LINEAR METHODS IN ADDITIVE COMBINATORICS - EXERCISES

THOMAS F. BLOOM

In all exercises G denotes an arbitrary finite abelian group.

1. Basics of Fourier Analysis

(1) (a) Give a simple explanation why \widehat{G} is a finite abelian group.
(b) Use the orthogonality relationships and inverse formula to prove that $|G|=|\widehat{G}|$.
(2) Prove that $\widehat{f}(\gamma)$ is a non-negative real number for all $\gamma \in \widehat{G}$ if and only if $f=g \circ g$ for some $g: G \rightarrow \mathbb{C}$.
(3) Prove that for all $A \subseteq G$

$$
|A|^{1 / 2} \geq \mathbb{E}_{\gamma}\left|\widehat{1_{A}}(\gamma)\right| \geq 1
$$

and give examples that show these bounds are best possible, up to constants.
(4) Prove that for any $A \subseteq G$ of density $\alpha=|A| /|G|$ and $\Delta \subseteq \widehat{G}$ and integer $m \geq 1$

$$
\left(\sum_{\gamma \in \Delta}\left|\widehat{1_{A}}(\gamma)\right|\right)^{2 m} \leq \alpha^{-1}|A|^{2 m} \#\left\{\gamma_{1}, \ldots, \gamma_{2 m} \in \Delta: \gamma_{1}+\cdots+\gamma_{m}=\gamma_{m+1}+\cdots+\gamma_{2 m}\right\}
$$

[Hint: Find a way to change the order of summation on the left-hand side and apply Hölder's inequality.]

2. Applications of Fourier Analysis

(1) (a) Show that $\left|\widehat{1_{A}}(\gamma)\right| \in\{0,|A|\}$ for all $\gamma \in \widehat{G}$ if and only if A is a coset of subgroup.
(b) Use Fourier analysis to prove that $|A+A|=|A|$ if and only if A is a translate of a subgroup. (There are simple elementary proofs of this fact, but it is instructive to find a Fourier analytic proof.)
(2) Let P be a property that is translation invariant (i.e. if A has property P then so does $A-x$ for all $x \in G)$. Suppose we knew the following for some functions $D, \delta:[0,1] \rightarrow \mathbb{R}$:

If $A \subseteq \mathbb{F}_{p}^{n}$ is a subset of density α that satisfies property P then either
(a) $|A| \ll p^{n / 2}$ or
(b) there is a subspace $V \leq \mathbb{F}_{p}^{n}$ of codimension $\leq D(\alpha)$ and a translate x such that $|(A-x) \cap V| /|V| \geq(1+\delta(\alpha)) \alpha$.
(So that e.g. in the first lecture we proved this is true when P is 'does not contain non-trivial three-term arithmetic progressions' with $D(\alpha)=1$ and $\delta(\alpha) \gg \alpha$.)

What upper bounds can you deduce for the maximal size of a subset of \mathbb{F}_{p}^{n} which satisfies property P if...
(a) $D(\alpha) \ll 1$ and $\delta(\alpha) \gg \alpha$,
(b) $D(\alpha) \ll \alpha^{-1}$ and $\delta(\alpha) \gg 1$, or
(c) $D(\alpha) \ll 1$ and $\delta(\alpha) \gg 1$.

What goes wrong if P is not translation invariant? Give an example of a non-translation invariant property P such that the boxed claim above holds with $D(\alpha) \ll 1$ and $\delta(\alpha) \gg \alpha$, and yet there is a set $A \subseteq \mathbb{F}_{p}^{n}$ of density $\gg 1$ satisfying property P.
(3) (a) Prove that if $A \subseteq G$ with density $\alpha>0$ and $\left|\widehat{1_{A}}(\gamma)\right|<\alpha^{1 / 2}|A|$ for all $\gamma \neq \mathbf{1}$ then $A+A-A-A=$ G.
(b) Using the density increment strategy (e.g. as in Question 2) deduce that if $A \subseteq \mathbb{F}_{p}^{n}$ with density $\alpha=|A| / p^{n}$ then $A+A-A-A$ contains a coset of a subspace with codimension $O\left(\alpha^{-1 / 2}\right)$.
(c) If $|\mathbf{x}|$ is the Hamming weight of $\mathbf{x} \in \mathbb{F}_{2}^{n}$, i.e. the number of 1 s in \mathbf{x}, then let

$$
A=\left\{\mathbf{x} \in \mathbb{F}_{2}^{n}:|\mathbf{x}| \geq n / 2+\sqrt{n}\right\}
$$

Show that (for large n) we have $|A| \gg 2^{n}$ [Hint: think probabilistically and use e.g. Hoeffding's inequality] and any coset of a subspace contained inside $A+A$ has codimension $\gg \sqrt{n}$. (In particular, it is not possible to guarantee a coset of a subspace with codimension $O(1)$ in $A+A$ even when $\alpha \gg 1$.)
(4) (a) Using Fourier analysis and the density increment method prove that if $A \subseteq \mathbb{F}_{p}^{n}$ with density α is a 'Sidon set' (i.e. $a+b=c+d$ has only the trivial solutions $\{a, b\}=\{c, d\}$) then

$$
\alpha \ll 1 / n^{2}
$$

(b) Find a completely different and much simpler argument (not using Fourier analysis) that shows

$$
\alpha \ll p^{-n / 2} .
$$

(5) (a) Let p be an odd prime and $A=\left\{x^{2}: x \in \mathbb{F}_{p}\right\}$. Prove that for any non-trivial character $\gamma \neq 1$

$$
\left|\widehat{1_{A}}(\gamma)\right| \leq \frac{\sqrt{p}+1}{2}
$$

(b) Deduce that, for any $x \in \mathbb{F}_{p}$ and $k \geq 3$, the number of representations of x as the sum of k squares in \mathbb{F}_{p} is

$$
2^{-k} p^{k-1}+O\left(p^{k-2}\right)
$$

3. Almost Periodicity

(1) Adapt the proof given in lectures to prove that if $A, B, S \subseteq G$ have $|A+S| \leq K|A|$ then there exists some set $T \subseteq S$ of size

$$
|T| \geq \exp \left(-O\left(q \epsilon^{-2} \log K\right)|S|\right.
$$

such that, for all $t \in T-T$,

$$
\left\|\tau_{t}\left(1_{A} * 1_{B}\right)-1_{A} * 1_{B}\right\|_{q} \leq \epsilon|A||B|^{1 / q}
$$

(2) Suppose that $|A+A| \leq K|A|$. Show that, for any $k \geq 1$, there is a set X such that

$$
k X \subseteq A+A-A-A
$$

and

$$
|X| \geq \exp \left(-O\left(k^{2}(\log K)^{2}\right)\right)|A|
$$

(3) Suppose that $|A+A| \leq K|A|$ and there are at least $\delta|A|^{2}$ solutions to $a+b+c=0$ with $a, b, c \in A$. Show that, for any $k \geq 1$ there is a set X such that

$$
k X \subseteq A+A+A
$$

and

$$
|X| \geq \exp \left(-O\left(k^{2} \delta^{-2}(\log K)^{2}\right)\right)|A|
$$

(4) (a) Show that if $X \subseteq \mathbb{F}_{3}^{n}$ is a symmetric set (so $X=-X$) such that $0 \in X$ and which contains at least k elements which are linearly independent over \mathbb{F}_{3} then $k X$ contains a subspace of dimension k.
(b) Show that if $K \geq 4$ and $A \subseteq \mathbb{F}_{3}^{n}$ satisfies $|A+A| \leq K|A|$ then $A+A-A-A$ contains a subspace of dimension $\gg \sqrt{\log |A|} / \log K$.
(5) (a) Let $q \geq 2$ and $\epsilon>0$. Let $f: G \rightarrow \mathbb{C}$. Prove that there exist $k \ll q \epsilon^{-2}$ characters $\gamma_{1}, \ldots, \gamma_{k} \in \widehat{G}$ with associated $c_{i} \in \mathbb{C}$ with $\left|c_{i}\right|=1$ such that

$$
\left\|f-\frac{1}{k} \sum_{i} c_{i} \gamma_{i}\right\|_{q} \leq \epsilon\left(\mathbb{E}_{\gamma}|\widehat{f}(\gamma)|\right)|G|^{1 / q}
$$

[Hint: Choose $\gamma_{1}, \ldots, \gamma_{k} \in \widehat{G}$ randomly and independently with probability proportionate to $|\widehat{f}(\gamma)|$, and use the Marcinkiewicz-Zygmund inequality in a similar way as in lectures. Be careful of normalisations!]
(b) Deduce that for any $f: G \rightarrow \mathbb{C}$ there exists a subspace V of codimension $O\left(q \epsilon^{-2}\right)$ such that for all $t \in V$

$$
\left\|\tau_{t} f-f\right\|_{q} \leq \epsilon(\underset{\gamma}{\mathbb{W}}|\widehat{f}(\gamma)|)|G|^{1 / q}
$$

(c) Deduce that for any $A \subseteq G$ of density α there exists a subspace V of codimension $O\left(q \epsilon^{-2} \alpha^{-2 / q}\right)$ such that for all $t \in V$

$$
\left\|\tau_{t}\left(1_{A} * 1_{A}\right)-1_{A} * 1_{A}\right\|_{q} \leq \epsilon|A|^{1+1 / q}
$$

How does this compare to what the almost-periodicity result from lectures gives?
(6) Let q be some large integer and $\alpha>0$ be some small constant.
(a) Prove that if $\alpha>0$ and $A \subseteq \mathbb{F}_{2}^{q}$ is a random set where we include each element $x \in \mathbb{F}_{2}^{q}$ independently with probability α then $\mathbb{E}|A|=\alpha 2^{q}$ and for any $t \neq 0$

$$
\mathbb{E} 1_{A} * 1_{A}(t)=\alpha^{2} 2^{q} .
$$

(b) Using some kind of concentration inequality (e.g. Hoeffding) deduce that there exists some $A \subseteq \mathbb{F}_{2}^{q}$ such that

$$
|A| \geq \frac{1}{2} \alpha 2^{q}
$$

and for all $y \neq 0$

$$
1_{A} * 1_{A}(y) \leq 2 \alpha^{2} 2^{q} .
$$

Deduce that for any $t \neq 0$

$$
\left\|\tau_{t}\left(1_{A} * 1_{A}\right)-1_{A} * 1_{A}\right\|_{q} \gg|A|^{1+1 / q}
$$

(c) Show that the linear dependence on q in almost-periodicity is best possible, in that for any large n there exists a set $A \subseteq \mathbb{F}_{2}^{n}$ of density $\gg 1$ such that, for some $\epsilon \gg 1$, if T is the set of t with

$$
\left\|\tau_{t}\left(1_{A} * 1_{A}\right)-1_{A} * 1_{A}\right\|_{q} \leq \epsilon|A|^{1+1 / q}
$$

then

$$
|T| \leq 2^{n-c q}
$$

for some constant $c>0$.
(7) Let $A \subseteq \mathbb{F}_{p}^{n}$ with density α and $V \leq \mathbb{F}_{p}^{n}$ be a subspace. Prove that if there is $B \subseteq V$ with $|B| \gg|V|$ such that

$$
\left\|\mu_{B} * 1_{A} \circ 1_{A}\right\|_{\infty} \geq(1+c) \alpha|A|
$$

then there is a subspace $W \leq V$ of codimension (relative to $V) \ll \mathcal{L}(\alpha)^{O(1)}$ such that

$$
\left\|\mu_{W} * 1_{A}\right\|_{\infty} \geq(1+c / 32) \alpha
$$

[This is a useful trick that allows one to upgrade 'density increment on 1% of a subspace' to increment on a genuine subspace.]

