LINEAR METHODS IN ADDITIVE COMBINATORICS - EXERCISES

THOMAS F. BLOOM

In all exercises G denotes an arbitrary finite abelian group.

1. Basics of Fourier Analysis

- (1) (a) Give a simple explanation why \widehat{G} is a finite abelian group.
 - (b) Use the orthogonality relationships and inverse formula to prove that $|G| = |\widehat{G}|$.
- (2) Prove that $\widehat{f}(\gamma)$ is a non-negative real number for all $\gamma \in \widehat{G}$ if and only if $f = g \circ g$ for some $g : G \to \mathbb{C}$.
- (3) Prove that for all $A \subseteq G$

$$|A|^{1/2} \ge \mathbb{F}_{\gamma}|\widehat{1_A}(\gamma)| \ge 1,$$

and give examples that show these bounds are best possible, up to constants.

(4) Prove that for any $A \subseteq G$ of density $\alpha = |A|/|G|$ and $\Delta \subseteq \widehat{G}$ and integer $m \ge 1$

$$\left(\sum_{\gamma \in \Delta} |\widehat{1_A}(\gamma)|\right)^{2m} \le \alpha^{-1} |A|^{2m} \# \{\gamma_1, \dots, \gamma_{2m} \in \Delta : \gamma_1 + \dots + \gamma_m = \gamma_{m+1} + \dots + \gamma_{2m}\}.$$

[Hint: Find a way to change the order of summation on the left-hand side and apply Hölder's inequality.]

2. Applications of Fourier Analysis

- (1) (a) Show that $|\widehat{1_A}(\gamma)| \in \{0, |A|\}$ for all $\gamma \in \widehat{G}$ if and only if A is a coset of subgroup.
 - (b) Use Fourier analysis to prove that |A + A| = |A| if and only if A is a translate of a subgroup. (There are simple elementary proofs of this fact, but it is instructive to find a Fourier analytic proof.)
- (2) Let P be a property that is translation invariant (i.e. if A has property P then so does A-x for all $x \in G$). Suppose we knew the following for some functions $D, \delta : [0,1] \to \mathbb{R}$:

If $A \subseteq \mathbb{F}_p^n$ is a subset of density α that satisfies property P then either

- (a) $|A| \ll p^{n/2}$ or
- (b) there is a subspace $V \leq \mathbb{F}_p^n$ of codimension $\leq D(\alpha)$ and a translate x such that $|(A-x) \cap V|/|V| \geq (1+\delta(\alpha))\alpha$.

(So that e.g. in the first lecture we proved this is true when P is 'does not contain non-trivial three-term arithmetic progressions' with $D(\alpha) = 1$ and $\delta(\alpha) \gg \alpha$.)

What upper bounds can you deduce for the maximal size of a subset of \mathbb{F}_p^n which satisfies property P if...

- (a) $D(\alpha) \ll 1$ and $\delta(\alpha) \gg \alpha$,
- (b) $D(\alpha) \ll \alpha^{-1}$ and $\delta(\alpha) \gg 1$, or
- (c) $D(\alpha) \ll 1$ and $\delta(\alpha) \gg 1$.

What goes wrong if P is not translation invariant? Give an example of a non-translation invariant property P such that the boxed claim above holds with $D(\alpha) \ll 1$ and $\delta(\alpha) \gg \alpha$, and yet there is a set $A \subseteq \mathbb{F}_p^n$ of density $\gg 1$ satisfying property P.

- 2
- (3) (a) Prove that if $A \subseteq G$ with density $\alpha > 0$ and $|\widehat{1_A}(\gamma)| < \alpha^{1/2} |A|$ for all $\gamma \neq \mathbf{1}$ then A + A A A = G.
 - (b) Using the density increment strategy (e.g. as in Question 2) deduce that if $A \subseteq \mathbb{F}_p^n$ with density $\alpha = |A|/p^n$ then A + A A A contains a coset of a subspace with codimension $O(\alpha^{-1/2})$.
 - (c) If $|\mathbf{x}|$ is the Hamming weight of $\mathbf{x} \in \mathbb{F}_2^n$, i.e. the number of 1s in \mathbf{x} , then let

$$A = \{ \mathbf{x} \in \mathbb{F}_2^n : |\mathbf{x}| \ge n/2 + \sqrt{n} \}.$$

Show that (for large n) we have $|A| \gg 2^n$ [Hint: think probabilistically and use e.g. Hoeffding's inequality] and any coset of a subspace contained inside A+A has codimension $\gg \sqrt{n}$. (In particular, it is not possible to guarantee a coset of a subspace with codimension O(1) in A+A even when $\alpha \gg 1$.)

(4) (a) Using Fourier analysis and the density increment method prove that if $A \subseteq \mathbb{F}_p^n$ with density α is a 'Sidon set' (i.e. a+b=c+d has only the trivial solutions $\{a,b\}=\{c,d\}$) then

$$\alpha \ll 1/n^2$$
.

- (b) Find a completely different and much simpler argument (not using Fourier analysis) that shows $\alpha \ll p^{-n/2}$.
- (5) (a) Let p be an odd prime and $A = \{x^2 : x \in \mathbb{F}_p\}$. Prove that for any non-trivial character $\gamma \neq 1$ $|\widehat{1}_A(\gamma)| \leq \frac{\sqrt{p}+1}{2}.$
 - (b) Deduce that, for any $x \in \mathbb{F}_p$ and $k \geq 3$, the number of representations of x as the sum of k squares in \mathbb{F}_p is

$$2^{-k}p^{k-1} + O(p^{k-2}).$$

3. Almost Periodicity

(1) Adapt the proof given in lectures to prove that if $A, B, S \subseteq G$ have $|A + S| \le K |A|$ then there exists some set $T \subseteq S$ of size

$$|T| \ge \exp(-O(q\epsilon^{-2}\log K)|S|$$

such that, for all $t \in T - T$,

$$\|\tau_t(1_A*1_B) - 1_A*1_B\|_q \le \epsilon |A| |B|^{1/q}.$$

(2) Suppose that $|A+A| \leq K|A|$. Show that, for any $k \geq 1$, there is a set X such that

$$kX \subseteq A + A - A - A$$

and

$$|X| \ge \exp(-O(k^2(\log K)^2)) |A|.$$

(3) Suppose that $|A + A| \le K |A|$ and there are at least $\delta |A|^2$ solutions to a + b + c = 0 with $a, b, c \in A$. Show that, for any $k \ge 1$ there is a set X such that

$$kX \subseteq A + A + A$$

and

$$|X| \ge \exp(-O(k^2 \delta^{-2} (\log K)^2)) |A|.$$

- (4) (a) Show that if $X \subseteq \mathbb{F}_3^n$ is a symmetric set (so X = -X) such that $0 \in X$ and which contains at least k elements which are linearly independent over \mathbb{F}_3 then kX contains a subspace of dimension k.
 - (b) Show that if $K \geq 4$ and $A \subseteq \mathbb{F}_3^n$ satisfies $|A+A| \leq K|A|$ then A+A-A-A contains a subspace of dimension $\gg \sqrt{\log |A|}/\log K$.

(5) (a) Let $q \geq 2$ and $\epsilon > 0$. Let $f: G \to \mathbb{C}$. Prove that there exist $k \ll q\epsilon^{-2}$ characters $\gamma_1, \ldots, \gamma_k \in \widehat{G}$ with associated $c_i \in \mathbb{C}$ with $|c_i| = 1$ such that

$$||f - \frac{1}{k} \sum_{i} c_{i} \gamma_{i}||_{q} \le \epsilon \left(||\widehat{f}(\gamma)|| \right) |G|^{1/q}.$$

[Hint: Choose $\gamma_1, \ldots, \gamma_k \in \widehat{G}$ randomly and independently with probability proportionate to $|\widehat{f}(\gamma)|$, and use the Marcinkiewicz-Zygmund inequality in a similar way as in lectures. Be careful of normalisations!]

(b) Deduce that for any $f: G \to \mathbb{C}$ there exists a subspace V of codimension $O(q\epsilon^{-2})$ such that for all $t \in V$

$$\|\tau_t f - f\|_q \le \epsilon \left(\left| \prod_{\gamma} |\widehat{f}(\gamma)| \right| \right) |G|^{1/q}.$$

(c) Deduce that for any $A \subseteq G$ of density α there exists a subspace V of codimension $O(q\epsilon^{-2}\alpha^{-2/q})$ such that for all $t \in V$

$$\|\tau_t(1_A*1_A) - 1_A*1_A\|_q \le \epsilon |A|^{1+1/q}$$
.

How does this compare to what the almost-periodicity result from lectures gives?

- (6) Let q be some large integer and $\alpha > 0$ be some small constant.
 - (a) Prove that if $\alpha > 0$ and $A \subseteq \mathbb{F}_2^q$ is a random set where we include each element $x \in \mathbb{F}_2^q$ independently with probability α then $\mathbb{E}|A| = \alpha 2^q$ and for any $t \neq 0$

$$\boxed{ } 1_A * 1_A(t) = \alpha^2 2^q.$$

(b) Using some kind of concentration inequality (e.g. Hoeffding) deduce that there exists some $A \subseteq \mathbb{F}_2^q$ such that

$$|A| \geq \frac{1}{2}\alpha 2^q$$

and for all $y \neq 0$

$$1_A * 1_A(y) \le 2\alpha^2 2^q.$$

Deduce that for any $t \neq 0$

$$\|\tau_t(1_A*1_A) - 1_A*1_A\|_q \gg |A|^{1+1/q}$$
.

(c) Show that the linear dependence on q in almost-periodicity is best possible, in that for any large n there exists a set $A \subseteq \mathbb{F}_2^n$ of density $\gg 1$ such that, for some $\epsilon \gg 1$, if T is the set of t with

$$\|\tau_t(1_A * 1_A) - 1_A * 1_A\|_q \le \epsilon |A|^{1+1/q}$$

then

$$|T| \le 2^{n - cq}$$

for some constant c > 0.

(7) Let $A \subseteq \mathbb{F}_p^n$ with density α and $V \leq \mathbb{F}_p^n$ be a subspace. Prove that if there is $B \subseteq V$ with $|B| \gg |V|$ such that

$$\|\mu_B * 1_A \circ 1_A\|_{\infty} \ge (1+c)\alpha |A|$$

then there is a subspace $W \leq V$ of codimension (relative to V) $\ll \mathcal{L}(\alpha)^{O(1)}$ such that

$$\|\mu_W * 1_A\|_{\infty} \ge (1 + c/32)\alpha.$$

[This is a useful trick that allows one to upgrade 'density increment on 1% of a subspace' to increment on a genuine subspace.]