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Budapest, 26-30 August 2024



Plan for the course

Lecture 1: Introduction to Additive Combinatorics.
Lecture 2: The Balog-Szemerédi-Gowers Theorem.
Lecture 3: Discretized Fractal Geometry.
Lecture 4: Sum-product and applications.



Plan for the course

Lecture 1: Introduction to Additive Combinatorics.
Lecture 2: The Balog-Szemerédi-Gowers Theorem.
Lecture 3: Discretized Fractal Geometry.
Lecture 4: Sum-product and applications.



Plan for the course

Lecture 1: Introduction to Additive Combinatorics.
Lecture 2: The Balog-Szemerédi-Gowers Theorem.
Lecture 3: Discretized Fractal Geometry.
Lecture 4: Sum-product and applications.



Plan for the course

Lecture 1: Introduction to Additive Combinatorics.
Lecture 2: The Balog-Szemerédi-Gowers Theorem.
Lecture 3: Discretized Fractal Geometry.
Lecture 4: Sum-product and applications.



Outline

1 Additive energy

2 The Balog-Szemerédi-Gowers Theorem

3 Convolutions



Recap: sumsets and Freiman’s Theorem

• Recall: If A is a dense subset of a proper GAP, then
|A + A| ∼ |A|.

• By Freiman’s Theorem, this is a characterization of sets
with |A + A| ∼ |A|.

• Sets A with |A + A| ∼ |A| are sometimes called sets with
additive structure or approximate subgroups.

• We will now study a more analytical notion of additive
structure: the additive energy.
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Additive energy

Definition
The additive energy E(A,B) between two sets A,B is

E(A,B) =
∣∣{(x1, x2, y1, y2) ∈ A2 × B2 : x1 + y1 = x2 + y2}

∣∣
• Trivial lower bound: |A||B| ≤ E(A,B) since we always have

the quadruples (x , x , y , y).
• Trivial upper bound: E(A,B) ≤ |A|2|B|, since once we have

x1, y1, x2, the value of y2 is completely determined by
y2 = x1 + y1 − x2.

• In particular, |A|2 ≤ E(A,A) ≤ |A|3.
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Additive structure through energy

We can think of sets A with E(A,A) ∼ |A|3 as sets with “additive
structure”. Examples:

• APs and GAPs.
• Dense subsets of APs and GAPs.
• Disjoint unions A ∪ B where E(A,A) ∼ |A|3 and B is

arbitrary with |B| = |A|. Indeed, E(A ∪ B,A ∪ B) ≥ E(A,A).
• If |B| = |A|, where

E(A,A) ∼ |A|3,
|B + B| ∼ |B|2,

then E(A ∪ B,A ∪ B) ∼ |A ∪ B|3 (because of A), but
|A ∪ B + A ∪ B| ∼ |A ∪ B|2 (because of B). This set has a
lot of additive structure from the additive energy point of
view, but none whatsoever from the sumset point of view.
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Two notions of additive structure

• Having small sumset and having large additive energy are
indications of additive structure.

• But both the size of the sumset and the additive energy are
increasing functions of A!

• So these notions appear to be extremely different from
each other.

• Spoiler: Balog-Szemerédi-Gowers says both notions are
actually “the same”
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Ways of thinking about additive energy

E(A,A) =
∣∣{(x1, x2, y1, y2) ∈ A4 : x1 + y1 = x2 + y2}

∣∣
=

∑
z∈A+A

∣∣{(x1, x2, y1, y2) ∈ A4 : x1 + y1 = x2 + y2 = z}
∣∣

=
∑

z∈A+A

∣∣{(x , y) ∈ A2 : x + y = z}
∣∣2

=
∑

z∈A+A

∣∣{(x , y) ∈ A2 : x = z − y}
∣∣2

=
∑

z∈A+A

|A ∩ (z − A)|2 =
∑

z∈A+A

NA(z)2,

where

NA(z) = |{(x , y) ∈ A2 : x + y = z}| = |A ∩ (z − A)|.



Small sumsets ⇒ large energy

Lemma
E(A,A) ≥ |A|4

|A + A|
.

Proof.
• We saw that, for NA(z) = |{(x , y) ∈ A2 : x + y = z}|,

E(A,A) =
∑

z∈A+A

NA(z)2.

• But also, |A|2 = |A × A| =
∑

z∈A+A NA(z).
• Apply Cauchy-Schwarz! (or Jensen’s inequality)

(
|A|2

)2
=

( ∑
z∈A+A

1 · NA(z)

)2

≤

( ∑
z∈A+A

12

)( ∑
z∈A+A

NA(z)2

)
= |A + A|E(A,A).
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Partial sumsets

Definition
Given G ⊂ A × A, the partial sumset A

G
+ A is defined as

A
G
+ A := {x + y : (x , y) ∈ G}.

Remark
The full sumset A + A corresponds to G = A × A. More
generally, A′ + A′′ where A′,A′′ ⊂ A corresponds to G being a
Cartesian product A′ × A′′.
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Partial sumsets and additive energy

Lemma
• If E(A,A) ≥ |A|3/K , then there exists G ⊂ A × A such that

|G| ≥ |A|2/2K and

A
G
+ A ≤ 2K |A|.

• Conversely, if G ⊂ A × A, then

E(A,A) ≥ |G|2

|A
G
+ A|

.

Remark
At the level of partial sumsets, “nearly maximal” additive energy
is equivalent to a “small” partial sumset corresponding to a
“large” G.
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Small partial sumset ⇒ large additive energy

Lemma
If G ⊂ A × A and |A

G
+ A| ≤ K |A|, then

E(A,A) ≥ |G|2

2K |A|
.

Proof.
This is the same Cauchy-Schwarz argument we saw for the full
sumset:

|G|2 =

 ∑
z∈A

G
+A

1 · NA(z)


2
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Recap/Warmup: counting function

• Recall that

NA(x) = |{(a,b) ∈ A2 : a + b = x}| = |A ∩ (x − A)|.

• We saw before that

|A|2 =
∑

x∈A+A

NA(x),

E(A,A) =
∑

x∈A+A

NA(x)2.

• The first equality generalizes as follows: if S ⊂ A + A, then

|{(a,b) ∈ A2 : a + b ∈ S}| =
∑
x∈S

NA(x).
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Large additive energy ⇒ small partial sumset

Lemma
E(A,A) ≥ |A|3/K =⇒ ∃G ⊂ A × A such that |G| ≥ |A|2/2K , and

|A
G
+ A| ≤ 2K |A|.

Proof.
• ∑x∈A+A NA(x)2 = E(A,A) ≥ |A|3/K .
• Let S = {x ∈ A + A : NA(x) ≥ |A|/2K}. Then

∑
x∈S

NA(x)2 =
∑

x∈A+A

−
∑

x∈A+A\S

≥ |A|3

K
− |A|3

2K
=

|A|3

2K
.

• |S| ≤
∑
x∈S

2K |A|−1NA(x) ≤ 2K |A|−1
∑

x∈A+A

NA(x) = 2K |A|.

• Let G = {(x , y) ∈ A2 : x + y ∈ S}. Then |A
G
+ A| ≤ 2K |A|.

• |G| =
∑

x∈S NA(x) ≥
∑

x∈S |A|−1NA(x)2 ≥ |A|2
2K .
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Motivation

• Additive energy is very natural for doing analysis. But it is
easier to understand sets of small doubling (e.g. Freiman’s
Theorem).

• We have seen that small doubling implies large additive
energy via Cauchy-Schwarz, but the reciprocal fails
spectacularly.

• The examples of sets with additive energy ∼ |A|3 we have
seen are of the form: a set with small doubling ∪ an
arbitrary set of similar size. Are there any other examples?
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The Balog-Szemerédi-Gowers Theorem

Theorem (Balog-Szemerédi (1994), Gowers (1998),
Schoen (2014))
There are constants c,C > 0 such that the following holds.
Suppose

E(A,A) ≥ |A|3

K
.

Then there exists A′ ⊂ A such that:

|A′|≥ c|A|
K

,

|A′ + A′|≤ CK 4|A′|.

In words: if A has “nearly maximal” additive energy, then it
contains a “dense” subset A′ with “nearly minimal” doubling.



Remarks and historical notes on BSG

• The proof of BSG is elementary and graph-theoretic.
• Balog and Szemerédi (1994) proved a non-quantitative

form of the theorem.
• Gowers (1998) obtained polynomial bounds in K in his

proof of a quantitative version of Szemerédi’s Theorem for
progressions of length 4.

• There is a very similar statement for two different sets A,B
of similar size (for example, B = −A), but the bounds
become meaningless if one set is much larger than the
other. There is an asymmetric version of BSG that gives
information if log |A| and log |B| are comparable.
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Asymmetric BSG

The following is a special case/corollary of the asymmetric
version of the BSG theorem:

Theorem (Tao-Vu, based on ideas of Bourgain)
Given δ > 0, there is ε > 0 such that the following holds for
large enough N.
Let A,B ⊂ {1, . . . ,N} such that E(A,B) ≥ N−ε|A||B|2.
Then there are sets X ,H ⊂ {1, . . . ,N} such that:

• |H + H| ≤ Nδ|H|,
• |A ∩ (X + H)| ≥ N−δ|A| ≥ N−2δ|X ||H|,
• |B ∩ H| ≥ N−δ|B|.

B is approximately contained in an approximate group H, and A
is approximately a union of disjoint translations of H
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BSG, partial sumset formulation

Corollary (of BSG and lemma)
If there is G ⊂ A × A such that

|G| ≥ |A|2

K
,

|A
G
+ A| ≤ K |A|,

then there is A′ ⊂ A such that

|A′|≥ K−C |A|,
|A′ + A′|≤ K C |A′|.



The magic of BSG

• Cauchy-Schwarz tells us that small partial sumsets imply
large additive energy. BSG allows us to reverse
Cauchy-Schwarz (at the price of passing to a subset).

• The lemma we saw earlier tells us that large additive
energy implies small partial sumsets. BSG allows us to
replace the partial sumset by an honest sumset (again
after passing to a subset). In other words, we can replace a
“dense” subset G of A×A by a “dense” product set A′ ×A′.

• Proving facts about sets with small sumsets is easier than
proving facts about sets with large additive energy (e.g
Freiman’s Theorem). But in practice we often want a
structural result about sets with large additive energy. BSG
fills this gap.



The magic of BSG

• Cauchy-Schwarz tells us that small partial sumsets imply
large additive energy. BSG allows us to reverse
Cauchy-Schwarz (at the price of passing to a subset).

• The lemma we saw earlier tells us that large additive
energy implies small partial sumsets. BSG allows us to
replace the partial sumset by an honest sumset (again
after passing to a subset). In other words, we can replace a
“dense” subset G of A×A by a “dense” product set A′ ×A′.

• Proving facts about sets with small sumsets is easier than
proving facts about sets with large additive energy (e.g
Freiman’s Theorem). But in practice we often want a
structural result about sets with large additive energy. BSG
fills this gap.



The magic of BSG

• Cauchy-Schwarz tells us that small partial sumsets imply
large additive energy. BSG allows us to reverse
Cauchy-Schwarz (at the price of passing to a subset).

• The lemma we saw earlier tells us that large additive
energy implies small partial sumsets. BSG allows us to
replace the partial sumset by an honest sumset (again
after passing to a subset). In other words, we can replace a
“dense” subset G of A×A by a “dense” product set A′ ×A′.

• Proving facts about sets with small sumsets is easier than
proving facts about sets with large additive energy (e.g
Freiman’s Theorem). But in practice we often want a
structural result about sets with large additive energy. BSG
fills this gap.



Outline

1 Additive energy

2 The Balog-Szemerédi-Gowers Theorem

3 Convolutions



Convolutions and Lp norms

Definition
We work with finitely supported functions f : Z → R.

We define the Lp norms as ∥f∥∞ = maxx |f (x)| and

∥f∥p
p =

∑
x

f (x)p.

The convolution of f and g is

f ∗ g(z) =
∑

(x ,y):x+y=z

f (x)g(y) =
∑

x

f (x)g(z − x).
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Additive energy as the L2 norm of convolutions

Lemma
E(A,B) = ∥1A ∗ 1B∥2

2.

Proof.
Note that

1A ∗ 1B(z) =
∑

(x ,y):x+y=z

1A(x)1B(y)

= |{(x , y) ∈ A × B : x + y ∈ Z}|

so

E(A,B) =
∑

z

|{(x , y) ∈ A × B : x + y = z}|2 = ∥1A ∗ 1B∥2
2.
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BSG as an inverse theorem for convolutions

• Young’s inequality (convexity of t → tp) says that

∥f ∗ g∥p ≤ ∥f∥1∥g∥p.

• In particular,

E(A,A)1/2 = ∥1A ∗ 1A∥2 ≤ ∥1A∥1∥1A∥2 = |A|3/2.

• Thus, the inequality E(A,A) ≤ |A|3 is just a special case of
Young’s inequality.

• BSG can be seen as an inverse theorem for convolutions:
if Young’s inequality is “almost sharp” for ∥1A ∗ 1A∥2, then A
contains a dense subset with small doubling.

• Using pigeonholing and Hölder’s inequality, one can extend
this to more general functions and values of p.
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Conclusion

• The Balog-Szemerédi-Gowers Theorem is a powerful tool
with applications in many areas of mathematics.

• It allows us to convert sumset estimates (often easier to
obtain) to L2 estimates (far more useful in applications).

• An indication of its usefulness is in the many formulations it
has: in terms of additive energy, partial sumsets, Lp norms
of convolutions, etc.
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