R™ and then the case of an arbitrary log-concave probability
measure g on R™.

Proposition 4.4. Let K be a convex body of volume 1 in R™. Then,

/ Oup (x)dr > e ",
K

where ¢ > 0 is an absolute constant and px is the uniform measure on K.

Proof. By translation invariance we may assume that the barycenter of K is at the origin. Let = € %K . We

will show that ¢, (z) > - - 3=. It suffices to show that

en

(1) W |( € K2 (08) > (.1 > - L

where the infimum is over all £ € S"~!, because by the definition of ¢, () we only have to check the
half-spaces H € H(x) for which z is a boundary point. Moreover, we may consider only those £ € S™~! that
satisfy (z,&) > 0, because if (z,£) < 0 then

{ze K: (202} =2 {ze K: (2, >0} >1/e

by Griinbaum’s lemma (see [I1, Lemma 2.2.6]). Fix & € S"7! with (2,£) > 0 and set m = hg(§) =
max{(z,&) : z € K}. Since (z,£) < m/2, it is enough to show that

1 1
(4.2) {ze K (58 >m/2H > o o

12



Consider the function g(t) = |K(,t)|, where K (€,t) = {z € K : (z,§) = t}, t € [0,m]. The Brunn-Minkowski
inequality implies that gﬁ is concave. Therefore, for every r € [0, m] we have that

r

o> (1= 2)" g0

m

We write

m

e K (ag) > m2) = [

m/2

g(r)dr > g(0) /m/2 (1 _ %)"—1 dr

1
1
=g(0)m (1—8)""tds = —g(0)m.
1/2 TLQ"

Since K is centered, we know that [g|lcc < e|K N &L = eg(0) from (8.1). Then, using also Griinbaum’s
lemma, we see that
1 m
s < [ grdr <llgloem < egO)m,
0

and (4.2)) follows. It is now clear that
1
/ @HK(z)dI>/ wuk(x)dx>‘7[(’.7.7: e
K 1K 2 an

for some absolute constant ¢ > 0. O

Next, we assume that p is a log-concave probability measure on R™. Our aim is to prove the next
theorem.

Theorem 4.5. Let p be a log-concave probability measure on R™. Then,

/n ou(x)dp(x) > e ",

where ¢ > 0 is an absolute constant.

By the affine invariance of E,(¢,) we may assume that u is centered. The proof is based on a number
of observations. The first one is a consequence of the Paley-Zygmund inequality; we just adapt here [I1]
Lemma 11.3.3] to give a lower bound for ¢, (z) when z € 6Z," (1) for some 6 € (0, 1).

Lemma 4.6. Lett > 1 and § € (0,1). For every x € 6Z; (1) one has

(1- 4ty
pu(r) = o

where Cy > 1 is an absolute constant.
Proof. Let x € §Z;"(u). As in the proof of Proposition it is enough to show that

(1— 61?2

(4.3) it p({z € B (2,6) > (2,6)) > g

where the infimum is over all £ € S"~! with (z,&) > 0.
Since = € 6Z;" (1), we have (x,€) < 5th+(u) (€) for any such ¢ € S"7!, so0 it is enough to show that

(1— 6t

(4.4) p{z € R 5 (2,8) 2 8 (D) >

13



We apply the Paley-Zygmund inequality

(z59(2) > B0 > (1 - 32 B2
for the function g(z) = (z,&)%.. From we see that
E,.(9%) < C1 [Eu(9))?
for some absolute constant C'; > 0, and the lemma follows. O

Definition 4.7. For every ¢ > 1 we consider the convex set

Ri(p) ={z e R": fu(z) > _tfu( )}

The convexity of R;(p) is an immediate consequence of the log-concavity of f,. Note that R;(u) is bounded
and 0 € int(Re(p)).

Lemma 4.8. For every t > 5n we have Ry(1) O coKpy1(1), where cg > 0 is an absolute constant.

Proof. Let t > 5n. Given any ¢ € S™~! consider the log-concave function h : [0,00) — [0,00) defined by
h(t) = f.(t&). From [24, Lemma 5.2] we know that

ORy () (§) o0
/ " h(r)dr > (1 - eft/s)/ "L h(r)dr.
0 0

By the definition of K, (1) we have

/OOO "L h(r)dr = fﬂT(O)[QK,L(M)(ﬁ)]"~

On the other hand,

ORy(u) (&) - ORy (1) (&) _— 1 £lloo .
L e <l [Tt = e e

Using also the fact that || f]|e < €"f,(0) from (3.2), we get

e"[or, () (O]" = (1 — e™"®) ok, (1) (O]™

This shows that R:(u) 2 co K, (1), where ¢g > 0 is an absolute constant. From (3.6) we know that K, (u) =
K, +1(p), and this completes the proof. O

Our final lemma compares Z;" (u) with K,,1() when t > 5n.
Lemma 4.9. For every t > 5n we have that Z;" (1) D ch Ky 1(it), where ¢y > 0 is an absolute constant.

Proof. From Lemma we know that coK,41(n) € Ry(u) for all ¢ > 5n, where ¢g > 0 is an absolute
constant. Let & € S"~! and set m := hey g, , () (§) = Cthn+1(u)(§)~ Define

A¢ = coKoer (1) 0 {2 : (2,€) > m/2}.
Since Kp4+1(u) is centered, the proof of Proposition shows that

lcoBnia ()] [coKni1(p)
e2n-2n 7 cn

|Ae| >
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for some absolute constant C' > ¢y. Moreover, if z € A¢ then z € R;(1) and hence f,(z) > e~ *f,(0). We
write

2 [ @Ot >2 [ (o dutz)

m Co

>2(2) e u0ldel > 2 (32) (2)" fuO)Knsa ().

Using also the fact that (co/C)™ = (co/C)" because t > 5n, we get

2 [ (0.4 du(e) > (erm) FuO) | )]
where ¢; > 0 is an absolute constant. Finally, f,,(0)|K,+1(x)| = 1 by (3.9), which implies that

th-I—(IL) (5) > Co = CIOhKTH»l(H) (5)’

where ¢, = cacp, and the lemma is proved. O

Proof of Theorem[4.5] Combining Lemma [{.8] and Lemma [£.9] we see that

R (1) N Z35, (1) 2 e1 K (1)

for some absolute constant ¢; > 0. We apply Lemma with t = 5n and 6 = % For every = € %Z;;l(p) we
have

pule) = Cr"

for some absolute constant C; > 1. It follows that

[ eul@duto) = 07 (524,0)

Then, by Lemmawe have 27 (1) 2 K, 41(p). Since L Kp41(p) C Rsn(p), we know that f,(z) >
e " f,(0) for all & € &Ky, 41(un). Using also (3.9), we get

c —5n c
1 (325,0) > 1 (G Ena () = / Jul@) e > ¢ £,(0)| S K ()]
%K'rLJrl(N)
= e (c1/2)" ()| K ()] = e c5.
Combining the above we conclude that
| eu@dute) = ey = e,
R’n
for some absolute constant ¢ > 0. O

5 Random polytopes and the half-space depth
Let p be a log-concave probability measure on R™. For every convex body A in R™ with 0 € int(A) we define
@i (A) =suppyu(r) and ¢ (A) = inf @, (z).
g A TeA

Recall that By(u) = {v € R" : A}, (v) < t}, where A}, is the Cramer transform of y.
Let X3, Xs,... be independent random points in R™ distributed according to g and for any N > n
consider the random polytope Ky = conv{Xj,..., Xy}. A version of the next lemma appeared in Section

(see Lemma [2.3).
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Lemma 5.1. Let p be a log-concave probability measure on R™. For every convex body A in R™ and every
N > n we have that

Eyv (1(Kn)) < p(A) + N (A).
In particular, for every t > 0,

Eun (W(KN)) < p(Bi(p)) + N exp(—t).

Proof. We write

Byun (1(Kn)) = Euv (u(Kn N A)) + Eyv (u(Ky \ A))
1(A) + Eyv (u(Kn \ A)).

Observe that if H is a closed half-space containing z, and if x € Ky, then there exists ¢ < IV such that
X; € H (otherwise we would have © € Ky C H’, where H' is the complementary half-space). It follows that

,uN(a: IS KN) < Noy(x).

Then, Fubini’s theorem shows that

B~ (u(Kn \ A)) = / pN(z € Ky)dp(x) < Ney(z) du(z) < N4 (A).
R\ A R\ A

The last claim follows if we set A = By(u) because, by Lemma ou(r) < exp(—A%(z)) < e for all
x ¢ Bi(p). O

We also need a basic fact that generalizes Lemma and plays a main role in the proof of all the upper
thresholds that have been obtained so far.

Lemma 5.2. Let yu be a log-concave probability measure on R™. For every convexr body A in R™ and every
N > n we have that

1 (K 2 A) < 2@ ) (1 (A,
Therefore,
B () > ) (122 )1 = o).

Proof. Note that, with probability equal to 1 the random polytope K has non-empty interior. For every
subset J = {j1,...,jn} of {1,..., N}, of cardinality n, note that X, ,...,X;, are affinely independent with
probability 1, and define the event L ; as follows: for one of the two closed half-spaces Hy, Hs they determine,
say H;, we have simultaneously Ky C H; and p(R™\ H;) > ¢_(A).

If A ¢ Ky, then there exists z € 9(A) \ Ky. Since ¢ Ky, there exists a facet F' of Ky with the
following property: one of the two closed half-spaces H; and Hs determined by F' contains Ky but does not
contain . Thus, if H; is this half-space, we have simultaneously Ky C H; and u(R™\ H;) > ¢, (z) = ¢_(A).
Since the hyperplane bounding H; is determined by some affinely independent vertices X;,,..., X, of Ky
which lie in F', this shows that

{AZ Kn} C ULJ-
7

It follows that

Prob(A ¢ K) ZProbLJ ()Prob()

where L' := Ly 5. It is not hard to see that

Prob(L') < 2(1 — p_(A)N—".
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Indeed, X1,...

, X,, determine two closed half-spaces H; = H;(X1,...,X,), i = 1,2. Let L be the event
that M(R" \ Hl) >

@_(A). Then, with Exp denoting expectation with respect to the measure Prob,

2
Prob(L’) < ZProb({XnH, . XyeH}nLY)
i=1

2
= Exp(Prob({Xn41,..., Xy € Hi} | X1,...,Xn)11:)

i=1

2
<(1- @,(A))N_” ZProb(Li).

i=1

The second claim of the lemma follows from Markov’s inequality. O

6 Bounds for the expected measure of random polytopes

Let p be a log-concave probability measure on R™. Let X, X5,... be independent random points in R™
distributed according to p and for any N > n consider the random polytope Ky = conv{Xy,...,Xn}. and
the expectation E, ~[u(K )] of the p-measure of K. Recall that if T : R™ — R™ is an invertible affine
transformation and T,y is the push-forward of u defined by T, u(A) = p(T1(A)) then

B, iy [(Tep) (KN )] = By [u( KN )]
So, we may assume that y is isotropic.

Theorem 6.1. Let p be an isotropic log-concave probability measure on R™, n > ng. For any N <
exp(cin/ L) we have that

E,~(u(Kn)) < 2exp (—@n/Li) ,

where c1,co > 0 and ng € N are absolute constants.

Proof. Using the estimate u(By(1)) < || fulloo| Bt ()], Proposition [3.3]and Theorem [3.1} from Lemma [5.1] we
get

By (0K ) < (@l full L7 /efn) "+ N exp(—t)

for every N > n and 2 < t < n. Recall that p is isotropic, therefore ||fu\|§é” = L2 = O(y/n); in fact,
Klartag’s theorem gives much more. Then, if n > ny where ng € N is an absolute constant, the choice
t:=(c1e)~2n/|| fu||2L" satisfies 2 < t < n and gives

(crlfullr Varm)" < e

Then,
Ev (p(Kn)) < e + Nexp(—ean/| full37),

where ¢, = (c1e)™2. Tt follows that if N < exp(csn/||f.]|2%") where ¢z = ¢5/2, then we have
Eyv (p(Kn)) < e + exp(—can/| full32")

and the result follows from the fact that ||fM||Zén =L >c O

2
m
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We pass now to the lower threshold. It was proved in [I2] that if p is an even k-concave measure on
R™ with 0 < k < 1/n, supported on a convex body K in R™, if X7, X5,... are independent random points
in R™ distributed according to g and Ky = conv{Xj,..., Xy} as before, then for any M > C and any
N > exp (£(Inn + 2In M)) we have that

B~ (IKN])

(6.1) ]

>1 1
= M )
where C' > 0 is an absolute constant.

Since the family of log-concave probability measures corresponds to the case k = 0, it is natural to ask
for analogues of this result for 0-concave, i.e. log-concave, probability measures. It is useful to observe that
in the case where X7, X5, ... are uniformly distributed in the Euclidean unit ball the sharp threshold for the
problem (see [33] and [3]) is

exp ((1+e)inlnn), e>0.

We shall establish a weak lower threshold of this order.

Theorem 6.2. Let § € (0,1). Then,

irﬁf (inf {E ((L+8)Kn)] : N > exp (C5™* ln(2/§)n1nn)}) —1

as n — 00, where the first infimum is over all log-concave probability measures p on R™ and C > 0 is an
absolute constant.

This is a weak threshold in the sense that we consider the expected measure of (14 ¢) Ky instead of Ky,
where § > 0 is arbitrarily small. The reason for this is the dependence on ¢ in the next technical proposition.

Proposition 6.3. Let u be an isotropic log-concave probability measure on R™. For any 6 € (0,1) and any
t > Csnlnn we have that
(L +0)Z, () =1 — e

where Cs = C5~11n (2/6) and c5 = ¢ are positive constants depending only on §.

Proof. Let § € (0,1) and set ¢ = §/5. Fix t > n which will be determined. Recall that by B} C Z,"(u) C
bot BY for some absolute constants by, bo > 0. This implies that if v,w € S~ and |v — w| < Zlﬁ then

hzj(u)(v —w) < batlv —w| and by < min{hzj(u)(v), hg+ (w)},
therefore
(6.2) gt (o (0 — w) < batfv — w] < amin{hzj(u)(v), hgt () (w)}.

Set b := by /by and consider a -net N of the Euclidean unit sphere S™~! with cardinality |N| < (1+2bt/e)" <
(3bt/e)™. We define

W= {x 2, 6)s < fﬂhzm)(@}.
EEN

Let x € W. Then, (z,£)+ < 11?}12,*(”)(5) for all £ € N. We will show that (1 —¢)(z,w); < hy+ () (w) for

all w € S"~1, which is equivalent to (1 — &)z € Z;" (). We set

a,(x) := max {h<x,w>+) TwE S"l}

Zt*(u)(w
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and consider v € S"~! such that (z,v); = o, (z) - hy+ (). There exists £ € N such that [ —v| < 5.
Using the fact that (x,v — &) < au(m)hzj(u) (v —¢), we write

1
(@001 < (804 + (2,0 = €)1 < Ty (6) F @@z (0 — 6
From (6.2) it follows that

1 1
(T, v)+ < mhzj(u)(ﬁ) teau(@)hyy,)(v) = mhzj(ﬂ)(f) +&{z,v)+,

which gives
(0,001 < T 0 )
Moreover,
Pzt (&) S Pz ) F g )y (§ = V) S g (V) F Ry (0) = (L ) (0),
which finally gives «,(z) < 1/(1 — ¢). This shows that (1 — &)W C Z;" (u). For every £ € N we have

p{z s (2,64 = 1+l <1 +e)7"

Since § € (0,1) we have 0 < ¢ < 1/5, therefore (11':)2 <1+5e=1+4. Then,

(1+e¢)?
1—¢

1+ 0200 > 0 (UL 2000 2 w1+ 92w)

=1 ﬂ {m Hx, 8+ < (1 —|—€)th+(H)(f)}

£EN
>1—|N|-(1+e) ' >1-(Cl)"(1+¢e)7 ",

where C! = 3b/e. Tt follows that there exists C. > 1 such that if ¢ > C.nlnn then
(6.3) () (14e)7t < (14¢e) M2 Ceet/4,

To see this, consider the function
t
ot) = 5 In(1 +¢) — nln(3bt/e).

It is easily checked that ¢ is increasing on [2n/In(1 + ¢), 00). Therefore, if t > Conlnn where C. = €1n (2)
for a large enough absolute constant C' > 0, one can check that ¢(¢) > ¢(Cenlnn) > 0. This implies (6.3))
Since € = §/5, we obtain the assertion of the proposition with the stated dependence of the constants Cj, cs
on 4. O

Proof of Theorem[6.2] Let 0 < § < 1 and set ¢ = §/3. From Lemma we know that for every z €
(1 —¢)Z;" (1) we have

(1-(1-9)"
oulx) > o

where C7 > 1 is an absolute constant. Then, taking into account the fact that 1 —e > 2/3, we get
N 1—(1—g)t)2]¥ "
MN(KNQ(l—g)Zj(M))>1—2( ){1—(<t€)) .
n Cy
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By the mean value theorem we have 1 — (1 —¢)! = tez!~! for some z € (1 —¢,1), and hence 1 — (1 —¢)* >
te(1 — e)t~1. Taking also into account the fact that 1 — e > 2/3, we get

“N<KN 2 (1*5)Zt+(u)) > 12(?{) |:1(tg(16§)tl)2:|N—n

oo (5 o)

(6.4) (3C1)'nIn(4eN/n) < (N — n)(te)?,

This last quantity tends to 1 as n — oo if

and assuming that § € (1/n%,1) and ¢t > C.nlnn where C. is the constant from Proposition we check
that (6.4)) holds true if N > exp(Cat) for a large enough absolute constant Co > 0.
Note that € = §/3 implies that 1+ ¢ > 1. Then, if N > exp(C2C-nlnn) we see that

B (14 K] > B (10K ) | 2 (14 920 ) x ™ (K 2 (1= 2127 2)

> (1—e ) [1 — <22Z\f>nexp <(Nn) (égijtﬂ —1

as n — 0o. O

We have already mentioned that Theorem provides a weak threshold in the sense that we estimate
the expectation E,,~ (11(1+8)K ) (for an arbitrarily small but positive value of §) while the original question
is about E,~ (M(K N)) The next result provides an estimate where “¢ is removed”, however the dependence
on n is worse.

Theorem 6.4. There exists an absolute constant C > 0 such that

iﬂf (inf {E [W(KN)] : N > exp(C(nlnn)2u(n))}) —1

as n — oo, where the first infimum is over all log-concave probability measures p on R™ and u(n) is any
function with u(n) — co as n — oo.

Proof. Let d,, € (0,1/2) that will be suitably chosen. Our starting observation is the inclusion
(1 - 6n)Zt+(:“) 2 (1— 2571)((1 + 6n/4)Zt+(N)) + (25n)%Zt+(M)a
which holds true for any ¢ > 1. Since u is log-concave, we get

—25,,

(65) p(1= 507 () > (1 +00/077 ) (e (B2 G)™

Next, we make the additional assumptions that 6,, € (1/n?,1/2) and t > Cs,nInn, where C5, = C'5- In (63)
is the constant from Proposition [6.3] This implies that

(6.6) (u((l n 5n/4)Zt+(N)))1—26n > (1 . 6765nt)1*25n >1-— e~ Cont

On the other hand, as in the proof of Theorem we see that (by Lemma and Lemma,

R (1) N ZH (1) 2 e1 Kppa (1)
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for some absolute constant ¢; > 0. Therefore,

c in c
p(2H0) = 0 (G ) = [ fulw) do > e £, (0) | Ko )|
%Kn+1(l")
= I e A" O Ko ()] > ¢
for an absolute constant ¢, > 0. This gives
26n —2c n
(6.7) (1 (32 (W)™ = e — 1
if 6,n = 0,(1) as n — co. Inserting the estimates and (6.7]) into (6.5)) we get
(6.8) p((1 — 57L)Zt+(.u)) =1-on(1)

if 6,n = 0,(1) and t > C§,* In(2/d,,)nlnn.
Now, repeating the argument of the proof of Theorem [6.2] we see that

iV (Kn 2 (1= 802 (1) = 1= 0(1)

provided that N > exp (C26, ' In(2/6,)nlnn), and then

E (1 (Kn)] > (1 = 62)Z () x o™ (K 2 (1= 62)Z7 (1)) — 1

as n — oo, provided that we choose 6, = 0,(1/n) and N > exp (C20, ' In(2/8,)nlnn). This proves the

n
theorem. O

7 Comparing half-space depth with the Cramer transform

Let 1 be a centered log-concave probability measure on R" with density f := f,. Recall that the logarithmic
Laplace transform of p on R™, defined by

O =t ( [ sz,

is a non-negative convex function with A,(0) = 0. Moreover, the set A(u) = {A,, < oo} is open and A, is
C* and strictly convex on A(u).
Recall also that the Cramer transform of p is the function

Ay () = sup {(z,8) = Au(§)}

o £ERn
For every t > 0 we consider the convex set
Bi(p) :=={z € R" : Aj(z) < t}.

and for any € R™ we denote by H(x) the set of all half-spaces H of R™ containing x and consider Tukey’s
half-space depth

pulx) = mt{u(H)  H € H(x)}.
In Lemma [£.3] we showed that for every z € R™ we have
90;/,(93) < exp(—AZ(x)).
In particular, for any ¢t > 0 and for all « ¢ B;(u) we have that ¢, (2) < exp(—t). In other words,
¢4 (Be(n) < e

Next, we would like to obtain a lower bound for ¢_ (B:()), or equivalently for ¢, (z) when « € B;(p). In
the case where 1 = pg is the uniform measure on a centered convex body K of volume 1 in R™, our estimate
is the following.

21



Theorem 7.1. Let K be a centered convex body of volume 1 in R™. Then, for every t > 0 we have that

inf{ipu,c(2) : 7 € Buljue)} > 15 expl—t — 2/).

The first part of the argument works for any centered log-concave probability measure p with density f
on R". For every { € R™ we define the probability measure ¢ with density

fe(z) = e—A;I,(£)+<£7z>f(z).
In the next lemma (see [I1], Proposition 7.2.1]) we recall some basic facts for .
Lemma 7.2. The barycenter of pe is © = VA, (§) and Cov(ue) = Hess (A,)(€).

Next, we set
of = / (z — 2, &) due(2).

Let t > 0. Since B;(p) is convex, in order to give a lower bound for inf{p, (z) : x € B,(u)} it suffices to give
a lower bound for p(H), where H is any closed half-space whose bounding hyperplane supports B;(u). In
that case,

(7.1) p(H) = p({z: (z —2,§) > 0})

for some z € O(B()), with § = VA (z), or equivalently z = VA, ({) (see e.g. Theorem 23.5 and Corol-
lary 23.5.1 in [34]). Note that

(7.2 plles e =28 20 = [ pmy((e -~ 2.6)f(:) dz

= [ 1 (2= €)™ duz)

= MO0 / Ljo,00) ({2 = 2,8))e™ 7" dpug (2)

> e M@ /OOO oee 7 ({2 : 0 < (2 — 2, &) < oet}) dt.
From Markov’s inequality we see that

RNy

pe({z 1 (z —2,8) > 20¢}) <

Moreover, since z is the barycenter of pi¢, Griinbaum’s lemma (see [I1, Lemma 2.2.6]) implies that

pe({z:(z—z,§) > 0}) >

D | =

Therefore,

> > 1 1 4 —
(7.3) / oce T pue({2: 0 < (2 — 2, &) < oet})dt > / oge ¢t < - > dt > Ce20¢
0 2 e 4 4e
We would like now an upper bound for sup; o¢. We can have this when p = pk is the uniform measure on
a centered convex body K of volume 1 on R"™, using a theorem of Nguyen [30] (proved independently by
Wang [39]; see also [I7T]).

Theorem 7.3. Let v be a log-concave probability measure on R™ with density g = exp(—p), where p is a
convex function. Then,
Var, (p) < n.
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Proof of Theorem[7T1]l Set p:= pug. Since f(z) = 1k (z), the density f¢ of pe is proportional to e 1 (2).
Using the fact that
Eue (€, 2)) = (VAL(E),§) = (2,8),

from Theorem [7.3] we get that
Ug =E, ((z — z, €))% = Var,, ((§,2)) < n.

Then, combining ([7.1), (7.2)) and (7.3]), for any bounding hyperplane H of B;(u) we have

(o)

p(H) > e 2@ / oee” % e (0 < (2 — 2, &) < oet) dt
0

4—e

4e

« 1
> e Aul@)=20¢ > 0 exp(—t — 2v/n),

as claimed. O
Theorem shows that if K is a centered convex body of volume 1 in R” then
10, () = exp(=Ay,, () — 2v/n)

for all x € R™. Setting

(7.4) W (2) = In <1>

Pux (:L')

and taking into account Lemma we have the next two-sided estimate.

Corollary 7.4. Let K be a centered convex body of volume 1 in R™. Then, for every x € int(K) we have
that

(7.5) Wpre () = 5v/ < A% (@) < e (@),

Note. A basic question that arises from the results of this section is whether an analogue of (7.5 holds true
for any centered log-concave probability measure g on R™. This would allow us to apply the next steps of
the procedure that our approach suggests to all log-concave probability measures.

8 Moments of the Cramer transform

Our approach to the threshold problem requires to know that, given our centered log-concave probability
measure 1 on R", the Cramer transform A}, has finite variance. Our first result provides an affirmative
answer in the case where y = ug is the uniform measure on a centered convex body K of volume 1 in R™.
In fact, the next theorem guarantees that, in a more general case, A}, has finite moments of all orders.

Theorem 8.1. Let K be a centered convex body of volume 1 in R™. Let € (0,1/n] and let p be a centered
K-concave probability measure with supp(u) = K. Then,

K,AZ(.’IJ)
/e > du(zr) < 0.

In particular, for all p > 1 we have that B, ((A%,(z))?) < oo.

The proof of Theoremis based on the next lemma, which is proved in [I2] Lemma 7] in the symmetric
case.
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Lemma 8.2. Let K be a centered convez body of volume 1 in R™. Let k € (0,1/n] and let u be a centered
k-concave probability measure with supp(u) = K. Then,

(8.1) pu() = e ?m(1 = ||z x)"/"
for every x € K, where ||z|| i is the Minkowski functional of K.

Sketch of the proof. We modify the argument from [I2, Lemma 7] to cover the not necessarily symmetric
case. First, consider the case 0 < k < 1/n. Let X be a random vector distributed according to u. Given
0 € S"Llet b= hg(0) and a = hx(—0). If gy is the density of (X,0) then g, * is concave on [—a,b],
therefore .
t TR
90(t) = go(0) (1 - b)

for all t € [0,b]. It follows that, for every 0 < s < b,

t S

P((X,0) > s) = /Sbge(t) dt > g¢(0) /Sb (1 - b) dt = rge(0)b (1 - 5)% '

Note that gy is a centered log-concave density. Therefore, go(0) > e !|gglloc by (3.2) and ||gg|lecb >
P((X,0) > 0) > e~ ! by Griinbaum’s lemma [I1, Lemma 2.2.6], which implies that g¢(0)b > e~2. It follows
that

P((X,0) > s) = /Sbgg(t) dt > e (1~ %)7 .

Now, let € K. Then (x,0) < ||z||xhi(0) = ||z| kb, therefore

1
K

B((X,0) > (x,6)) > B((X,0) > a]xb) > e x (1 - [lz] )

For the case k = 1/n recall that a 1/n-concave measure is k-concave for every x € (0,1/n). This means that
(8.1) holds true for all k € (0,1/n) and letting k — 1/n we obtain the result. O

Proof of Theorem [8.1} From Lemma 4.3 we know that ¢, (z) < exp(—A%(z)), or equivalently,

RAZ(:E) 1

P ——
‘ PRORE

for all x € K. From Lemma we know that
ou(x) = e k(1 — ||z)| k)"

for every z € K. It follows that

eNAE(I) T e2 /k)/? 71 T
| ) < @m) /Ku—nxnmwd“( ).

Recall that the cone probability measure vx on the boundary 9(K) of a convex body K with 0 € int(K) is
defined by

{rz:z e B,0<r <1}
K|
for all Borel subsets B of J(K). We shall use the identity

/ g(x)dx = n\K|/ r”_l/ g(rz) dvg (x) dr
R» 0 a(K)
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which holds for every integrable function g : R™ — R (see [29, Proposition 1]). Let f denote the density of
pwon K. We write

1 B R
J e = [ G e
:n‘m/ " l/auo 1—||7‘y||1<)1/21 xry) dvic(y) dr

:n‘K|/o \/ﬁ/a(K) f(ry) dvi (y) dr

1 = 1

=

and the proof is complete. O

< K[ flloo dr =n|K|B(n,1/2)|[fllec < cv/nl[flloc < +o0,

In the case of the uniform measure u = px on a centered convex body K of volume 1 in R™ we see that

A (@)
/ (A (@)/2n)"dz < (erp)? / TETdr < (eap) Vi,
K K
where ¢y, c2 > 0 are absolute constants. This gives the following estimate for the moments of A}, :
14+ L
1A o ey < epn™2

for all p > 1. However, essentially repeating the argument that we used for Theorem we may obtain
sharp estimates in the most interesting case p = 1 or 2. We need the next lemma.

Lemma 8.3. Let H, =1+ % 4+ -+ % Then,

! 1
/ " 'In(l —r)dr = ——H,
0 n

and
r n“(l—r — —
0 n k2
Theorem 8.4. Let K be a centered convex body of volume 1 in R™, n > 2. Let k € (0,1/n] and let p be a
centered Kk-concave probability measure with supp(u) = K. Then,

1/2 clnn

E, (A7) < (Bu[(A7)%) — A%,

where ¢ > 0 is an absolute constant and f is the density of .

Proof. Following the proof of Theorem [B.1] we write

/K(/\Ii(fv))gdu(as)</K1n2 <6:(1—||$1||K)1/K) dp().

If f is the density of & on K and vk is the cone measure of K, using the inequality In? (ab) < 2(ln2 a+ In? b)
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where a,b > 0, we may write

2 o (e ) e = ()

) 1
S J, fn ((1 - ||x||K>1/~) Lic(z) do

=n oornfl ry) In? - ry) dv r
=l [Tt [ e (G e ) Lt

n

= lrnfl n?(1—r ry) dv r
= e [ sen )

K2
n 1
< ?”JCHOO/O r’L_lan(l—r)dr.

Since 1 < [, f(z) dz < | f]|o, using also Lemmawe get
2 2n (1 1~ 1 e?
A du(z) < S | —HZ 4+ =) — oo +2In% [ —
| @) dutr < 2 (n n+n;k2>|lf vt (%)

2H? =1 c1ln®n
< ( : +2Zk2+2ln2<ez/m> 1o < 51 flle
k=1

K

where ¢; > 0 is an absolute constant. This completes the proof. O

In particular, if we assume that g = pug is the uniform measure on a centered convex body then we
obtain a sharp two sided estimate.

Theorem 8.5. Let K be a centered convex body of volume 1 in R™, n > 2. Then,
2
/Ly <INt < I llL2 gy < canlnn,
where Ly, is the isotropic constant of the uniform measure i on K and c1,ca > 0 are absolute constants.

The left-hand side inequality of Theorem follows easily from the proof Theorem (see Lemma in
the next section). Both the lower and the upper bound are of optimal order with respect to the dimension.
This can be seen e.g. from the example of the uniform measure on the cube or the Euclidean ball (see
Section E[), respectively.

The next result concerns the one-dimensional case. Let pu be a centered probability measure on R which

is absolutely continuous with respect to Lebesgue measure and consider a random variable X, on some
probability space (£2, F, P), with distribution p, i.e., u(B) := P(X € B), B € B(R). We define

oy = ay(p) :=sup{z € R: p([z,00)) >0}) and a_ =a_(u) :=sup{zr € R: pu((—o0, —x])) > 0}).

Thus, —a_, a4 are the endpoints of the support of u. Note that we may have ayx = +o0o. We define
I, = (—a_,ay). Recall that

Aj(7) :=sup{te — A,(t): t € R}, r eR.

In fact, since to — A, (t) < 0 for ¢ < 0 when = € [0,y ), we have that A} (z) = sup{tz — A,(t): t > 0}
in this case, and similarly A% (z) := sup{tz — A,(t): t < 0} when 2 € (—a_,0]. One can also check that
Ay (ax) = +oco. See [19, Lemma 2.8] for the case ax < +00. In the case ax = +oo, the convexity and
monotonicity properties of A}, imply again that t_l}imoo Aj(t) = +oo.
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Proposition 8.6. Let u be a centered probability measure on R which is absolutely continuous with respect

to Lebesgue measure. Then,
[ e <a
I

n

where I, = supp(p). In particular, for all p > 1 we have that

/ (A (2))P du(x) < +o0.

Iy

Proof. Let F(x) = p(—o0,z]. For any x € [0, ) and ¢ > 0 we have
min{F(z),1 - F(z)} = pu(z) < e 2@,

It follows that

M2 (x : v oz
(8.2) /1 ) dplx) < /, \/min{F(x)J—F(if)}f( ¢

f(a) da +

1 1
s / Niat) / Jiore) "

Write f for the density of u with respect to Lebesgue measure. Then, (1 — F')'(z) = — f(x), which implies
that

ay

— BY(z)dr = —24/1 — F(x) .

=2,/1— F(0)

at 1 aq 1
/0 N ’/o NaEraok

since F'(a4) = 1. In the same way we check that

0 1 0 1 , _ 0 _
N 1_7}7(36)f(95) s m(l ~ FY(2)dz = _QW‘_Q, —2-2/1_ F(0).
This shows that
r < 2.

1
——f(2)d
‘/Iu V 1- F(l‘)
In a similar way we obtain the same upper bound for the second summand in (8.2)) and the result follows. [
Proposition can be extended to products. Let u;, 1 < ¢ < n be centered probability measures on R,

all of them absolutely continuous with respect to Lebesgue measure. If i = p1 ® - - - @ u,, then Iy = [}, 1.,
and we can easily check that
i=1

for all z = (x1,...,2,) € Iz, which implies that
/ M@ 2 aqp(x) H </ Ay (@) /2d,ui(xi)> < 4"
Iz i=1

In particular, for all p > 1 we have that
| (i@ dnte) < +oc.
If

We close this section with one more case where we can establish that A} has finite moments of all
orders. We consider an arbitrary centered log-concave probability measure on R™ but we have to impose

27



some conditions on the growth of its one-sided L;-centroid bodies Z; (u). Recall that for every ¢ > 1, the
one-sided Ls-centroid body Z;" (1) of 1 is the convex body with support function

hzj(u)(y) = (2 /Rn@ay)ifu(l‘)dx) l/t,

where a; = max{a,0}. If u is isotropic then Zj (1) 2 ¢Bj for an absolute constant ¢ > 0 and if 1 <t < s
then

1

)

The condition that we need is that the family of the one-sided L;-centroid bodies grows with some mild rate
as t — oo (note that the assumption in the next proposition can be satisfied only for log-concave probability
measures p with support supp(u) = R™).

1 1
s s

ziwezimea(222) 2z,

e

Proposition 8.7. Let u be a centered log-concave probability measure on R™. Assume that there exists an
increasing function g : [1,00) — [1,00) with lim;_, g(t)/In(t + 1) = +oo such that Z;" () 2 g(t)Z5 () for
allt > 2. Then,

[ 1 @)rdute) < oo
for everyp > 1.
Proof. In Lemma [4.6| we saw that if ¢ > 1 then for every z € 27,7 (1) we have

—Clt
)

pulr) > e

where ¢; > 1 is an absolute constant. Since Aj(z) < In this shows that Aj (z) < et forallz € 1Z(w).

1
pu(z)’
In other words,

1
Z)e (1) € Bi(n),  t>cr

(8.3) 525,

Since lim;_, o g(t) = 400, there exists to > ¢; such that p (g(tOT/Cl)Z;(u)) > 2/3. From Borell’s lemma [11]
Lemma 2.4.5] we know that, for all ¢ > ¢,

g(t/c1) (i) .
1u< (L2 () ) < emenat/enatiolen),

where ¢y > 0 is an absolute constant. We write
| ms@pdn) = [ e i) = )t =p [ 0710 = (Bl e

From (8.3) it follows that
1 t
VB <1 (520000 ) < 1= (D225 () ) < esstien/ateren
for all ¢t > to. Since lim;_,oo g(t)/In(t + 1) = 400, there exists ¢, > to such that

(p—1)In(t) & _g(tfer)

S 2(to/c1)

for all t > t,. Assume that p > 2. Then, from the previous observations we get

7 T - (B de < p / Tt (1 g (1 2 () a

p

o0 o0
< p/ 2=l gy — p/ =Y 4t < .
t

P tp

28



This proves the result for p > 2 and then from Hélder’s inequality it is clear that the assertion of the
proposition is also true for all p > 1. O

Note. It is not hard to construct examples of log-concave probability measures, even on the real line, for

which supp(u) = R™ but the assumption of Proposition is not satisfied. Consider for example a measure

w on R with density f(z) = c¢-exp(—p) where p is an even convex function rapidly increasing to infinity, e.g.
2

p(t) =e".
However, this does not exclude the possibility that for every centered log-concave probability measure p
on R™ the function Aj, has finite second or higher moments.

9 Threshold for the measure: the approach and examples

For any log-concave probability measure g on R™ we define the parameter

~ Var,(A})

provided that
AT 22 = (B(A})?)? < oo,

In Theorem [£.1] we saw that if 4 is a log-concave probability measure on R" then

[ ula)dute) < exp (~en/12).

where ¢ > 0 is an absolute constant. In fact, the proof of this estimate starts with Lemma and follows
from the next stronger result: If n > ng then

/n exp(—Aj,(z)) du(z) < exp (—cn/Li)

where L, is the isotropic constant of u and ¢ > 0, ng € N are absolute constants. Then, Jensen’s inequality
implies that

e En(AL) < / exp(—Aj,(z)) du(z) < exp (—cn/Li).
We will need this lower bound for E,(A},).
Lemma 9.1. Let p be a log-concave probability measure on R™, n > ng. Then,
* 2
E(A/L) > cn/Lw
where L, is the isotropic constant of p and ¢ > 0, ng € N are absolute constants.

We will also need a number of observations in the case u = px where K is a centered convex body of
volume 1 in R™. The next lemma provides a lower bound for Var(Aj,, ).

Lemma 9.2. Let K be a centered convex body of volume 1 in R™. Then,
* 4
Var(A},, ) > ¢/L,, .,

where ¢ > 0 is an absolute constant.
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Proof. Borell has proved in [5, Theorem 1] that if T is a convex body in R™ and f is a non-negative, bounded
and convex function on T, not identically zero and with min(f) = 0, then the function

®(p) =1In[(n er)”f”Z]

is convex on [0,00). Consider a centered convex body K of volume 1 in R™. Applying Borell’s theorem for
the function Ay, on rK, r € (0,1) and the triple p = 0,1 and 2, and finally letting  — 17, we see that

(12 AL N1 ey < il 2NA M2 )
which implies that

1

* * 2
Var(A#K) 2 WHA#KHLI(#K)'

Then, taking into account Lemma [9.1] we obtain the result. O

Recall the definition of w,, =1In(1/¢,,) in (7.4) and consider the parameter

VarMK (OJNK)
(E#K (WMK ))2 .

The next lemma shows that we can estimate S(ug) if we can compute 7(pux).

(9.2) T(ur) =

Lemma 9.3. Let K be a centered convex body of volume 1 in R™. Then,

Blur) = (r(ux) + 0Ly, /vn)) (1+ 0L, /Vn) .

Proof. From Corollary [7.4] we know that if K is a centered convex body of volume 1 in R" then for every
r € int(K) we have that wy,, (v) —5v/n < A}, (z) < wy,(v). Writing A}, = w,, +h where [|h]l < 5¢/7n
we easily see that

Vary (A ) = Vary, (i) + O(VnEu (A, )
where X = O(Y) means that | X| < ¢Y for an absolute constant ¢ > 0. Lemma and the fact that
Eux(Wug) =Epup (AZK) + O(y/n) imply that

]EHK(OJHK) _ 2
m =1+ 0(L; . /Vn).

Taking also into account the fact that L2 //n = O((Inn)®/y/n) = o(1) we get
E’MK (wNK) ~ EMK (AZK)

Combining the above we see that

Varllk (A;K) _ Varltk (w#K) + O(\/EE/LK (A;K)) <E/LK (Wp,;()>2
(EHK (AZK ))2 (EMK (WNK ))2 EHK (AZK)

- (el 0 (12, V) ) (140 (2, Vi)

= (7(px) + O (Lg,, /) (14 O (L5, /V/n))

as claimed. O

Bur) =
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Recall that B;(u) = {x € R" : A} (x) < t}. We use Lemma in the following way. Let m :=E,(A},).
Then, for all € € (0,1), from Chebyshev’s inequality we have that
EulAj —ml* _ B(w)

PN, < m = emb) < Iy —ml > em}) < 22T = B,

Equivalently,
Bu)

€2’

p(B—eym (1)) <

Let 6 € (B(p),1). We distinguish two cases:
(i) If B(u) < 1/8 and 88(p) < 6 < 1 then, choosing € = 1/28(1)/6 we have that
0
WBa-eym(K) < 3-

Then, from Lemma [5.1] we see that

Sup{B, v (u(Kn)) 2 N < 2™y < p(Baayn () + e 2me=(1-am

>

<o tem,

[\]

provided that em > In(2/8). Since m > ¢;n/L2, this condition is satisfied if n/L? > ¢2In(2/6)\/6/B(u). By
the choice of € we conclude that

01(p,0) > (1 — 8ﬁ(u)/6> w

i) If 1/8 < B(p) < 1 and B(u) < § < 1 then, choosing € = 2800 e have that
B(u)+o

B(p) + 6
-

/”'(B(lfs)m(,u)) <
Then, exactly as in (i), we see that

sup{E,~ (u(Kn)) : N < et=vEImy < LH2 + emVEIme=(=em o LM);— d +e(VEmEm <5

provided that

9.3) (Ve —&)m >1n <525(M)> .

Note that 1 > ¢ > /B(u) > ﬁ, and hence

ﬁ‘gzw\ﬁlm(l—g)>ci(l—€2)— (0= B) 2(0 = B(w)),

: 2 : 2 2
where ¢} > 0 are absolute constants. Since m > ¢;n/L:, we see that if n/L: > 55y In (5—/3(u)) then (9.3)
is satisfied. Therefore, we conclude that

m%®>042%0>&mn

Blu) + 06 n

We summarize the above in the next theorem.
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Theorem 9.4. Let p be a log-concave probability measure on R™.

(i) Let B(p) < 1/8 and 88(p) <& < 1. Ifn/L2 > c21n(2/8)\/8/B(u) then
Eu(AL)

n

01(1,8) > (1= V/35(1)/5)

(ii) Let 1/8 < B(p) <1 and B(p) <6 < 1. If n/L2 > 55y In (572(#)) then

o1(1.8) > (1 o 28 ) Ep (A7)

Bp)+4 n

For the proof of the lower threshold we use Lemma Note that if m :=E,(A},) then as before, for all
€ (0,1), from Chebyshev’s inequality we have that

s
g2’
If B(p) < 1/2 and 26(p) < 6 < 1 then, choosing € = /28(1)/6 we have that

)

#Bareym(m) 21 - 5.

H({A > m+em}) < u({IAL — m]| > em}) <

Therefore, we will have that
02(p,0) < (14 2e)m/n

if our lower bound for ¢ _ (B(14¢)m (1)) gives

(9.4) 2(M) (1= o Buypopmle) " <
n 2

for all N > Ny := exp((1 + 2¢)m). Recall that in the case of the uniform measure px on a centered convex
body K of volume 1, Theorem [7.1] shows that

o (Baem(pr)) > 15 xp(—(1+ e)m — 21/).

We require that n and m are large enough so that 1/2" < §/2 and 2y/n < =*. Using also the fact that
(N) <e! (%)n we see that (9.4) will be satisfied if we also have

n
2e N " _N-—n —(1+3¢/2)m
— ) e 10 <1
n

Setting x := N/n we see that this last is equivalent to

(143=/2)m r—1
¢ < 101In(2ez)”

One can now check that if N > exp((1 + 2¢)m) then all the restrictions are satisfied if we assume that
n/L%, > c2In(2/6)\/d/B(puk). In this way we get the following.

Theorem 9.5. Let 5,0 > 0 with 28 < § < 1. If K is a centered convexr body of volume 1 in R™ with
Blur) =B and n/L% > c21n(2/6)\/6/B then

02(pr,0) < (1 + \/86/5> W.
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An estimate analogous to the one in Theorem (ii) is also possible but we shall not go through the
details. From the discussion in this section it is clear that our approach is able to provide good bounds for
the threshold o(u, ) if the parameter S(u) is small, especially if 8(u) = 0,(1) as the dimension increases.
We illustrate this with a number of examples.

Example 9.6 (Uniform measure on the cube). Let pe, be the uniform measure on the unit cube C,, =

[—%, %]n Since pc,, = pe, @ -+ @ e, we have

Var,. (A = nVar,, (A and E.c, (A;cn) =nE,, (A7 ).

we,) he,) e,

Therefore,

_ Var,, (AL ) Bluc,)
Bluc,) = [Epc., (Aﬁcn>)2 oo — 0.

as n — oo. Then, Theorem [9.4] and Theorem [9.5| show that for any & € (0,1) there exists ny(§) such that,

for any n > ng,
86#0 E(A;c ) C1
> _ n n > _ *
Ql(ﬂcnaé) = <1 \/T) n 2|1 \/% E(Aﬂcl)
85#0 E(AZC ) C2 «
< n n <
02(pc,:0) < (1 + \/T) o S (o B

C
75 < okl

where ¢ > 0 is an absolute constant. This estimate provides a sharp threshold for the measure of a random
polytope K with independent vertices uniformly distributed in C,,. It provides a direct proof of the result
of Dyer, Fiiredi and McDiarmid in [I5] with a stronger estimate for the “width of the threshold”.

and

which shows that

Example 9.7 (Gaussian measure). Let 7, denote the standard n-dimensional Gaussian measure with density
fon (@) = (QW)*”/26*|‘”|2/2, x € R™. Note that v, =y ® - ®~1, and hence we may argue as in the previous
example. We may also use direct computation to see that

M@ =t ([ e, (2)dz) = 3leP

for all £ € R™ and
. 1
A% (@) = sup {{,€) = Ay, ()} = 5o
£eRm
for all x € R". It follows that
Bi(yn) = {z € R": A} (z) <t} = {z e R": |z < V2t} = V2tB}.

Note that if z € 9(B¢(yx)) then

e k[ 5
$m 2r )3t -

for allt > 1 (see [22], p. 17] for a refined form of the lower bound that we use). By the standard concentration
estimate for the Euclidean norm with respect to 7, (see [38, Theorem 3.1.1]), we have || |z| — v/n ||y, < C,
where C' > 0 is an absolute constant, or equivalently, for any s > 0,

ml{z €R™ : | 2] — v/ | > sv/n}) < 2exp(—cs?n),
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where ¢ > 0 is an absolute constant. This shows that

max{v,((1 — s)vnBy), 1 —v,((1 + s)y/nBy)} < 2exp(—cs®n)
for every s € (0,1). Let € € (0,1/2). Applying Lemma 5.1 with t = (1 — &) n/2 and N < exp((1/2 —¢&)n) we
see that

E v (7o (KN)) < 7 (V/ (1 —e)nBy) + exp(—en/2)
2 exp(—ce®n) + exp(—en/2),

using the fact that /1 —e < 1 —¢/2. Tt follows that, for any § € (0,1), if we choose € = ¢1+/In(4/8)/+/n we
have

<
<

sup {E%zqy (vn(KN)) : N < e(%fs)"} <9,
and hence
1 In(4/9)
’n76 2 -~ - = -
01(7n,0) 2 3 Tn

Now, let N 2 xp((1/2 —|— e)n). Applying Lemma with A = By(y,) where t = (1 + ¢)n/2, we see that
vn(Bt Yn)) =Y (/(1 +e)nBy) > 1 — 2exp(—ce?n), because /1 + ¢ > 1+ ¢/3. We also have

2(2) (1= - (B < (QTfV)xp (- ez,

Let § € (0,1). We choose € = ¢24/In(4/0)//n and insert these estimates into Lemma Arguing as in the
proof of (9.4) we see that if n > ng(d) then

inf {E’Yﬁ,\r ("Yn(KN)) N > e(%+€)n} >1-9,

and hence
1 coy/In(4/0
i) < L 2T
vn
Combining the above we get
C+/In(4/9)
ny0) < ————,
o, 9) Tn

where C' > 0 is an absolute constant.

Finally, we discuss the example of the uniform measure on the Euclidean ball. It was proved in [3] that
ife € (0,1) and Ky = conv{zy,...,zy} where z1,...,zy are random points independently and uniformly

chosen from Bj then
E|K 1
nli_}rr(;sup{ |B§L]T| : N < exp ((1—5) (n—2|— >lnn)}:0

E|K 1
nan;oinf{ ||B§N| : N > exp <(1+€) (n;r >lnn>} =1.

We shall obtain a similar conclusion with the approach of this work (the estimate below is in fact stronger
since it sharpens the width of the threshold from O(1) to O(1/¥/n)).

and

Theorem 9.8. Let D,, be the centered Euclidean ball of volume 1 in R™. Then, the sequence i, = ip,

exhibits a sharp threshold with o(pn,0) < #% and e.g. if n is even then we have that
" n+1

as n — oo, where Hy, =310 1.
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Proof. Note that if K is a centered convex body in R™ and 7 > 0 then A}, _(x) = A}, (z/r) for all z € R,
where 5 is the uniform measure on 7K. It follows that

L[ pdee L [ a @
o | W@ = o [, @

for every p > 0 and r > 0. This shows that in order to compute S(u Dp,,) it suffices to compute the ratio
1 2
2
1 *
(@ Joy A (x)dm)

where A* := A* . Having in mind Lemma we start by computing 7(upy). Set w := Wiy - Then,

HBD

w(z) = In(1/¢(x)) where p(x) = F(|z),

B(pp,)+1=

1
Fo)=co [ (1=t refo
and ¢, = 7~ /2T(% + 1)/T(22). From [3, Lemma 2.2] we know that

n+1

F(r) =1 —r%"2 h(r,n),

where

1 1
9.5 ——— < h(r, <
(9:5) (rnm) < o

or(n+2)
for all € (0,1]. We assume that n is even (the case where n is odd can be treated in a similar way). Using
polar coordinates we compute

1

1
T w(z)de = —n/ " In(F(r)) dr
1By| /By 0

n+1

=-n lr"_ln — ) r—n lr"_ln r,n)) dr.
o [ (= ) = [ ) d

The leading term is the first one and one can compute it explicitly. After making the change of variables

r? = u, we get

1 . 1 1
(96) _n/ rn_l ln((]. — ’]"2)%) dr = _@/ T”L—l ].n(]. _ TQ) dr
0 0
I I 1
:,M/ uTzln(lfu)du:MHﬂ’
4 0 2n 2

using also Lemma For the second term we recall from (9.5) that 0 < —In(h(r,n)) < 3 In(27(n + 2)) <
c1 Inn, and hence

1 1
—n/ " n (h(r,n)) dr < lnn/ nr"tdr = ¢; Inn.
0 0

Therefore,

1 1
(9.7) — / w(z)de = "y, + O(lnn).
|B3| Jp 22

n
2
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Using again polar coordinates we write

L w(z))?dx =n 1r”71n2 r))dr
g1 [y, e =n [ wre)a

1 1
- n/ P n?((1—r2) " ) dr + n/ " (h(r,n)) dr
o 0

1
+2n/0 " Ln((1 —Tz)%ﬂ)ln(h(r,n)) dr,

As before, the leading term is the first one and we can compute it explicitly. After making the change of
variables 12 = u, we get

1\* R
n(n+ ) / r”711n2(1—r2)dr:nm/ u'T In?(1 — u) du
0 0

2 8
n/2
m+1)2 (2., 231
AL et ;¢ ST
" 8 n 5+n;k2

On the other hand, from (9.5) we see that if 2(r,n) < 1 then 0 < —In(h(r,n)) < 3In(2n(n +2)) < c1lnn,
2

while if A(r,n) > 1 then 0 < In(h(r,n)) < In(1/7). Therefore, In*(h(r,n)) < ca(Inn)?+1In’(r) for all € (0,1].
It follows that

1 1
n/ " In?(h(r,n)) dr < cs(Inn)? + n/ " In? rdr < ey(Inn)?
0 0
Using again the fact that In(h(r,n)~') < ¢;Inn as well as (9.6), we check that

nr+1)

1
2n/ " In((1 — TQ)WTH)ln(h(r, n))dr < n 5 Hy -cilnn < csn(lnn)?.
0

From these estimates we have

1
1B2| By

From (9.7) and we finally get
n(lnn)?
T(upy) = O < WZHZ ) =0(1/n).

(9.8)

(w(2))? de = " H3 + O(n(Inn)?).

Then, Lemma [9.3| and a simple computation show that
Blup,) = (r(usg) + 02, V) (1402, [Vm)) = O(1/ Vi),
because LMB? ~ 1. Finally, note that by the estimate ([7.5)) in Corollary we have

1
B3| /By

(n+1)

w(z)dz + O(v/n) = 5

B, (AL,) Ha +O0(Vn)

as n — o0o. O

Note. The above discussion leaves open the following basic question: to estimate
Br = sup{B(uk) : K is a centered convex body of volume 1 in R™}
or, more generally,

Br :=sup{B(u) : 1 is a centered log-concave probability measure on R"}.
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10 Further reading

Special cases of the threshold problem have been studied in various works. In addition to the case of the discrete cube,
Dyer, Fiiredi and McDiarmid established in [15] a sharp threshold for the expected volume of random polytopes with
vertices uniformly distributed in the solid cube BL, = [-1,1]". If k = 27T/6’Y+1/2, where v is the Euler-Mascheroni
constant then for every ¢ € (0, k) one has

lim sup {27 "E|Kn|: N< (k—€)"} =0
n— oo

and
lim inf {27"E|Kn|: N > (k+¢&)"} = 1.
n—oo

The articles [33] and [3], [4] address the same question for a number of cases where X; have rotationally invariant
densities.

Exponential in the dimension upper and lower thresholds are obtained in [I§] for the case where X; are uniformly
distributed in a simplex. Let Q, ={x > 0:z1+- -4z, = 1} be the standard embedding of the (n — 1)-dimensional
simplex in n-dimensional space. If N > C{, where Cy > 0 is an absolute constant, then

E [conv{z1,...,zn}| = (1 — e V™) |Q,].

The basic idea is the following. Given « € (0,1) consider the caps C;(a) = {x € Q, : z; > 1 — a}. The authors
describe a set Q(g, ), where &, are carefully defined parameters, such that |Q(e,v)| > (1 — e~°V™)|Q,,| and every
x € Q(e,) is very likely to belong to a simplex whose vertices are in the caps Ci(w),...,Cr(a). An exponential
number of random points suffices to ensure that, with probability close to 1, there are “many” of them in each C;(«)
so that the convex hull conv{z1,...,zn} 2 Q(e,7). This completes the proof. A second main result of the same
paper provides a lower threshold. For every € > 0, if N < 79" where 7 is the Euler-Mascheroni constant, then
the convex hull of N random points z1,...,zx uniformly distributed in Q,, satisfies E|conv{z1,...,zn}|/|Qn] — O
as n — oo. To this end, the authors compute the Legendre transform of the log-moment generating function of a
random vector X distributed in the simplex.

General upper and lower thresholds (in the spirit of Section@ were obtained by Chakraborti, Tkocz and Vritsiou
in [12] for some general families of distributions. If u is an even log-concave probability measure supported on a
convex body K in R™ and if X, Xo,... are independent random points distributed according to pu, then for any
n < N < exp(cin/L;,) we have that

E,~(Kn|)
K]

where c1,c2 > 0 are absolute constants. A lower threshold (that we have already mentioned) is also established in
[I2] for the case where p is an even k-concave measure on R™ with 0 < x < 1/n, supported on a convex body K in
R™. If X1, Xo,... are independent random points in R™ distributed according to u and Ky = conv{Xi,...,Xn} as
before, then for any M > C and any N > exp (£ (Inn + 2In M)) we have that

< exp (7C2n/Ll2‘) ,

B (Knl) |1
K] M

where C' > 0 is an absolute constant.

In [19] a threshold for E, ~|Kxn|/(2c)" was established for the case where X; have independent identically
distributed coordinates supported on a bounded interval, under some mild additional assumptions (see below for a
more precise description). This result was generalized by Pafis in [3I] as follows. Let u be an even Borel probability
measure on the real line and let X1,..., X, be independent and identically distributed random variables, defined on
some probability space (2, F, P), each with distribution y. Consider the random vector X = (X1,..., X,,) and, for a
fixed N satisfying N > n, consider /N independent copies )?1, e ,XN of X. The distribution of X is Pn = UR- - Qu
(n times) and the distribution of (X1,..., Xn) is Y = jin ® --- @ pn (N times). The goal is to obtain a sharp
threshold for the expected p,-measure of the random polytope

Ky = conv{)?l, .. ,XN}.
Assume that p is non-degenerate, i.e. Var(X) > 0. Let

*

z* = 2" (n) :=sup {z € R: p([z,00)) >0}
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be the right endpoint of the support of u and set I, = (—x*,2"). Note that since p is non-degenerate and even, we
have that z* > 0. As usual, let
M,(t) := E(etx) = / e du(z), teR
R
denote the moment generating function of X, and let A, (¢) := In M, (¢) be its logarithmic moment generating function.
Finally, consider the Legendre transform A}, : I, — R of A,.
We say that p is admissible if it is non-degenerate, i.e. Var,(X) > 0, and satisfies the following conditions:

(i) There exists 7 > 0 such that E(e’*) < oo for all ¢ € (—r,7); in particular, X has finite moments of all orders.

(if) One of the following holds: (1) " < 400 and P(X = z*) =0, or (2) 2% = 400 and {A, < o0} =R, or (3)
" = +o00, {A, < oo} is bounded and p is log-concave.

Finally, we say that u satisfies the A*-condition if

Theorem 10.1. Let u be an admissible even probability measure on R that satisfies the A*-condition. Then, for any
§€(0,3) and any € € (0,1) there exists no(u, d,€) such that

01(pn,0) 2 (1= )Eu(AL)  and  02(pn,0) < (14 )E,u(Ay)

for every n = no(p,d,€). In particular, {un}ne1 exhibits a sharp threshold, i.e. lim o(pn,d) = 0, with “threshold
n— oo
constant” B, (A},).

An application of Theorem is also given to the case of the product p-measure v, := V;@". For any p > 1
we denote by v, the probability distribution on R with density (27,) ™" exp(—|z|P), where v, = T'(1 + 1/p). We show

that v, satisfies the A*-condition.
Theorem 10.2. For any p > 1 we have that

lim —R0w2:00)
A% TN, @)

Note that the measure v, is admissible for all 1 < p < oo; it satisfies condition (ii-3) if p = 1 and condition (ii-2)
for all 1 < p < co. Therefore, Theorem [10.2| implies that if K is the convex hull of N > n independent random
vectors X1,..., Xy with distribution v, then the expected measure ]E(V;JL)N(U;(KN)) exhibits a sharp threshold at
N =exp((1£¢)E,,(A],)n).

The variant of this question that was studied in [19] dealt with the case where p is an even, compactly supported,
Borel probability measure on the real line, p,(Kn) is replaced by the volume of Ky, and

k= () = — /_ A% (w)da.

2x*
If 0 < s(u) < oo then one has that, for every € € (0, k),
(10.1) Jim_sup {(22")"E(|Kn|): N <exp((k—¢€)n)} =0
and if the distribution p satisfies the A*-condition then one also has

(10.2) nh_}ngo inf {(22") "E(|Kn|): N > exp((k +&)n)} = 1.

References

[1] E. Artin, The gamma function, Athena Series: Selected Topics in Mathematics, Holt, Rinehart and Winston,
New York-Toronto-London, 1964 vii+39 pp.

[2] S. Artstein-Avidan, A. Giannopoulos and V. D. Milman, Asymptotic Geometric Analysis, Vol. I, Mathematical
Surveys and Monographs 202, American Mathematical Society, Providence, RI, 2015.

38



G. Bonnet, G. Chasapis, J. Grote, D. Temesvari and N. Turchi, Threshold phenomena for high-dimensional
random polytopes, Commun. Contemp. Math. 21 (2019), no. 5, 1850038, 30 pp.

G. Bonnet, Z. Kabluchko and N. Turchi, Phase transition for the volume of high-dimensional random polytopes,
Random Structures Algorithms 58 (2021), no. 4, 648-663.

C. Borell, Complements of Lyapunov’s inequality, Math. Ann. 205 (1973), 323-331.
C. Borell, Convex measures on locally convex spaces, Ark. Mat. 12 (1974), 239-252.
C. Borell, Convex set functions in d-space, Period. Math. Hungar. 6 (1975), 111-136.

J. Bourgain, On the distribution of polynomials on high dimensional convex sets, Lecture Notes in Mathematics
1469, Springer, Berlin (1991), 127-137.

S. Brazitikos, A. Giannopoulos and M. Pafis, Half-space depth of log-concave probability measures, Preprint.

S. Brazitikos, A. Giannopoulos and M. Pafis, Threshold for the expected measure of random polytopes, Math.
Annalen (to appear).

S. Brazitikos, A. Giannopoulos, P. Valettas and B-H. Vritsiou, Geometry of isotropic convex bodies, Mathe-
matical Surveys and Monographs 196, American Mathematical Society, Providence, RI, 2014.

D. Chakraborti, T. Tkocz and B-H. Vritsiou, A note on volume thresholds for random polytopes, Geom.
Dedicata 213 (2021), 423-431.

Y. Chen, An almost constant lower bound of the isoperimetric coefficient in the KLS conjecture, Geom. Funct.
Anal. 31 (2021), 34-61.

A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Springer, New York, 1998.

M. E. Dyer, Z. Firedi and C. McDiarmid, Volumes spanned by random points in the hypercube, Random
Structures Algorithms 3 (1992), 91-106.

M. Fradelizi, Sections of convex bodies through their centroid, Arch. Math. (Basel) 69 (1997), no. 6, 515-522.

M. Fradelizi, M. Madiman and L. Wang, Optimal concentration of information content for log-concave densities,
High dimensional probability VII. Vol. 71. Progr. Probab. Springer (2016), 45-60.

A. Frieze, W. Pegden and T. Tkocz, Random volumes in d-dimensional polytopes, Discrete Anal. 2020, Paper
No. 15, 17 pp.

D. Gatzouras and A. Giannopoulos, Threshold for the volume spanned by random points with independent
coordinates, Israel J. Math. 169 (2009), 125-153.

O. Guédon and E. Milman, Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave
measures, Geom. Funct. Anal. 21 (2011), 1043-1068.

J. L. Hodges Jr., A bivariate sign test, Ann. Math. Statist. 26 (1955), 523-527.
K. Ito and H. P. McKean, Diffusion processes and their sample paths, Springer-Verlag, 1965.

B. Klartag, On convex perturbations with a bounded isotropic constant, Geom. Funct. Anal. 16 (2006), 1274~
1290.

B. Klartag, A central limit theorem for convex sets, Invent. Math. 168 (2007), 91-131.

B. Klartag, Logarithmic bounds for isoperimetry and slices of convex sets, Ars Inven. Anal. (2023), Paper No.
4, 17 pp.

B. Klartag and J. Lehec, Bourgain’s slicing problem and KLS isoperimetry up to polylog, Geom. Funct. Anal.
32 (2022), no. 5, 1134-1159.

Mathoverflow, Fzxpected value of Tukey’s half-space depth for log-concave measures, Question asked in
https://mathoverflow.net/questions/386972/.

S. Nagy, C. Schiitt and E. M. Werner, Halfspace depth and floating body, Stat. Surv. 13 (2019), 52-118.

A. Naor and D. Romik, Projecting the surface measure of the sphere of £;, Ann. Inst. H. Poincaré Probab.
Statist. 39 (2003), 241-261.

V. H. Nguyen, Dimensional variance inequalities of Brascamp-Lieb type and a local approach to dimensional
Prékopa’s theorem, J. Funct. Anal. 266 (2014), 931-955.

39



31)
32)
33]
34]
35)
36)
37)
38]

[39]

M. Pafis, Threshold for the expected measure of the convex hull of random points with independent coordinates,
Preprint.

G. Paouris and P. Valettas, Variance estimates and almost Euclidean structure, Adv. Geom. 19 (2019), no. 2,
165-189.

P. Pivovarov, Volume thresholds for Gaussian and spherical random polytopes and their duals, Studia Math.
183 (2007), no. 1, 15-34.

R. T. Rockafellar, Convex analysis, Princeton Mathematical Series 28, Princeton University Press, Princeton,
NJ (1970).

R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Second expanded edition. Encyclopedia of Math-
ematics and its Applications 151, Cambridge University Press, Cambridge, 2014.

C. G. Small, Measures of centrality for multivariate and directional distributions, Canad. J. Statist. 15 (1987),
31-39.

J. W. Tukey, Mathematics and the picturing of data, In Proceedings of the International Congress of Mathe-
maticians (Vancouver, B. C., 1974), Vol. 2 523-531. Canad. Math. Congress, Montreal, Que.

R. Vershynin, High-dimensional probability. An introduction with applications in data science, Cambridge
Series in Statistical and Probabilistic Mathematics, 47. Cambridge University Press, Cambridge, 2018.

L. Wang, Heat capacity bound, energy fluctuations and convexity, Ph.D. Thesis, Yale University, 2014.

APOSTOLOS GIANNOPOULOS: School of Applied Mathematics and Physical Sciences, National Technical University
of Athens, Department of Mathematics, Zografou Campus, GR-157 80, Athens, Greece.

E-mail: apgiannop@math.ntua.gr

40



	Introduction
	The origin of the method: the case of the discrete cube
	Notation and background information
	Expected value of the half-space depth
	Random polytopes and the half-space depth
	Bounds for the expected measure of random polytopes
	Comparing half-space depth with the Cramer transform
	Moments of the Cramer transform
	Threshold for the measure: the approach and examples
	Further reading

