
LINEAR METHODS IN ADDITIVE COMBINATORICS - EXERCISES

THOMAS F. BLOOM

In all exercises G denotes an arbitrary finite abelian group.

1. Basics of Fourier Analysis

(1) (a) Give a simple explanation why Ĝ is a finite abelian group.

(b) Use the orthogonality relationships and inverse formula to prove that |G| = |Ĝ|.

(2) Prove that f̂(γ) is a non-negative real number for all γ ∈ Ĝ if and only if f = g◦g for some g : G → C.

(3) Prove that for all A ⊆ G

|A|1/2 ≥E
γ

|1̂A(γ)| ≥ 1,

and give examples that show these bounds are best possible, up to constants.

(4) Prove that for any A ⊆ G of density α = |A| / |G| and ∆ ⊆ Ĝ and integer m ≥ 1∑
γ∈∆

|1̂A(γ)|

2m

≤ α−1 |A|2m #{γ1, . . . , γ2m ∈ ∆ : γ1 + · · ·+ γm = γm+1 + · · ·+ γ2m}.

[Hint: Find a way to change the order of summation on the left-hand side and apply Hölder’s
inequality.]

2. Applications of Fourier Analysis

(1) (a) Show that |1̂A(γ)| ∈ {0, |A|} for all γ ∈ Ĝ if and only if A is a coset of subgroup.
(b) Use Fourier analysis to prove that |A+A| = |A| if and only if A is a translate of a subgroup.

(There are simple elementary proofs of this fact, but it is instructive to find a Fourier analytic
proof.)

(2) Let P be a property that is translation invariant (i.e. if A has property P then so does A− x for all
x ∈ G). Suppose we knew the following for some functions D, δ : [0, 1] → R:

If A ⊆ Fn
p is a subset of density α that satisfies property P then either

(a) |A| ≪ pn/2 or
(b) there is a subspace V ≤ Fn

p of codimension ≤ D(α) and a translate x such that
|(A− x) ∩ V | / |V | ≥ (1 + δ(α))α.

(So that e.g. in the first lecture we proved this is true when P is ‘does not contain non-trivial
three-term arithmetic progressions’ with D(α) = 1 and δ(α) ≫ α.)

What upper bounds can you deduce for the maximal size of a subset of Fn
p which satisfies property

P if...
(a) D(α) ≪ 1 and δ(α) ≫ α,
(b) D(α) ≪ α−1 and δ(α) ≫ 1, or
(c) D(α) ≪ 1 and δ(α) ≫ 1.
What goes wrong if P is not translation invariant? Give an example of a non-translation invariant

property P such that the boxed claim above holds with D(α) ≪ 1 and δ(α) ≫ α, and yet there is a
set A ⊆ Fn

p of density ≫ 1 satisfying property P .
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(3) (a) Prove that if A ⊆ G with density α > 0 and |1̂A(γ)| < α1/2 |A| for all γ ̸= 1 then A+A−A−A =
G.

(b) Using the density increment strategy (e.g. as in Question 2) deduce that if A ⊆ Fn
p with density

α = |A| /pn then A+A−A−A contains a coset of a subspace with codimension O(α−1/2).
(c) If |x| is the Hamming weight of x ∈ Fn

2 , i.e. the number of 1s in x, then let

A = {x ∈ Fn
2 : |x| ≥ n/2 +

√
n}.

Show that (for large n) we have |A| ≫ 2n [Hint: think probabilistically and use e.g. Hoeffding’s
inequality ] and any coset of a subspace contained inside A + A has codimension ≫

√
n. (In

particular, it is not possible to guarantee a coset of a subspace with codimension O(1) in A+A
even when α ≫ 1.)

(4) (a) Using Fourier analysis and the density increment method prove that if A ⊆ Fn
p with density α

is a ‘Sidon set’ (i.e. a+ b = c+ d has only the trivial solutions {a, b} = {c, d}) then

α ≪ 1/n2.

(b) Find a completely different and much simpler argument (not using Fourier analysis) that shows

α ≪ p−n/2.

(5) (a) Let p be an odd prime and A = {x2 : x ∈ Fp}. Prove that for any non-trivial character γ ̸= 1

|1̂A(γ)| ≤
√
p+ 1

2
.

(b) Deduce that, for any x ∈ Fp and k ≥ 3, the number of representations of x as the sum of k
squares in Fp is

2−kpk−1 +O(pk−2).

3. Almost Periodicity

(1) Adapt the proof given in lectures to prove that if A,B, S ⊆ G have |A+ S| ≤ K |A| then there exists
some set T ⊆ S of size

|T | ≥ exp(−O(qϵ−2 logK) |S|
such that, for all t ∈ T − T ,

∥τt(1A ∗ 1B)− 1A ∗ 1B∥q ≤ ϵ |A| |B|1/q .

(2) Suppose that |A+A| ≤ K |A|. Show that, for any k ≥ 1, there is a set X such that

kX ⊆ A+A−A−A

and

|X| ≥ exp(−O(k2(logK)2)) |A| .

(3) Suppose that |A+A| ≤ K |A| and there are at least δ |A|2 solutions to a+ b+ c = 0 with a, b, c ∈ A.
Show that, for any k ≥ 1 there is a set X such that

kX ⊆ A+A+A

and

|X| ≥ exp(−O(k2δ−2(logK)2)) |A| .

(4) (a) Show that if X ⊆ Fn
3 is a symmetric set (so X = −X) such that 0 ∈ X and which contains

at least k elements which are linearly independent over F3 then kX contains a subspace of
dimension k.

(b) Show that if K ≥ 4 and A ⊆ Fn
3 satisfies |A+A| ≤ K |A| then A + A − A − A contains a

subspace of dimension ≫
√
log |A|/ logK.
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(5) (a) Let q ≥ 2 and ϵ > 0. Let f : G → C. Prove that there exist k ≪ qϵ−2 characters γ1, . . . , γk ∈ Ĝ
with associated ci ∈ C with |ci| = 1 such that

∥f − 1
k

∑
i

ciγi∥q ≤ ϵ

(
E
γ

|f̂(γ)|

)
|G|1/q .

[Hint: Choose γ1, . . . , γk ∈ Ĝ randomly and independently with probability proportionate to

|f̂(γ)|, and use the Marcinkiewicz-Zygmund inequality in a similar way as in lectures. Be
careful of normalisations! ]

(b) Deduce that for any f : G → C there exists a subspace V of codimension O(qϵ−2) such that for
all t ∈ V

∥τtf − f∥q ≤ ϵ

(
E
γ

|f̂(γ)|

)
|G|1/q .

(c) Deduce that for any A ⊆ G of density α there exists a subspace V of codimension O(qϵ−2α−2/q)
such that for all t ∈ V

∥τt(1A ∗ 1A)− 1A ∗ 1A∥q ≤ ϵ |A|1+1/q
.

How does this compare to what the almost-periodicity result from lectures gives?

(6) Let q be some large integer and α > 0 be some small constant.
(a) Prove that if α > 0 and A ⊆ Fq

2 is a random set where we include each element x ∈ Fq
2

independently with probability α then E |A| = α2q and for any t ̸= 0

E 1A ∗ 1A(t) = α22q.

(b) Using some kind of concentration inequality (e.g. Hoeffding) deduce that there exists some
A ⊆ Fq

2 such that
|A| ≥ 1

2α2
q

and for all y ̸= 0
1A ∗ 1A(y) ≤ 2α22q.

Deduce that for any t ̸= 0

∥τt(1A ∗ 1A)− 1A ∗ 1A∥q ≫ |A|1+1/q
.

(c) Show that the linear dependence on q in almost-periodicity is best possible, in that for any large
n there exists a set A ⊆ Fn

2 of density ≫ 1 such that, for some ϵ ≫ 1, if T is the set of t with

∥τt(1A ∗ 1A)− 1A ∗ 1A∥q ≤ ϵ |A|1+1/q

then
|T | ≤ 2n−cq

for some constant c > 0.

(7) Let A ⊆ Fn
p with density α and V ≤ Fn

p be a subspace. Prove that if there is B ⊆ V with |B| ≫ |V |
such that

∥µB ∗ 1A ◦ 1A∥∞ ≥ (1 + c)α |A|
then there is a subspace W ≤ V of codimension (relative to V ) ≪ L(α)O(1) such that

∥µW ∗ 1A∥∞ ≥ (1 + c/32)α.

[This is a useful trick that allows one to upgrade ‘density increment on 1% of a subspace’ to increment
on a genuine subspace.]
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