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These notes and the associated lectures are inspired by two problems from geometric graph theory.
Sometimes, the tools developed to solve a problem turn out to be more important than the problem
itself. By the end of the lectures, I hope to convince you that that may be the case here.

1 Two Problems

A graph is a pair G = (V,E) where V is a finite set of vertices (also called nodes) and E is a set of
edges where an edge is an unordered pairs of vertices, that is, E = {{x, y} |x, y ∈ V and x 6= y}. In
the edge {x, y}, x and y are the endpoints of the edge and the edge is incident to x and y. The degree
of a vertex is the number of edges incident to that vertex, and the maximum degree over all vertices
of a graph G is denoted by ∆(G). In this document we often denote by n the number of vertices in a
graph G, and call such a graph an n-vertex graph.

A drawing of a graph is a graph representation where the vertices are represented by a set of distinct
points in the plane and where each edge is a simple Jordan arc that intersects no vertex other than its
own two endpoints. Two edges cross if they intersect at some point other than a common endpoint. A
drawing is planar (or crossing-free) if no pair of edges cross.1 A graph is planar if it has a planar
drawing. One can argue that planar graphs are the most studied graphs and they are the key objects
in these notes.

Undefined terms and notation can be found in Diestel’s text [15], freely available here: Diestel’s
textbook.

1.1 Problem 1

A three-dimensional straight-line grid drawing of a graph, henceforth called a 3D grid drawing,
represents the vertices by distinct points in Z3 (called grid-points), and represents each edge as a
line-segment between its endpoints, such that edges only intersect at a common endpoint, and an edge
only intersects a vertex that is an endpoint of that edge.

In contrast to the case in the plane, a folklore result states that every graph has a 3D grid drawing.
Such a drawing can be constructed using the ‘moment curve’ algorithm in which vertex vi, 1 6 i 6 n,
is represented by the grid-point (i, i2, i3). It can be verified that, even in the complete graph Kn, no
two edges cross.

Since every graph has a 3D grid drawing, one is interested in optimizing certain measures of the
aesthetic quality of a drawing. If a 3D grid drawing is contained in an axis-aligned box with side
lengths X − 1, Y − 1 and Z − 1, then we speak of an X × Y ×Z drawing with volume X · Y ·Z. This
definition is formulated so that 2D grid drawings have positive volume (that is area).

Observe that the drawings produced by the moment curve algorithm have O(n6) volume, for any
n-vertex graph. Cohen et al. [11] improved this bound, by proving that if p is a prime with n < p 6 2n,
and each vertex vi is represented by the grid-point (i, i2 mod p, i3 mod p), then there is still no crossing.
This construction is a generalisation of an analogous two-dimensional technique due to Erdős [33].
Furthermore, Cohen et al. [11] proved that the resulting O(n3) volume bound is asymptotically optimal
in the case of the complete graph Kn. It is therefore of interest to identify fixed graph parameters
that allow for 3D grid drawings with small volume. Pach, Thiele, and Tóth [49] proved that every

1Planar drawings are equivalent to planar embeddings. See here for more on graph embeddings
https://en.wikipedia.org/wiki/Graph_embedding.
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graph with bounded chromatic number has a 3D grid drawing with volume O(n2), and this bound is
optimal for the complete bipartite graph Kn/2,n/2.

By the 4-colour theorem, planar graphs have chromatic number 4, thus the aforementioned result
implies that planar graphs have a 3D grid drawing with volume O(n2). More strongly a classical
result by de Fraysseix, Pach, and Pollack [12, 13] states that planar graphs have 2D grid drawing in
O(n2) volume (area) and that the bound is best possible. A major open problem in the area was
to determine if that volume can be improved in 3D. More specifically in 2001 Felsner, Liotta, and
Wismath [36, 37] asked the following problem. The problem remained open for almost 20 years is the
first of the two motivational problems behind these lecture notes.

Problem 1. [37] Does every n-vertex planar graph have a 3D grid drawing with O(n) volume?

1.2 Problem 2

A geometric graph is a graph whose vertices are distinct points in the plane (not necessarily in general
position) and whose edges are straight-line segments between pairs of points. Given a geometric graph
G, the underlying graph of G is a (combinatorial) graph G isomorphic to G. When the meaning is
clear from the context, we may use G both to denote a geometric graph and its underlying graph. If
the underlying graph G of a geometric graph G belongs to a class of graphs K, then we say that G is
a geometric K graph. For example, if K is the class of planar graphs, then G is a geometric planar
graph. Two edges in a geometric graph cross if they intersect at some point other than a common
endpoint. 2 A geometric graph with no pair of crossing edges is called crossing-free.

Consider a geometric graph G with vertex set V (G) = {p1, . . . , pn}. A crossing-free geometric graph
H with vertex set V (H) = {q1, . . . , qn} is called an untangling of G if for all i, j ∈ {1, 2, . . . , n}, qi is
adjacent to qj in H if and only if pi is adjacent to pj in G. Furthermore, if pi = qi then we say that pi
is fixed, otherwise we say that pi is free. If H is an untangling of G with k vertices fixed, then we say
that G can be untangled while keeping k vertices fixed. Clearly only geometric planar graphs can be
untangled. Moreover, since every planar graph is isomorphic to some crossing-free geometric graph
[35, 63], trivially every geometric planar graph can be untangled while keeping at least 0 vertices fixed.

This problem has been implemented as a computer game by John Tantalo (see
https://en.wikipedia.org/wiki/Planarity). The goal of the game is to untangle a given geo-
metric planar graph as fast as possible. In this online game however, the player is restricted to keep
the vertices within the boundaries of a given fixed rectangle. You can try playing a game, here for
example: https://www.jasondavies.com/planarity/. Notice the dramatic rise in difficulty already with
geometric graphs on 20 vertices.

At the 5th Czech-Slovak Symposium on Combinatorics in Prague in 1998, Mamoru Watanabe asked
if every geometric cycle (that is, all polygons) can be untangled while keeping at least εn vertices
fixed, for some ε > 0 . Pach and Tardos [48] answered that question in the negative by providing an
O((n log n)2/3) upper bound on the number of fixed vertices. Furthermore, they proved that every
geometric cycle can be untangled while keeping at least

√
n vertices fixed. This lower bound for cycles

has been improved to near-tight Ω(n2/3) bound by Cibulka [10]. The second motivational problem
behind these lecture notes is the following:

Problem 2. [48] Can every geometric planar graph be untangled while keeping nε vertices fixed, for
some ε > 0?

2In the literature on crossing number it is customary to require that intersecting edges cross ’properly’ and do not
’touch’. Wed to not make such a requirement in this definition of a geometric graph.
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2 Product structure – a tool for Problem 1

2.1 From a geometric to a topological problem

Recall that our goal is to solve Problem 1, that is, to prove that every n-vertex planar graph has a 3D
grid drawing in O(n) volume. Let’s consider a possible shape of an axis-aligned box of volume O(n)
containing such a drawing. It could be an O(1)×O(1)×O(n) box, or an O(

√
n)×O(

√
n)×O(1)

box, or an O(n1/3)×O(n1/3)×O(n1/3) box, among other possibilities.

3D grid drawings that fit in an O(1)×O(1)×O(n) box have important properties that make them
more suitable for conversion to a topological/combinatorial problem. Specifically, notice that if a graph
G has a 3D grid O(1)×O(1)×O(n) drawing D, then all the vertices of G in D lie on O(1) parallel
lines (parallel to z-axis) – see Figure 1. Moreover each of these lines Li defines a linear ordering <i of
the vertices on Li (by increasing z-coordinates). The following is true for these linear orderings. For
every pair of edges vw and xy of G if v and x are on Li; and if y and w on line Lj ; and, if v <i x
then y <j w. This observation leads to a definition of following layouts (void of geometry), called
track layouts. As we will show there is a tight relationship between O(n) volume 3D grid drawings
(specifically O(1)×O(1)×O(n) drawings) and track layouts. We first define them.

Figure 1: O(1)×O(1)×O(n) drawing

Let G be a graph. A (proper) colouring of G is a partition {Vi : i ∈ I} of V (G), where I is a set of
colours, such that for every edge vw of G, if v ∈ Vi and w ∈ Vj then i 6= j. Each set Vi is called a
colour class. A colouring of G with c colours is a c-colouring, and we say that G is c-colourable. The
chromatic number of G, denoted by χ(G), is the minimum c such that G is c-colourable.

If <i is a total order of a colour class Vi, then we call the pair (Vi, <i) a track. If {Vi : i ∈ I} is a
colouring of G, and (Vi, <i) is a track, for each colour i ∈ I, then we say {(Vi, <i) : i ∈ I} is a track
assignment of G indexed by I. Note that at times it will be convenient to also refer to a colour i ∈ I
and the colour class Vi as a track. The precise meaning will always be clear from the context. A
t-track assignment is a track assignment with t tracks.

As illustrated in Figure 2, an X-crossing in a track assignment consists of two edges vw and xy such
that v <i x and y <j w, for distinct tracks Vi and Vj . A t-track assignment with no X-crossing is
called a t-track layout. The track-number of a graph G, denoted by tn(G), is the minimum t such that
G has a t-track layout.

Let {(Vi, <i) : i ∈ I} be a t-track layout of a graph G. The span of an edge vw of G, with respect to
a numbering of the tracks I = {1, 2, . . . , t}, is defined to be |i− j| where v ∈ Vi and w ∈ Vj .

Lemma 1. If a graph G has an A×B × C 3D grid drawing, then G has a 2AB-track layout.
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Figure 2: An example of an X-crossing in a track assignment.

Proof. Let Vx,y be the set of vertices of G with an x-coordinate of x and a y-coordinate of y, where
without loss of generality 1 6 x 6 A and 1 6 y 6 Y . Order each set Vx,y by the z-coordinates of
its elements, {Vx,y : 1 6 x 6 A, 1 6 y 6 Y }. In the resulting ordered set Vx,y there may be edges
between consecutive vertices in the order (called intralayer edges) – resulting in “improper” AB-track
assignment. Without these intralayer edges, there is no X-crossing however in such “improper” track
assignment, as otherwise there would be a crossing in the original drawing. To make this track
assignment proper (that is to get rid of intralayer edges) we move every second vertex from Vx,y to
V ′x,y such that V ′x,y inherits its total order from the original V ′x,y. The resulting layout is 2AB-track
layout.

We now prove the converse of Lemma 1. The proof is inspired by the generalisations of the moment
curve algorithm by Cohen et al. [11] and Pach et al. [49], described in Section 1.1. Loosely speaking,
Cohen et al. [11] allow three ‘free’ dimensions, whereas Pach et al. [49] use the assignment of vertices
to colour classes to ‘fix’ one dimension with two dimensions free. We use an assignment of vertices to
tracks to fix two dimensions with one dimension free.

Lemma 2. If a graph G has a k-track layout, then G has a k× 2k× 2k ·n′ three-dimensional drawing,
where n′ is the maximum number of vertices in a track.

Proof. Suppose {(Vi, <i) : 1 6 i 6 k} is the given k-track layout. Let p be the smallest prime such
that p > k. Then p 6 2k by Bertrand’s postulate. For each i, 1 6 i 6 k, represent the vertices in Vi
by the grid-points

{(i, i2 mod p, t) : 1 6 t 6 p · |Vi|, t ≡ i3 (mod p)} ,

such that the Z-coordinates respect the given total order <i. Draw each edge as a line-segment
between its end-vertices. Suppose two edges e and e′ cross such that their end-vertices are at distinct
points (iα, i

2
α mod p, tα), 1 6 α 6 4. Then these points are coplanar, and if M is the matrix

M =


1 i1 i21 mod p t1
1 i2 i22 mod p t2
1 i3 i23 mod p t3
1 i4 i24 mod p t4


then the determinant det(M) = 0. We proceed by considering the number of distinct tracks N =
|{i1, i2, i3, i4}|.

• N = 1: By the definition of an track layout, e and e′ do not cross.

• N = 2: If either edge is intra-track then e and e′ do not cross. Otherwise neither edge is intra-track,
and since there is no X-crossing, e and e′ do not cross.
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• N = 3: Without loss of generality i1 = i2. It follows that det(M) = (t2 − t1) · det(M ′), where

M ′ =

1 i2 i22 mod p
1 i3 i23 mod p
1 i4 i24 mod p

 .

Since t1 6= t2, det(M ′) = 0. However, M ′ is a Vandermonde matrix modulo p, and thus

det(M ′) ≡ (i2 − i3)(i2 − i4)(i3 − i4) (mod p),

which is non-zero since i2, i3 and i4 are distinct and p is a prime, a contradiction.

• N = 4: Let M ′ be the matrix obtained from M by taking each entry modulo p. Then det(M ′) = 0.
Since tα ≡ i3α (mod p), 1 6 α 6 4,

M ′ ≡


1 i1 i21 i31
1 i2 i22 i32
1 i3 i23 i33
1 i4 i24 i34

 (mod p) .

Since each iα < p, M ′ is a Vandermonde matrix modulo p, and thus

det(M ′) ≡ (i1 − i2)(i1 − i3)(i1 − i4)(i2 − i3)(i2 − i4)(i3 − i4) (mod p),

which is non-zero since iα 6= iβ and p is a prime. This contradiction proves there are no edge crossings.
The produced drawing is at most k × 2k × 2k · n′.

Lemma 1 and Lemma 2 imply the following theorem.

We say that a family of graphs has an O(1) track-number, that is bounded track-number, if there
exists a constant c such that every graph in the family has track-number at most c. Similarly we say
that a family of graphs admits O(1)×O(1)×O(n) 3D grid drawings if there exists a constant c′ such
that every n-vertex graph in the family has a c′ × c′ × c′ · n 3D grid drawing.

Theorem 3. A family of graphs has an O(1) track-number if and only if it admits an O(1)×O(1)×O(n)
3D grid drawing.

2.2 Track layouts and queue layouts: the relationship

Theorem 3 tells us that proving that planar graphs have an O(1) track-number would answer Problem 1.

Before attempting to answer if planar graphs have an O(1) track-number, I would like give that
question some historical perspective. In the early 90’s Heath and Rosenberg [46] introduced and
studied the so called queue layouts of graphs. A queue layout of a graph G consists of a vertex-ordering
σ of G, and a partition of E(G) into queues, such that no two edges in the same queue are nested
with respect to σ. That is, there are no edges vw and xy in a single queue with v <σ x <σ y <σ w.
See Figure 3 (a). A queue layout with q queues is called a q-queue layout and a graph that admits a
q-queue layout is called a q-queue graph. The minimum number of queues3 in a queue layout of G is
called the queue-number of G, and is denoted by qn(G). See Figure 3 (b) and (c).

3Queue layouts have been extensively studied [34, 41, 42, 46, 51, 56, 59, 60] with applications in parallel process
scheduling, fault-tolerant processing, matrix computations, and sorting networks (see [51] for a survey). Queue layouts
of directed acyclic graphs [4, 44, 45, 51] and posets [43, 51] have also been investigated.
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Heath and Rosenberg [46] characterized 1-queue graphs as the ‘arched levelled planar’ graphs, and
proved that it is NP-complete to recognize such graphs. In a follow-up work Heath et al. [42]
conjectured that planar graphs have an O(1) (i.e., bounded) queue layout. That conjecture remained
open for 27 years before being resolved with the tools that I will present in the next section, the
same tools used to answer Problem 1. The full relationship between linear volume 3D grid drawings,
O(1) track layouts and O(1) queue layouts will become clear shortly. In the 2000s, it was shown that
Heath, Leighton and Rosenberg’s [42] conjecture is equivalent to conjecturing that planar graphs have
bounded track-number, as shown in the following two lemmas.

Lemma 4. [28] For every graph G, qn(G) 6 tn(G)− 1.

The proof of Lemma 4 simply puts the tracks one after another to produce a queue layout. For a
simple example consider the transformation of a2-track layout to a1-queue layout in Figure 4

A (partial) converse to Lemma 4 is also true but more complex to prove.

Lemma 5 ([30]). There is a function f such that tn(G) 6 f(qn(G)) for every graph G. In particular,
every graph with queue-number at most k has track-number at most 4k · 4k(2k−1)(4k−1).

Lemma 4 and Lemma 5 together say that queue-number and track-number are tied.

2.3 Track layouts and queue layouts of various graph classes

Recall that our goal is to answer Problem 1. Theorem 3, Lemma 4 and Lemma 5 together tell us that
proving that planar graphs have O(1) track-number, or equivalently O(1) queue-number, implies an
affirmative answer to Problem 1.

Let’s try to get some intuition about how one can go about constructing track layouts and queue
layouts of graphs. We start by considering the simplest of planar graphs, namely, trees.

Queue layouts and track layouts are inherently related to breadth-first (BFS) search. The BFS ordering
of the vertices of a tree has no two nested edges, and thus defines a 1-queue layout, as illustrated in
Figure 5.

The following result is implicit in the work of Felsner et al. [37].

Lemma 6 ([37]). Every tree T has a 3-track layout.

(a) (b) (c)

Figure 3: (a) Two nested edges. (b) 1-queue layout. (c) A way to visualize a 5-queue layout as having
1 queue in each page of a book.
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Figure 4: Converting a 2-track layout to 1-queue layout.

Figure 5: A 1-queue layout of a tree.

Proof by picture. Root T at an arbitrary node r. Start with a planar drawing of T where vertices at
distance d from the root are on the line y = −d. To get a 1-queue layout of T order the vertices from
top to bottom, left to right. To get a 3-track layout “wrap” the drawing onto 3 tracks as in Figure 6

Figure 6: A 3-track layout of a tree.

The next simplest class of planar graphs to consider are outerplanar graphs. A graph is outerplanar if
it has a planar drawing with all vertices on one face (e.g., the outer face).

Lemma 7 ([37]). Every outerplanar graph has a 6-track layout and a 2-queue layout.4

What trees and outerplanar graphs have in common is that they are, vaguely speaking, tree-like.
More specifically, they have bounded treewidth. Trees have treewidth 1 and outerplanar graphs have
treewidth 2. Treewidth, first defined by Halin [39], although largely unnoticed until independently
rediscovered by Robertson and Seymour [57] and Arnborg and Proskurowski [3], is a measure of the
similarity of a graph to a tree (see Section 2.5 for the definition). Treewidth plays a critical role in

4These results are implicit in [37] as their definition of track layouts are slightly different.
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Robertson and Seymour’s graph minor theory and in graph algorithms. Many problems that are NP
complete on general graphs have polynomial-time solutions on graphs of bounded treewidth.

It turns out that graphs of bounded treewidth will play an important role in the resolution of Problem 1.
We will define treewidth in Section 2.5 but here is why they may be useful. It has been known for a
while that graphs of bounded treewidth have bounded queue number and track-number.

Lemma 8 ([28]). Graphs of bounded treewidth have bounded track-number and bounded queue-number.

However Lemma 8 does not resolve Problem 1 since there are planar graphs that have unbounded
treewidth. For example it is known that the

√
n×
√
n planar grid graph has treewidth

√
n. However

grids too have queue number 1 as illustrated in Figure 7 below.

Figure 7: A 1-queue layout of a grid.

2.4 Track layouts and queue layouts via graph products

The strong product of graphs A and B, denoted by A�B, is the graph with vertex set V (A)× V (B),
where distinct vertices (v, x), (w, y) ∈ V (A)× V (B) are adjacent if:

• v = w and xy ∈ E(B), or
• x = y and vw ∈ E(A), or
• vw ∈ E(A) and xy ∈ E(B).

See Figure 8 for an illustration.

Figure 8: A strong product of a graph H and a path P .

Wood [64] proved the following lemma.

Lemma 9. [64] For every graph H and every path P , qn(H � P ) 6 3 qn(H) + 1 (and thus there is a
function f such that tn(H � P ) 6 f(tn(H)).
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Proof by picture. See Figure 9.

Figure 9: An illustration for the proof of Lemma 9

During a talk in Banff in 2008, Wood made, what he considered a wild conjecture. He conjectured
something similar to the following statement: every planar graph is a subgraph of the strong product
of a path and a bounded treewidth graph.5 Eleven years later it turned out that this “wild” conjecture
is true. Together with everything presented in the previous sections it not only answered in affirmative
Problem 1 but also the 27-year old conjecture by Heath, Leighton and Rosenberg’s [42] mentioned
already and many other open problems that I did not get to mention.

The next section will be dedicated to proving that “wild conjecture”. I should add that at the time we
proved this structural result for planar graphs, we expressed it in terms of graph partitions (to be
introduced) and it took us a while to realize that what in fact we also proved is an affirmative answer
to the “wild” conjecture.

It is the main tool that allowed for resolution of Problem 1 and many other open proplems.

2.5 Product structure of planar graphs

This section is dedicated to proving the main tool used to resolve Problem 1. In particular this section
proves the following theorem.

Theorem 10. [24, 25] Every planar graph is a subgraph of H � P for some graph H with treewidth
at most 8 and some path P .

Subsequently, the treewidth 8 bound was improved to 6 [62] and a similar theorem was proved for
other classes of graphs [25, 29]. That, however, is beyond the scope of these lecture notes.

5To be precise, Wood [65] conjectured that for every planar graph G there are graphs X and Y , such that both X
and Y have bounded treewidth, Y has bounded maximum degree, and G is a minor of X � Y , such that the preimage
of each vertex of G has bounded radius in X � Y . Theorem 10 is stronger than this conjecture since it has a subgraph
rather than a shallow minor, and Y is a path.
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To prove this theorem we need to introduce some useful notation.

Throughout this Section 2, we use the notation
−→
X to refer to a particular linear ordering of a set X.

Layerings.

A layering of a graph G is an ordered partition (V0, V1, . . . ) of V (G) such that for every edge vw ∈ E(G),
if v ∈ Vi and w ∈ Vj , then |i− j| 6 1. If i = j then vw is an intra-level edge. If |i− j| = 1 then vw is
an inter-level edge.

If r is a vertex in a connected graph G and Vi := {v ∈ V (G) : distG(r, v) = i} for all i > 0, then
(V0, V1, . . . ) is called a BFS layering of G. Associated with a BFS layering is a BFS spanning tree T
obtained by choosing, for each non-root vertex v ∈ Vi with i > 1, a neighbour w in Vi−1, and adding
the edge vw to T . Thus distT (r, v) = distG(r, v) for each vertex v of G.

These notions extend to disconnected graphs. If G1, . . . , Gc are the components of G, and rj is a
vertex in Gj for j ∈ {1, . . . , c}, and Vi :=

⋃c
j=1{v ∈ V (Gj) : distGj (rj , v) = i} for all i > 0, then

(V0, V1, . . . ) is called a BFS layering of G.

Treewidth.

First we introduce the notion of H-decomposition and tree-decomposition. For graphs H and G, an
H-decomposition of G consists of a collection (Bx ⊆ V (G) : x ∈ V (H)) of subsets of V (G), called
bags, indexed by the vertices of H, and with the following properties:

• for every vertex v of G, the set {x ∈ V (H) : v ∈ Bx} induces a non-empty connected subgraph
of H, and

• for every edge vw of G, there is a vertex x ∈ V (H) for which v, w ∈ Bx.

The width of such an H-decomposition is max{|Bx| : x ∈ V (H)}− 1. The elements of V (H) are called
nodes, while the elements of V (G) are called vertices.

A tree-decomposition is a T -decomposition for some tree T . The treewidth of a graph G is the minimum
width of a tree-decomposition of G. See Figure 10 for illustration. Treewidth is particularly important
in structural and algorithmic graph theory; see [5, 40, 55] for surveys.

Figure 10: A graph and its tree-decomposition of width 2.

Partitions and Layered Partitions.

The following definitions are central notions in this chapter. A vertex-partition, or simply partition,
of a graph G is a set P of non-empty sets of vertices in G such that each vertex of G is in exactly
one element of P. Each element of P is called a part. The quotient (sometimes called the touching
pattern) of P is the graph, denoted by G/P, with vertex set P where distinct parts A,B ∈ P are
adjacent in G/P if and only if some vertex in A is adjacent in G to some vertex in B.
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A partition of G is connected if the subgraph induced by each part is connected. In this case, the
quotient is the minor of G obtained by contracting each part into a single vertex. Our results for
queue layouts do not depend on the connectivity of partitions. But we consider it to be of independent
interest that partitions constructed in this paper are connected. Then the quotient is a minor6 of the
original graph.

A partition P of a graph G is called an H-partition if H is a graph that contains a spanning
subgraph isomorphic to the quotient G/P. Alternatively, an H-partition of a graph G is a partition
(Ax : x ∈ V (H)) of V (G) indexed by the vertices of H, such that for every edge vw ∈ E(G), if v ∈ Ax
and w ∈ Ay then x = y (and vw is called an intra-bag edge) or xy ∈ E(H) (and vw is called an
inter-bag edge). The width of such an H-partition is max{|Ax| : x ∈ V (H)}. Note that a layering is
equivalent to a path-partition.

A tree-partition is a T -partition for some tree T . Tree-partitions are well studied with several
applications [6, 16, 17, 58, 66]. For example, every graph with treewidth k and maximum degree ∆
has a tree-partition of width O(k∆); see [16, 66].

A key innovation of this chapter is to consider a layered variant of partitions The layered width of a
partition P of a graph G is the minimum integer ` such that for some layering (V0, V1, . . . ) of G, each
part in P has at most ` vertices in each layer Vi.

Throughout this paper we consider partitions with bounded layered width such that the quotient has
bounded treewidth. We therefore introduce the following definition. A class G of graphs is said to
admit bounded layered partitions if there exist k, ` ∈ N such that every graph G ∈ G has a partition P
with layered width at most ` such that G/P has treewidth at most k.

The next observation follows immediately from the definitions H-partition of layered width.

Observation 11. For every graph H, a graph G has an H-partition of layered width at most ` if and
only if G is a subgraph of H � P �K` for some path P .

a

b c d

e f g h i

j k l m n o

a

b c d

e f g h i

j k l m n o

a

b c d

e f g h i

j k l m n o

a

b c d

e f g h i

j k l m n o

Figure 11: Illustration for Observation 11 of conversion of H-partition of layered width 1 to H � P .

Thus to prove Theorem 10 it suffices to prove that every planar graph has an H-partition of bounded
layered width where H has bounded treewidth.

Thus our goal is to show that planar graphs admit bounded layered partitions, which is achieved in
the following key contribution.

Theorem 12. Every planar graph G has a connected partition P with layered width 1 such that G/P
has treewidth at most 8. Moreover, there is such a partition for every BFS layering of G.

6https://en.wikipedia.org/wiki/Graph_minor
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We now set out to prove Theorem 12. The proof is inspired by the following elegant result of Pilipczuk
and Siebertz [52]: Every planar graph G has a partition P into geodesics such that G/P has treewidth
at most 8. Here, a geodesic is a path of minimum length between its endpoints. We consider the
following particular type of geodesic. If T is a tree rooted at a vertex r, then a non-empty path
(x1, . . . , xp) in T is vertical if for some d > 0 for all i ∈ {1, . . . , p} we have distT (xi, r) = d+ i. The
vertex x1 is called the upper endpoint of the path and xp is its lower endpoint. Note that every vertical
path in a BFS spanning tree is a geodesic. Thus the next theorem strengthens the result of Pilipczuk
and Siebertz [52].

Theorem 13. Let T0 be a rooted spanning tree in a connected planar graph G0. Then G0 has a
partition P into vertical paths in T0 such that G0/P has treewidth at most 8.

Proof of Theorem 12 assuming Theorem 13. We may assume that G is connected (since if each com-
ponent of G has the desired partition, then so does G). Let T be a BFS spanning tree of G. By
Theorem 13, G has a partition P into vertical paths in T such that G/P has treewidth at most 8.
Each path in P is connected and has at most one vertex in each BFS layer corresponding to T . Hence
P is connected and has layered width 1.

The proof of Theorem 13 is an inductive proof of a stronger statement given in Lemma 15 below.
A plane graph is a graph embedded in the plane with no crossings. A near-triangulation is a plane
graph, where the outer-face is a simple cycle, and every internal face is a triangle. For a cycle C, we
write C = [P1, . . . , Pk] if P1, . . . , Pk are pairwise disjoint non-empty paths in C, and the endpoints of
each path Pi can be labelled xi and yi so that yixi+1 ∈ E(C) for i ∈ {1, . . . , k}, where xk+1 means x1.
This implies that V (C) =

⋃k
i=1 V (Pi).

Proof of Theorem 13 assuming Lemma 15. Let v be the root of T0. Let G be a plane triangulation
containing G0 as a spanning subgraph with v on the outer-face of G. Let G+ be the plane triangulation
obtained from G by adding one new vertex r into the outer-face of G and adjacent to every vertex on
the boundary of the outer-face of G. Let T be the spanning tree of G+ obtained from T0 by adding r
and the edge rv. Consider T to be rooted at r. The three vertices on the outer-face of G are vertical
(singleton) paths in T . Thus G satisfies the assumptions of Lemma 15, which implies that G has a
partition P into vertical paths in T such that G/P has treewidth at most 8. Note that G0/P is a
subgraph of G/P (since G0 ⊆ G and T [V (G0)] = T0). Hence G0/P has treewidth at most 8.

Our proof of Lemma 15 employs the following well-known variation of Sperner’s Lemma (see [2]):

Lemma 14 (Sperner’s Lemma). Let G be a near-triangulation whose vertices are coloured 1, 2, 3, with
the outer-face F = [P1, P2, P3] where each vertex in Pi is coloured i. Then G contains an internal face
whose vertices are coloured 1, 2, 3.

Lemma 15. Let G+ be a plane triangulation, let T be a spanning tree of G+ rooted at some vertex
r on the outer-face of G+, and let P1, . . . , Pk for some k ∈ {1, 2, . . . , 6}, be pairwise disjoint vertical
paths in T such that F = [P1, . . . , Pk] is a cycle in G+. Let G be the near-triangulation consisting of
all the edges and vertices of G+ contained in F and the interior of F .

Then G has a partition P into vertical paths in T where P1, . . . , Pk ∈ P, such that the quotient
H := G/P is planar and has a tree-decomposition in which every bag has size at most 9 and some bag
contains all the vertices of H corresponding to P1, . . . , Pk.
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Proof. The proof is by induction on n = |V (G)|. If n = 3, then G is a 3-cycle and k 6 3. The partition
into vertical paths is P = {P1, . . . , Pk}. The tree-decomposition of H consists of a single bag that
contains the k 6 3 vertices corresponding to P1, . . . , Pk.

For n > 3 we wish to make use of Sperner’s Lemma on some (not necessarily proper) 3-colouring of
the vertices of G. We begin by colouring the vertices of F , as illustrated in Figure 12. There are three
cases to consider:

1. If k = 1 then, since F is a cycle, P1 has at least three vertices, so P1 = [v, P ′1, w] for two distinct
vertices v and w. We set R1 := v, R2 := P ′1 and R3 := w.

2. If k = 2 then we may assume without loss of generality that P1 has at least two vertices so
P1 = [v, P ′1]. We set R1 := v, R2 := P ′1 and R3 := P2.

3. If k ∈ {3, 4, 5, 6} then we group consecutive paths by taking R1 := [P1, . . . , Pbk/3c], R2 :=
[Pbk/3c+1, . . . , Pb2k/3c] and R3 := [Pb2k/3c+1, . . . , Pk]. Note that in this case each Ri consists of
one or two of P1, . . . , Pk.

For i ∈ {1, 2, 3}, colour each vertex in Ri by i. Now, for each remaining vertex v in G, consider the
path Pv from v to the root of T . Since r is on the outer-face of G+, Pv contains at least one vertex of
F . If the first vertex of Pv that belongs to F is in Ri then assign the colour i to v. In this way we
obtain a 3-colouring of the vertices of G that satisfies the conditions of Sperner’s Lemma. Therefore,
by Sperner’s Lemma there exists a triangular face τ = v1v2v3 of G whose vertices are coloured 1, 2, 3
respectively.

r

P1

P2

P3

P4 R3 R1

R2

r

τ

(a) (b)

R3 R1

R2

r

τ

Q′
3

Q′
1

Q′
2

G3

G1

G2

(c) (d)

Figure 12: The inductive proof of Lemma 15: (a) the spanning tree T and the paths P1, . . . , P4; (b) the
paths R1, R2, R3, and the Sperner triangle τ ; (c) the paths Q′1, Q′2 and Q′3; (d) the near-triangulations
G1, G2, and G3, with the vertical paths of T on F1, F2, and F3.
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For each i ∈ {1, 2, 3}, let Qi be the path in T from vi to the first ancestor v′i of vi in T that is contained
in F . Observe that Q1, Q2, and Q3 are disjoint since Qi consists only of vertices coloured i. Note
that Qi may consist of the single vertex vi = v′i. Let Q

′
i be Qi minus its final vertex v′i. Imagine for a

moment that cycle F is oriented clockwise, which defines an orientation of R1, R2 and R3. Let R−i be
the subpath of Ri that contains v′i and all vertices that precede it, and let R+

i be the subpath of Ri
that contains v′i and all vertices that succeed it. Again, R−i and R+

i may be empty if v′i is the first
and/or last vertex of Ri.

Consider the subgraph of G that consists of the edges and vertices of F , the edges and vertices of τ ,
and the edges and vertices of Q1 ∪Q2 ∪Q3. This graph has an outer-face, an inner face τ , and up to
three more inner faces F1, F2, F3 where Fi = [Q′i, R

+
i , R

−
i+1, Q

′
i+1], where we use the convention that

Q4 = Q1 and R4 = R1. Note that Fi may be empty in the sense that [Q′i, R
+
i , R

−
i+1, Q

′
i+1] may consist

of a single edge vivi+1.

Consider any non-empty face Fi = [Q′i, R
+
i , R

−
i+1, Q

′
i+1]. Note that these four paths are pairwise

disjoint, and thus Fi is a cycle. If Q′i and Q′i+1 are non-empty, then each is a vertical path in T .
Furthermore, each of R−i and R+

i+1 consists of at most two vertical paths in T . Thus, Fi is the
concatenation of at most six vertical paths in T . Let Gi be the near-triangulation consisting of all the
edges and vertices of G+ contained in Fi and the interior of Fi. Observe that Gi contains vi and vi+1

but not the third vertex of τ . Therefore Fi satisfies the conditions of the lemma and has fewer than n
vertices. So we may apply induction on Fi to obtain a partition Pi of Gi into vertical paths in T , such
that Hi := Gi/Pi has a tree-decomposition (Bi

x : x ∈ V (Ji)) in which every bag has size at most 9,
and some bag Bi

ui contains the vertices of Hi corresponding to the at most six vertical paths that
form Fi. We do this for each i ∈ {1, 2, 3} such that Fi is non-empty.

We now construct the desired partition P of G and tree-decomposition of H.

We start by defining P . Initialise P := {P1, . . . , Pk}. Then add each Q′i to P , provided it is non-empty.
Finally for i ∈ {1, 2, 3}, each path in Pi is either fully contained in Fi or it is an internal path with
none of its vertices on Fi. Add all these internal paths of Pi to P . By construction, P partitions V (G)
into vertical paths in T and it contains P1, . . . , Pk.

The graph H obtained from G by contracting each path in P is planar since G is planar and G[V (P )]
is connected for each P ∈ P.

Next we exhibit the desired tree-decomposition (Bx : x ∈ V (J)) of H. Let J be the tree obtained
from the disjoint union of J1, J2 and J3 by adding one new node u adjacent to u1, u2 and u3. (Recall
that ui is the node of Ji for which the bag Bi

ui contains the vertices of Hi obtained by contracting the
paths that form Fi.) For each node x ∈ V (Ji), initialise Bx := Bi

x. Let the bag Bu contain all the
vertices of H corresponding to P1, . . . , Pk, Q

′
1, Q

′
2, Q

′
3. It is helpful to think of J as being rooted at u.

Since k 6 6, |Bu| 6 9.

The resulting structure, (Bx : x ∈ V (J)), is not yet a tree-decomposition of H since some bags may
contain vertices of Hi that are not necessarily vertices of H (namely, vertices of Hi that are obtained by
contracting paths in Pi that are on F .) We remedy that now. Recall that vertices of Hi, i ∈ {1, 2, 3},
correspond to contracted paths in Pi. Each path P ∈ Pi that is in the cycle F is either a path Pj
or a subpath of Pj for some j ∈ {1, . . . , k}. For each such path P , for x ∈ V (J), in bag Bx, replace
each instance of the vertex of Hi corresponding to P by the vertex of H corresponding to Pj . This
completes the description of (Bx : x ∈ V (J)). Clearly, |Bx| 6 9 for every x ∈ V (J). In remains to
prove that (Bx : x ∈ V (J)) is indeed a tree-decomposition of H.

We first show that the above renaming of vertices does not cause any problems. In particular, it is

15



possible that some pair of distinct vertices of Hi is replaced by a single vertex of H corresponding to
some path Pj . However, by construction, this only happens for two vertices of Hi that correspond to
two consecutive paths of Pi on F , thus these two vertices are adjacent in Hi. Consequently, the two
subtrees of Ji whose corresponding bags contain these two vertices have at least one node in common
and thus the set of nodes of J whose bags contain the vertex corresponding to Pj is a subtree of J . In
fact, renaming these two vertices is equivalent to contracting the edge between them in Hi. Similarly,
if there is an edge between a pair of vertices in Hi then some bag Bi

x contains both of these vertices
and therefore some bag Bx (where x ∈ V (J)) contains the corresponding vertex or vertices of H.

Now we are ready to show that, for each vertex a of H, the set {x ∈ V (J) : a ∈ Bx} forms a subtree of
J . The only vertices of G that may appear in Gi and Gj for i 6= j are those in P1, . . . , Pk, Q1, Q2, Q3.
The vertices of H obtained by contracting each of these paths are the only vertices of H that may
appear in more than one of our tree-decompositions of G1, G2 and G3. The bag Bu contains all of
these vertices. If one such vertex a appears in the tree-decomposition of Gi for some i ∈ {1, 2, 3}, then
the set of nodes of Ji whose bags contain a is a subtree of Ji by the above explanation on the effects
of vertex replacing. The vertex a is in Bi

ui and is in Bu. Since u and ui are adjacent in J , the set of
nodes of J whose bags contain a is a subtree of J .

Finally we show that, for every edge ab of H, there is a bag Bx that contains a and b. If a and b
are both obtained by contracting any of P1, . . . , Pk, Q1, Q2, Q3, then a and b both appear in Bu. If a
and b are both in Hi for some i ∈ {1, 2, 3}, then some bag Bi

x contains both a and b, by the above
explanation on the effects of vertex replacing. The only possibility that remains is that a is obtained
by contracting a path Pa in Gi − V (Fi) and b is obtained by contracting a path Pb not in Gi. But in
this case Fi separates Pa from Pb so the edge ab is not present in H.

Theorem 12 and Observation 11 prove Theorem 10.

2.6 Solution to Problem 1 and other applications

Corollary 1. [25] Problem 1 has an affirmative answer. In particular, every n-vertex planar graph G
has a 3D grid drawing with O(n) volume.

Proof. Theorem 12 and Observation 11 imply Theorem 10. Theorem 10, Lemma 9 and Lemma 8
imply that planar graphs have bounded track-number. Then Theorem 3 implies the claimed result.

Similarly, the results presented in the previous sections solve the 27-year old problem by Heath,
Leighton and Rosenberg’s [42].

Corollary 2. [25] Every planar graph has bounded queue number.

Proof. Theorem 12 and Observation 11 imply Theorem 10. Theorem 10, Lemma 9 and Lemma 8
imply that planar graphs have bounded queue-number.

Theorem 3 and Corollary 2 imply the following result.

Corollary 3. [25] Every planar graph has bounded track-number.

For more applications and generalizations of product structure theory see: [7, 9, 14, 19–21, 29]
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3 Collinear sets – a tool for Problem 2

The goal of this section is to solve Problem 2 and in the process introduce a number of useful geometric
and graph theoretic tools. We start with a very simple observation – yet one that raises two key
questions about untangling of geometric planar graphs.

Lemma 16. Let H be an untangling of some geometric planar graph G. Let R be a set of vertices of
G such that each vertex of R is on the y-axis in H and has the same y-coordinate in H as in G. Then
there exists an untangling H ′ of G in which the vertices in R are fixed.

Proof. The proof uses the fact that it is possible to perturb the vertices of a crossing-free geometric
graph without introducing crossings. More precisely, for any crossing-free geometric graph there
exists a value ε > 0 such that each vertex can be moved a distance of at most ε, and the resulting
geometric graph is also crossing-free. The maximum value ε for which this property holds is called the
tolerance of the arrangement of segments. This concept, both for the geometric realization and the
combinatorial meaning of the graphs was systematically studied in [1, 53].

Consider the untangling H of G and let ε > 0 be the tolerance of H. Let X denote the maximum
absolute value of an x-coordinate in G of a vertex in R. Let H ′′ be the geometric graph obtained from
H as follows. For each vertex v ∈ R positioned at (x, y) in G, move v from (0, y) in H to (xε/X, y)
in H ′′. The vertices not in R are unmoved. So each vertex moves a distance of at most ε, and H ′′
is crossing-free. Scale H ′′ by multiplying the x-coordinates of all vertices in H ′′ by X/ε to obtain a
crossing-free geometric graph H ′. Then every vertex of R has the same location in H ′ as it does in G.
Thus H ′ is an untangling of G that keeps the vertices of R fixed.

A straight-line crossing-free drawing of a planar graph G is any crossing-free geometric graph isomorphic
to G. The previous lemma hints at a possible relationship between Problem 2 and an existence of
straight-line crossing-free drawings with many points on one line. Let’s explore that direction. Suppose
we are given a geometric planar graph G to untangle. Suppose that its underlying graph G has a
straight-line crossing-free drawing with, vaguely speaking, lots of vertices on a line. Does Lemma 16
imply that G can be untangled while keeping lots of vertices fixed? Let’s be more precise.

A set of vertices S ⊆ V (G) in a planar graph G is a collinear set if G has a straight-line crossing-free
drawing in which all vertices in S are mapped to a single line, see Figure 13. For ease of presentation
we will always assume that that line is the y-axis. That can always be achieved by appropriate rotation
of the drawing. Let v(G) denote the size of the largest collinear set of a planar graph G.

We are now ready to ask a more precise question. Does there exist an unbounded increasing function
f such that for every geometric planar graph G (with the underlying graph G) can be untangled while
keeping f(v(G)) vertices fixed? While hinting at a possible relationship, Lemma 16 does not answer
this question. The collinear set implicit in Lemma 16, the set R, must meet an extra condition (and a
strong one at that) that each vertex in R has the same y-coordinate in a straight-line crossing-free
drawing H of G as in G.

That motivates the following notion. A set R ⊆ V (G) is a free collinear set if there exists a total order
<R of R (called a good ordering) such that, given any set of |R| points on a line ` (assume again that
the line is the y-axis), graph G has a straight-line crossing-free drawing where the vertices in R are
mapped to the given points on ` and their order on ` matches the order <R. Let v(G) denote the
size of the largest free collinear set of a planar graph G. Clearly every free collinear set is a collinear
set, and thus v(G) 6 v(G), for every planar graph G. The other way around is not clear, in fact it is
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Figure 13: The 4 red vertices form a collinear set S.

not even clear if there exists an increasing unbounded function g such that for every planar graph G,
v(G) > g(v(G)).

Problem (?). Does there exists an increasing unbounded function g such that for every planar graph
G, v(G) > g(v(G))?

Let’s leave this key question aside for now and demonstrate first the usefulness of free collinear set for
Problem 2 in the next lemma.

Lemma 17. [8] Let G be a geometric planar graph and G its underlying graph. G can be untangled

while keeping
√

v(G) vertices fixed.

Proof. We may assume (by appropriate rotation of the coordinate system) that no two vertices in G
have the same y-coordinates. Let σ denote the total order of vertices of G by their y-coordinates in G.

Let R be a largest free collinear set of G and let <R denote its good ordering. By the Erdős-

Szekeres Theorem [32], there exists S ⊆ R such that |S| >
√
|R| (and thus |S| >

√
v(G)), and S is

monotonically increasing or monotonically decreasing in <R and σ. By appropriate rotation of the
coordinate system, we may assume that S is monotonically increasing in <R and σ. By the definition
of free collinear set, G has a straight-line crossing-free drawing where vertices of S are placed on the
y-axis and each vertex in S has the same y-coordinate in that drawing as in G. Lemma 16 then implies
that G can be untangled while keeping all the vertices in S fixed. That completes the proof given that

the size of S is at least
√

v(G).

This lemma implies that if there exists ε > 0 such that every planar graph G has free collinear set of
size v(G) > nε, then Problem 2 has an affirmative answer.

How would one go about proving that planar graphs have such large free collinear sets? Free collinear
sets do not seem the easiest objects to understand so maybe we can start by trying to prove that
planar graphs have large collinear sets. The following section and its main lemma sheds light on how
to look for collinear sets. Keep in mind though that we are yet to determine if collinear sets are
helpful for finding free collinear sets, or more precisely we are yet to determine if Problem (?) has an
affirmative answer.
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3.1 From a geometric to a topological problem

In this section we show that the problem of determining the existence of a large collinear set in a
planar graph, which is geometric by definition, can be transformed into a purely topological problem.

Given a planar drawing Γ of a planar graph G, we say that an open simple (i.e., non-self-intersecting)
curve λ is good for Γ if, for each edge e of G, curve λ either entirely contains e or has at most one point
in common with e (if λ passes through an endpoint of e, that counts as a common point). See Figure
14 (a) for an example of a good curve. Planar graphs may have many planar drawings/embeddings.
(Recall that planar drawings are equivalent to planar embeddings. Follow this link for more on graph
embeddings.) A good curve in any one of these drawings/embeddings is an object of our interest. In
particular, we say that a planar graph has a good curve if some planar embedding of that graph does.
Given a planar embedding of G and a good curve λ in that embedding, we denote by RG,λ the only
unbounded region of the plane defined by that embedding of G and λ. Curve λ is proper if both of its
endpoints are incident to RG,λ. Again, see Figure 14 (a) for an example of a proper good curve. We
have the following.

Theorem 18. A planar graph G has a straight-line crossing-free drawing with x collinear vertices,
if and only if G has a proper good curve that passes through x vertices of G. Equivalently, G has a
collinear set of size x, that is v(G) = x, if and only if G has a proper good curve that passes through x
vertices of G.

Proof. For the necessity, assume that G has a straight-line crossing-free drawing Γ with x vertices
lying on a common line `. We transform ` into a straight-line segment λ by cutting off two disjoint
half-lines of ` in the outer face of G. This immediately implies that λ is proper. Further, λ passes
through x vertices of G since ` does. Finally, if an edge e has two common points with λ, then λ
entirely contains it, since λ is a straight-line segment and since e is a straight-line segment in Γ.

For the sufficiency, assume that G has a proper good curve λ passing through x of its vertices; see
Fig. 14(a). Augment G by adding to it (refer to Fig. 14(b)): (i) a dummy vertex at each proper
crossing between an edge and λ; (ii) two dummy vertices at the endpoints a and b of λ; (iii) an
edge between any two consecutive vertices of G along λ, which now represents a path (a, . . . , b) of
G; (iv) two dummy vertices d1 and d2 in RG,λ; and (v) edges in RG,λ connecting each of d1 and d2
with each of a and b so that cycles C1 = (d1, a, . . . , b) and C2 = (d2, a, . . . , b) are embedded in this
counter-clockwise and clockwise direction in G, respectively. For i = 1, 2, let Gi be the subgraph of G
induced by the vertices of Ci or inside it. Triangulate the internal faces of Gi with dummy vertices
and edges, so that there are no edges between non-consecutive vertices of Ci; indeed, these edges do
not exist in the original graph G, given that λ is good.

Represent C1 as a convex polygon Q1 whose all vertices, except for d1, lie along a horizontal line `,
with a to the left of b and d1 above `; see Fig. 14(c). Graph G1 is triconnected, as it contains no
edge between any two non-consecutive vertices of its only non-triangular face. Thus, a straight-line
crossing-free drawing of G1 in which C1 is represented by Q1 exists [61]. Analogously, represent C2 as
a convex polygon Q2 whose all vertices, except for d2, lie at the same points as in Q1, with d2 below `.
Construct a straight-line crossing-free drawing of G2 in which C2 is represented by Q2.

Removing the dummy vertices and edges results in a planar drawing Γ of the original graph G in
which each edge e is a y-monotone curve; see Fig. 14(d). In particular, the fact that λ crosses at most
once e ensures that e is either a straight-line segment or is composed of two straight-line segments
that are one below and one above ` and that share an endpoint on `. A straight-line crossing-free
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Figure 14: (a) A proper good curve λ (orange) for a planar graph G (black). (b) Augmentation of G
with dummy vertices and edges. (c) A straight-line crossing-free drawing of the augmented graph G.
(d) Planar polyline (top) and straight-line (bottom) crossing-drawings of the original graph G.

drawing Γ′ of G in which the y-coordinate of each vertex is the same as in Γ always exists, as proved
in [31, 50]. Since λ passes through x vertices of G, we have that x vertices of G lie along ` in Γ′.

3.2 From collinear sets to free collinear sets

Theorem 18 from the previous section armes us with a topological tool for finding collinear sets via
proper good curves. Recall however that Lemma 17 states that we need free collinear sets to solve
Problem 2. Thus before trying to use this topological tool, let’s go back to the question if collinear sets
(and thus proper good curves) are useful for finding free collinear sets. In other words, let’s go back to
Problem (?). Without an affirmative answer to Problem (?) this tool would not be helpful for us.

Surprisingly, not only is the answer to Problem (?) affirmative, it is affirmative in the strongest possible
sense (with equality), as stated in the next theorem. Before this theorem was proved, it was not even
known if there is any function that bounds collinear sets by free collinear sets (that is, if Problem (?)
has an affirmative answer). The theorem also answers an open problem my Ravsky and Verbitsky [54].

Theorem 19. [22, 23] Every collinear set is a free collinear set.

The proof of this theorem can be found in [23]. The proof is fairly complex and lengthy. Its sketch
may be given during the lectures, time permitting.

3.3 Proper good curves in (classes of) planar graphs

Now that we know that proper good curves with polynomially many vertices would answer Problem 2,
let’s study them in various classes of planar graphs. We start with the class of all planar graphs, as
Problem 2 concerns those.

Theorem 20. [8] Every n-vertex planar graph has a proper good curve with at least Ω(
√
n) vertices.

Proof setup. The proof will be presented during the lectures. It can also be found in [8]. The proof
uses the notion of canonical orderings, a structure with many applications that we present here now.

It suffices to prove this theorem for edge-maximal geometric crossing-free graphs. Thus assume that
G is edge-maximal.7

7A planar graph H is edge-maximal (also called, a triangulation), if for all vw 6∈ E(H), the graph resulting from
adding vw to H is not planar.
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Let E be an embedded planar graph isomorphic to G. Each face of E is bounded by a 3-cycle. Canonical
orderings of embedded edge-maximal planar graphs were introduced by de Fraysseix et al. [13]. They
proved that E has a vertex ordering σ = (v1 := x, v2 := y, v3, . . . , vn := z), called a canonical ordering,
with the following properties. Define Gi to be the embedded subgraph of E induced by {v1, v2, . . . , vi}.
Let Ci be the subgraph of E induced by the edges on the boundary of the outer face of Gi. Then

• x, y and z are the vertices on the outer face of E .

• For each i ∈ {3, 4, . . . , n}, Ci is a cycle containing xy.

• For each i ∈ {3, 4, . . . , n}, Gi is biconnected and internally 3-connected ; that is, removing any
two interior vertices of Gi does not disconnect it.

• For each i ∈ {3, 4, . . . , n}, vi is a vertex of Ci with at least two neighbours in Ci−1, and these
neighbours are consecutive on Ci−1.

For example, the ordering in Figure 15(a) is a canonical ordering of the depicted embedded graph E .

1 2

3

4
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6

7

8
9

10

11

12

13

(a)
1 2

3

4
5

6

7

8
9

10

11

12

13

3

8

11

12

13

(b)

Figure 15: (a) Canonical ordering of E , (b) Frame F of E . Vertices forming a largest antichain in
<F , that is the vertices in S, are depicted by squares.

We now introduce a new combinatorial structure that is critical to this theorem. A frame F of E is
the oriented subgraph of E with vertex set V (F) := V (E), where:

• xy is in E(F) and is oriented from x to y.

• For each i ∈ {3, 4, . . . , n} in the canonical ordering σ of E , edges pvi and vip′ are in E(F), where
p and p′ are the first and the last neighbour, respectively, of vi along the path in Ci−1 from x to
y not containing edge xy. Edge pvi is oriented from p to vi, and edge vip′ is oriented from vi to
p′, as illustrated in Figure 15(b). We call p the left predecessor of v and p′ the right predecessor
of v.

The rest of the proof will be presented during the lectures.

We now turn out attention to some subclasses of planar graphs.

Theorem 21. Every n-vertex tree T has a proper good curve with at least n/2 vertices.
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Proof Sketch. Pick an arbitrary vertex of T to be the root of T . Construct a straight-line crossing-free
drawing of T where the root is on the line y = 0, and where all the vertices at distance d from the
root are on the line y = −d. Clearly the following two proper good curves exist in such a drawing of
T : one that goes through all the vertices that lie on the lines y = −d where d is even and the other
proper good curve that goes through all the vertices that lie on the lines y = −d where d is odd. One
of those proper good curves contains at least n/2 vertices of T . That completes the proof.

A graph is outerplanar if it has a planar drawing with all vertices on one face (e.g., the outer face).

Theorem 22. Every n-vertex outerplanar graph has a proper good curve with at least n/3 vertices.

Proof. Try to prove this.

Theorem 23. [47] Every n-vertex planar graph of treewidth at most 3 has a proper good curve with at
least Ω(n) vertices.

Proof. See [47] for the proof.

Theorem 24. [47] Every n-vertex triconnected cubic8 planar graph has a proper good curve with at
least Ω(n) vertices.

Proof. See [47] for the proof.

A natural question to consider is whether a linear bound is possible for all planar graphs. However
that is not possible as observed first by Ravsky and Verbitsky [54].

Theorem 25. [54] For infinitely many positive integers n, there exists an n-vertex planar graph such
that every proper good curve has most O(nσ) vertices, where σ < 0.986.

Proof sketch. Consider a planar triangulation G, on at least n > 4 vertices. A dual9 of every such
triangulation is a cubic planar graph. If G has a large collinear set (equivalently, a large proper good
curve), then its dual graph has a cycle of proportional length. Since there are n-vertex triconnected
cubic planar graphs whose longest cycle has length O(nσ) [38], it follows that there are n-vertex planar
graphs in which the cardinality of every collinear set is O(nσ). Here σ is a known graph-theoretic
constant called shortness exponent, for which the best known upper bound is σ < 0.986 [38].

The following theorem is proved using the connection between proper good curves of planar graphs
and the length of the longest cycles in their duals.

Theorem 26. [26, 27] Every n-vertex planar graph with maximum degree ∆ has a proper good curve
with at least Ω(n0.8/∆4) vertices.

Proof. A sketch of this proof may be given during the lectures. See [27] for the proof.

Theorem 20 and Theorem 26 suggest the following open problem.
8A graph G is triconnected if for every pair of distinct vertices in G, there are at least three internally disjoint paths

between them. A graph is cubic if every vertex has degree exactly 3.
9Follow this link to read about duals of planar graphs.
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Open Problem 1. Every n vertex planar graph has proper good curve with at least Ω(nε) vertices.
By Theorem 20, ε > 1/2 and by Theorem 25, ε < 0.986. Can the lower bound 1/2 be improved? More
strongly, can ∆ in Theorem 26 be removed? What is the correct bound?

3.4 Solution to Problem 2 and other applications

Corollary 4. Problem 2 has an affirmative answer. In particular, every n-vertex geometric planar
graph G can be untangled while keeping Ω(n1/4) vertex fixed.

Proof. By Theorem 20, G has a proper good curve with at least Ω(
√
n) vertices. By Theorem 18, that

implies that G has a collinear set of the same size and thus of size at least Ω(
√
n). By Theorem 19, G

has a free collinear set of the same size, and thus of size at least s Ω(
√
n). Finally, by Lemma 17, that

implies that G can be untangled while keeping Ω(n1/4) vertices fixed.

Similarly, other consequences of the results presented in the previous sections are:

Corollary 5. Let G be an n-vertex geometric planar graph.

(a) if G has bounded degree, then it can be untangled while keeping Ω(n0.4) vertex fixed.

(b) if G is a tree, or outerplanar or more generally has treewidth at most 3, then it can be untangled
while keeping Ω(n1/2) vertex fixed. That bound is best possible.

(c) if G is a triconnected and cubic, it can be untangled while keeping Ω(n1/2) vertex fixed.

The proof that the bound in (b) is best possible can be found in [8]. The results in this section have
a number of applications beyond untangling. Time permitting, they will be discussed during the
lectures. See [18] for more examples.
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