Additive Combinatorics Methods in Fractal Geometry, Lecture I

Pablo Shmerkin

Department of Mathematics The University of British Columbia

School on Dimension Theory of Fractals, Erdős Center, Budapest, 26-30 August 2024

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

(ロ) (同) (三) (三) (三) (○) (○)

Lecture 1: Introduction to Additive Combinatorics. Lecture 2: The Balog-Szemerédi-Gowers Theorem Lecture 3: Discretized Fractal Geometry.

(ロ) (同) (三) (三) (三) (○) (○)

Lecture 1: Introduction to Additive Combinatorics. Lecture 2: The Balog-Szemerédi-Gowers Theorem. Lecture 3: Discretized Fractal Geometry. Lecture 4: Sum-product and applications.

(ロ) (同) (三) (三) (三) (○) (○)

Lecture 1: Introduction to Additive Combinatorics. Lecture 2: The Balog-Szemerédi-Gowers Theorem. Lecture 3: Discretized Fractal Geometry. Lecture 4: Sum-product and applications.

(ロ) (同) (三) (三) (三) (○) (○)

Lecture 1: Introduction to Additive Combinatorics.

Lecture 2: The Balog-Szemerédi-Gowers Theorem.

Lecture 3: Discretized Fractal Geometry.

Lecture 4: Sum-product and applications.

1 Arithmetic progressions and Szemerédi's Theorem

2 Sumsets and Freiman's Theorem

3 Plünnecke-Ruzsa inequalities

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

We will see it through a sample of some important concepts and results.

- Fractal geometry
- Harmonic Analysis
- Ergodic Theory
- Number Theory
- Combinatorics

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

We will see it through a sample of some important concepts and results.

- Fractal geometry
- Harmonic Analysis
- Ergodic Theory
- Number Theory
- Combinatorics

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

We will see it through a sample of some important concepts and results.

- Fractal geometry
- Harmonic Analysis
- Ergodic Theory
- Number Theory
- Combinatorics

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

We will see it through a sample of some important concepts and results.

- Fractal geometry
- Harmonic Analysis
- Ergodic Theory
- Number Theory
- Combinatorics

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

We will see it through a sample of some important concepts and results.

- Fractal geometry
- Harmonic Analysis
- Ergodic Theory
- Number Theory
- Combinatorics

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

We will see it through a sample of some important concepts and results.

- Fractal geometry
- Harmonic Analysis
- Ergodic Theory
- Number Theory
- Combinatorics

- ℤ or ℤ^d
- \mathbb{R} or \mathbb{R}^d .
- C or C^d.
- The circle \mathbb{R}/\mathbb{Z} or the torus \mathbb{R}/\mathbb{Z}^d (written additively as $[0, 1)^d$).
- $\mathbb{Z}/p\mathbb{Z}$ or $(\mathbb{Z}/p\mathbb{Z})^d$ (with *p* usually a prime).

- ℤ or ℤ^d
- \mathbb{R} or \mathbb{R}^d .
- C or C^d.
- The circle \mathbb{R}/\mathbb{Z} or the torus \mathbb{R}/\mathbb{Z}^d (written additively as $[0, 1)^d$).
- $\mathbb{Z}/p\mathbb{Z}$ or $(\mathbb{Z}/p\mathbb{Z})^d$ (with *p* usually a prime).

- ℤ or ℤ^d
- \mathbb{R} or \mathbb{R}^d .
- C or C^d.
- The circle \mathbb{R}/\mathbb{Z} or the torus \mathbb{R}/\mathbb{Z}^d (written additively as $[0, 1)^d$).
- $\mathbb{Z}/p\mathbb{Z}$ or $(\mathbb{Z}/p\mathbb{Z})^d$ (with *p* usually a prime).

- ℤ or ℤ^d
- \mathbb{R} or \mathbb{R}^d .
- C or C^d.
- The circle \mathbb{R}/\mathbb{Z} or the torus \mathbb{R}/\mathbb{Z}^d (written additively as $[0, 1)^d$).
- $\mathbb{Z}/p\mathbb{Z}$ or $(\mathbb{Z}/p\mathbb{Z})^d$ (with *p* usually a prime).

- ℤ or ℤ^d
- \mathbb{R} or \mathbb{R}^d .
- C or C^d.
- The circle \mathbb{R}/\mathbb{Z} or the torus \mathbb{R}/\mathbb{Z}^d (written additively as $[0, 1)^d$).
- $\mathbb{Z}/p\mathbb{Z}$ or $(\mathbb{Z}/p\mathbb{Z})^d$ (with *p* usually a prime).

Arithmetic progressions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition A *k*-AP is $a, a + v, a + 2v, \dots, a + (k - 1)v$ with a $v \in Z$ and $v \neq 0$

with $a, v \in Z$ and $v \neq 0$.

Question

What conditions of size and/or structure ensure that A contains (long) arithmetic progressions?

Arithmetic progressions

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Definition A *k*-AP is

$a, a + v, a + 2v, \ldots, a + (k - 1)v$

with $a, v \in Z$ and $v \neq 0$.

Question

What conditions of size and/or structure ensure that A contains (long) arithmetic progressions?

Szemerédi's Theorem

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Definition

Let $r_k(N)$ be the size of the largest subset of $\{1, ..., N\}$ that does not contain a *k*-AP.

Theorem (Szemerédi 1975) For any $k \ge 3$, $\lim_{N \to \infty} \frac{r_k(N)}{N} = 0.$

Corollary

A subset of the integers of positive upper density contains arbitrarily long arithmetic progressions.

Szemerédi's Theorem

(日) (日) (日) (日) (日) (日) (日)

Definition

Let $r_k(N)$ be the size of the largest subset of $\{1, ..., N\}$ that does not contain a *k*-AP.

Theorem (Szemerédi 1975) For any $k \ge 3$, $\lim_{N \to \infty} \frac{r_k(N)}{N} = 0.$

Corollary

A subset of the integers of positive upper density contains arbitrarily long arithmetic progressions.

Szemerédi's Theorem

(日) (日) (日) (日) (日) (日) (日)

Definition

Let $r_k(N)$ be the size of the largest subset of $\{1, ..., N\}$ that does not contain a *k*-AP.

Theorem (Szemerédi 1975) For any $k \ge 3$, $\lim_{N \to \infty} \frac{r_k(N)}{N} = 0.$

Corollary

A subset of the integers of positive upper density contains arbitrarily long arithmetic progressions.

- The case k = 3 was proved by K. Roth in the 1952 using the Fourier transform. The Fourier transform does not work at all if $k \ge 4$.
- Very influential proofs of Szemerédi's Theorem were given by H. Furstenberg (Ergodic Theory), T. Gowers (Higher order Fourier analysis), T. Tao (finitary ergodic theory), and others.
- There have been many generalizations and extensions, the most famous of which is the Green-Tao Theorem extending Szemerédi's Theorem to the primes.
- An active area of research concerns Szemerédi-type phenomena in subsets of Euclidean space: Geometric Measure Theory+Harmonic Analysis.

- The case k = 3 was proved by K. Roth in the 1952 using the Fourier transform. The Fourier transform does not work at all if $k \ge 4$.
- Very influential proofs of Szemerédi's Theorem were given by H. Furstenberg (Ergodic Theory), T. Gowers (Higher order Fourier analysis), T. Tao (finitary ergodic theory), and others.
- There have been many generalizations and extensions, the most famous of which is the Green-Tao Theorem extending Szemerédi's Theorem to the primes.
- An active area of research concerns Szemerédi-type phenomena in subsets of Euclidean space: Geometric Measure Theory+Harmonic Analysis.

- The case k = 3 was proved by K. Roth in the 1952 using the Fourier transform. The Fourier transform does not work at all if $k \ge 4$.
- Very influential proofs of Szemerédi's Theorem were given by H. Furstenberg (Ergodic Theory), T. Gowers (Higher order Fourier analysis), T. Tao (finitary ergodic theory), and others.
- There have been many generalizations and extensions, the most famous of which is the Green-Tao Theorem extending Szemerédi's Theorem to the primes.
- An active area of research concerns Szemerédi-type phenomena in subsets of Euclidean space: Geometric Measure Theory+Harmonic Analysis.

- The case k = 3 was proved by K. Roth in the 1952 using the Fourier transform. The Fourier transform does not work at all if $k \ge 4$.
- Very influential proofs of Szemerédi's Theorem were given by H. Furstenberg (Ergodic Theory), T. Gowers (Higher order Fourier analysis), T. Tao (finitary ergodic theory), and others.
- There have been many generalizations and extensions, the most famous of which is the Green-Tao Theorem extending Szemerédi's Theorem to the primes.
- An active area of research concerns Szemerédi-type phenomena in subsets of Euclidean space: Geometric Measure Theory+Harmonic Analysis.

(日) (日) (日) (日) (日) (日) (日)

- Recall Szemerédi's Theorem: $\lim_{N\to\infty} \frac{r_k(N)}{N} = 0$, where $r_k(N)$ is the size of the largest subset of $\{1, \ldots, N\}$ that does not contain a *k*-AP.
- The original proof of Szemerédi's Theorem gave extremely poor bounds on $r_k(N)$. Finding good bounds for $r_k(N)$ is a very active and important problem.
- For *k* = 3, several recent breakthroughs have been obtained by T. Bloom-O. Sisask, Z. Kelley-R. Meka and others. The current world-record is

$$r_3(N) \leq \exp(-c\log(N)^{1/9}) \cdot N.$$

$$r_3(N) \geq \exp(-c'\log(N)^{1/2}) \cdot N.$$

- Recall Szemerédi's Theorem: $\lim_{N\to\infty} \frac{r_k(N)}{N} = 0$, where $r_k(N)$ is the size of the largest subset of $\{1, \ldots, N\}$ that does not contain a *k*-AP.
- The original proof of Szemerédi's Theorem gave extremely poor bounds on r_k(N). Finding good bounds for r_k(N) is a very active and important problem.
- For *k* = 3, several recent breakthroughs have been obtained by T. Bloom-O. Sisask, Z. Kelley-R. Meka and others. The current world-record is

$$r_3(N) \leq \exp(-c\log(N)^{1/9}) \cdot N.$$

$$r_3(N) \geq \exp(-c'\log(N)^{1/2}) \cdot N.$$

- Recall Szemerédi's Theorem: $\lim_{N\to\infty} \frac{r_k(N)}{N} = 0$, where $r_k(N)$ is the size of the largest subset of $\{1, \ldots, N\}$ that does not contain a *k*-AP.
- The original proof of Szemerédi's Theorem gave extremely poor bounds on r_k(N). Finding good bounds for r_k(N) is a very active and important problem.
- For *k* = 3, several recent breakthroughs have been obtained by T. Bloom-O. Sisask, Z. Kelley-R. Meka and others. The current world-record is

$$r_3(N) \leq \exp(-c\log(N)^{1/9}) \cdot N.$$

$$r_3(N) \ge \exp(-c'\log(N)^{1/2}) \cdot N.$$

- Recall Szemerédi's Theorem: $\lim_{N\to\infty} \frac{r_k(N)}{N} = 0$, where $r_k(N)$ is the size of the largest subset of $\{1, \ldots, N\}$ that does not contain a *k*-AP.
- The original proof of Szemerédi's Theorem gave extremely poor bounds on r_k(N). Finding good bounds for r_k(N) is a very active and important problem.
- For *k* = 3, several recent breakthroughs have been obtained by T. Bloom-O. Sisask, Z. Kelley-R. Meka and others. The current world-record is

$$r_3(N) \leq \exp(-c\log(N)^{1/9}) \cdot N.$$

$$r_3(N) \geq \exp(-c'\log(N)^{1/2}) \cdot N.$$

1 Arithmetic progressions and Szemerédi's Theorem

2 Sumsets and Freiman's Theorem

3 Plünnecke-Ruzsa inequalities

▲□▶▲@▶▲≣▶▲≣▶ ≣ めんの

Definition

If $A, B \subset \mathbb{Z}$ we define their sumset and difference set as

$$A + B = \{x + y : x \in A, y \in B\},\$$

$$A - B = \{x - y : x \in A, y \in B\},\$$

$$nA = \underbrace{A + \dots + A}_{n \text{ times}}.$$

Remark

One of the most fundamental problems of additive combinatorics is to understand the relationship between the sizes (and the structure) of A, B and sets obtained from them via sums and differences.

Definition

If $A, B \subset \mathbb{Z}$ we define their sumset and difference set as

$$A + B = \{x + y : x \in A, y \in B\},\$$

$$A - B = \{x - y : x \in A, y \in B\},\$$

$$nA = \underbrace{A + \dots + A}_{n \text{ times}}.$$

Remark

One of the most fundamental problems of additive combinatorics is to understand the relationship between the sizes (and the structure) of A, B and sets obtained from them via sums and differences.

Definition

If $A, B \subset \mathbb{Z}$ we define their sumset and difference set as

$$A + B = \{x + y : x \in A, y \in B\},\$$

$$A - B = \{x - y : x \in A, y \in B\},\$$

$$nA = \underbrace{A + \dots + A}_{n \text{ times}}.$$

Remark

One of the most fundamental problems of additive combinatorics is to understand the relationship between the sizes (and the structure) of A, B and sets obtained from them via sums and differences.

Definition

If $A, B \subset \mathbb{Z}$ we define their sumset and difference set as

$$A + B = \{x + y : x \in A, y \in B\},\$$

$$A - B = \{x - y : x \in A, y \in B\},\$$

$$nA = \underbrace{A + \dots + A}_{n \text{ times}}.$$

Remark

One of the most fundamental problems of additive combinatorics is to understand the relationship between the sizes (and the structure) of A, B and sets obtained from them via sums and differences.

Size of sumsets and additive structure

• For any set A,

$$|A| \le |A + A| \le \min\left(\frac{1}{2}|A|(|A| + 1), |Z|\right).$$

So, up to multiplicative constants, |A + A| varies between |A| and $|A|^2$ (or |Z| if $|Z| \le |A|^2$).

- The first inequality follows since A + A ⊃ A + a for a fixed a ∈ A. The second inequality follows from the fact that there are |A|(|A + 1)/2 possible non-ordered pairs {a, a'} with a, a' ∈ A.
- We think of sets A with |A + A| ∼ |A| as sets with additive structure or as approximate subgroups.

Size of sumsets and additive structure

• For any set A,

$$|A| \le |A + A| \le \min\left(\frac{1}{2}|A|(|A| + 1), |Z|\right).$$

So, up to multiplicative constants, |A + A| varies between |A| and $|A|^2$ (or |Z| if $|Z| \le |A|^2$).

- The first inequality follows since A + A ⊃ A + a for a fixed a ∈ A. The second inequality follows from the fact that there are |A|(|A + 1)/2 possible non-ordered pairs {a, a'} with a, a' ∈ A.
- We think of sets A with |A + A| ∼ |A| as sets with additive structure or as approximate subgroups.

Size of sumsets and additive structure

• For any set A,

$$|A| \le |A + A| \le \min\left(\frac{1}{2}|A|(|A| + 1), |Z|\right).$$

So, up to multiplicative constants, |A + A| varies between |A| and $|A|^2$ (or |Z| if $|Z| \le |A|^2$).

- The first inequality follows since *A* + *A* ⊃ *A* + *a* for a fixed *a* ∈ *A*. The second inequality follows from the fact that there are |*A*|(|*A* + 1)/2 possible non-ordered pairs {*a*, *a*'} with *a*, *a*' ∈ *A*.
- We think of sets A with |A + A| ∼ |A| as sets with additive structure or as approximate subgroups.

Definition A GAP is a set of the form

$$\{a + i_1 v_1 + i_2 v_2 + \ldots + i_d v_d : 0 \le i_j < k_i\} = a + [\mathbf{k}] \cdot \mathbf{v},$$

where $\mathbf{k} = (k_1, \ldots, k_d) \subset \mathbb{N}^d, a \in Z, \mathbf{v} = (v_1, \ldots, v_d) \in Z^d,$
 $v_i \ne 0.$

A GAPA is proper if

$$|\mathbf{A}|=k_1\cdots k_d,$$

i.e. all the sums $a + i_1v_1 + i_2v_2 + \ldots + i_dv_d$ are different.

Definition A GAP is a set of the form

$$\{a + i_1 v_1 + i_2 v_2 + \ldots + i_d v_d : 0 \le i_j < k_i\} = a + [\mathbf{k}] \cdot \mathbf{v},$$

where $\mathbf{k} = (k_1, \ldots, k_d) \subset \mathbb{N}^d, a \in Z, \mathbf{v} = (v_1, \ldots, v_d) \in Z^d,$
 $v_i \ne 0.$

A GAPA is proper if

$$|\mathbf{A}|=k_1\cdots k_d,$$

i.e. all the sums $a + i_1v_1 + i_2v_2 + \ldots + i_dv_d$ are different.

Definition A GAP is a set of the form

$$\{a + i_1 v_1 + i_2 v_2 + \ldots + i_d v_d : 0 \le i_j < k_i\} = a + [\mathbf{k}] \cdot \mathbf{v},$$

where $\mathbf{k} = (k_1, \ldots, k_d) \subset \mathbb{N}^d, a \in Z, \mathbf{v} = (v_1, \ldots, v_d) \in Z^d,$
 $v_i \ne 0.$

A GAPA is proper if

$$|\mathbf{A}|=\mathbf{k}_1\cdots\mathbf{k}_d,$$

i.e. all the sums $a + i_1v_1 + i_2v_2 + \ldots + i_dv_d$ are different.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Definition A GAP is a set of the form

$$\{a + i_1 v_1 + i_2 v_2 + \ldots + i_d v_d : 0 \le i_j < k_i\} = a + [\mathbf{k}] \cdot \mathbf{v},$$

where $\mathbf{k} = (k_1, \ldots, k_d) \subset \mathbb{N}^d, a \in Z, \mathbf{v} = (v_1, \ldots, v_d) \in Z^d,$
 $v_i \ne 0.$

A GAPA is proper if

$$|\mathbf{A}|=\mathbf{k}_{1}\cdots\mathbf{k}_{d},$$

i.e. all the sums $a + i_1v_1 + i_2v_2 + \ldots + i_dv_d$ are different.

Examples of sets for which $|A + A| \sim |A|$:

- Subgroups (if they exist).
- Arithmetic progressions: $|A + A| \le 2|A|$.
- Proper GAPs: $|A + A| \le 2^d |A|$ where *d* is the rank. Indeed, let

$$A = a + [\mathbf{k}] \cdot \mathbf{v} = \{ a + i_1 v_1 + i_2 v_2 + \ldots + i_d v_d : 0 \le i_\ell < k_\ell \}.$$

Then

 $A+A = \{2a+j_1v_1+j_2v_2+\ldots+j_dv_d: 0 \le j_\ell < 2k_\ell\} = a+[2k].v,$

$$|A + A| \le (2k_1) \cdots (2k_\ell) = 2^d (k_1 \cdots k_\ell) = 2^d |A|.$$

Examples of sets for which $|A + A| \sim |A|$:

- Subgroups (if they exist).
- Arithmetic progressions: $|A + A| \le 2|A|$.
- Proper GAPs: $|A + A| \le 2^d |A|$ where *d* is the rank. Indeed, let

$$A = a + [\mathbf{k}] \cdot \mathbf{v} = \{ a + i_1 v_1 + i_2 v_2 + \ldots + i_d v_d : 0 \le i_\ell < k_\ell \}.$$

Then

 $A+A = \{2a+j_1v_1+j_2v_2+\ldots+j_dv_d: 0 \le j_\ell < 2k_\ell\} = a+[2k].v,$

SO

$$|A + A| \le (2k_1) \cdots (2k_\ell) = 2^d (k_1 \cdots k_\ell) = 2^d |A|.$$

Examples of sets for which $|A + A| \sim |A|$:

- Subgroups (if they exist).
- Arithmetic progressions: $|A + A| \le 2|A|$.
- Proper GAPs: $|A + A| \le 2^d |A|$ where *d* is the rank. Indeed, let

$$A = a + [\mathbf{k}] \cdot \mathbf{v} = \{ a + i_1 v_1 + i_2 v_2 + \ldots + i_d v_d : 0 \le i_\ell < k_\ell \}.$$

Then

$$A + A = \{2a + j_1v_1 + j_2v_2 + \ldots + j_dv_d : 0 \le j_\ell < 2k_\ell\} = a + [2\mathbf{k}] \cdot \mathbf{v},$$

$$|\boldsymbol{A} + \boldsymbol{A}| \leq (2k_1) \cdots (2k_\ell) = 2^d (k_1 \cdots k_\ell) = 2^d |\boldsymbol{A}|.$$

Examples of sets for which $|A + A| \sim |A|$:

- Subgroups (if they exist).
- Arithmetic progressions: $|A + A| \le 2|A|$.
- Proper GAPs: $|A + A| \le 2^d |A|$ where *d* is the rank. Indeed, let

$$A = a + [\mathbf{k}] \cdot \mathbf{v} = \{ a + i_1 v_1 + i_2 v_2 + \ldots + i_d v_d : 0 \le i_\ell < k_\ell \}.$$

Then

$$A+A = \{2a+j_1v_1+j_2v_2+\ldots+j_dv_d : 0 \le j_\ell < 2k_\ell\} = a+[2k].v,$$

so

$$|\boldsymbol{A} + \boldsymbol{A}| \leq (2k_1) \cdots (2k_\ell) = 2^d (k_1 \cdots k_\ell) = 2^d |\boldsymbol{A}|.$$

Examples of sets for which $|A + A| \sim |A|^2$:

- Random sets (pick each element of $\mathbb{Z}/p\mathbb{Z}$ with probability $p^{-\alpha}$).
- Lacunary sets (e.g. powers of 2).
- *A* ∪ *B* where *A*, *B* are disjoint of the same size, *A* is one of the previous examples and *B* is arbitrary.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Examples of sets for which $|A + A| \sim |A|^2$:

- Random sets (pick each element of $\mathbb{Z}/p\mathbb{Z}$ with probability $p^{-\alpha}$).
- Lacunary sets (e.g. powers of 2).
- *A* ∪ *B* where *A*, *B* are disjoint of the same size, *A* is one of the previous examples and *B* is arbitrary.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Examples of sets for which $|A + A| \sim |A|^2$:

- Random sets (pick each element of $\mathbb{Z}/p\mathbb{Z}$ with probability $p^{-\alpha}$).
- Lacunary sets (e.g. powers of 2).
- *A* ∪ *B* where *A*, *B* are disjoint of the same size, *A* is one of the previous examples and *B* is arbitrary.

- Let A be the set of all numbers in [1, N] with N = 4^k whose base 4 expansion has only digits 0 and 1.
- This is an integer analog of a self-similar set.
- We have $|A| \sim 2^k = N^{1/2}$.
- Then *A* + *A* is the set of all numbers in [2, 2*N*] whose base 4 expansion has only digits 0, 1, 2.
- We have $|A + A| \sim 3^k = N^{3/4} \sim |A|^{3/2}$.
- So $|A| \ll |A + A| \ll |A|^2$.

- Let A be the set of all numbers in [1, N] with N = 4^k whose base 4 expansion has only digits 0 and 1.
- This is an integer analog of a self-similar set.
- We have $|A| \sim 2^k = N^{1/2}$.
- Then *A* + *A* is the set of all numbers in [2, 2*N*] whose base 4 expansion has only digits 0, 1, 2.
- We have $|A + A| \sim 3^k = N^{3/4} \sim |A|^{3/2}$.
- So $|A| \ll |A + A| \ll |A|^2$.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Let A be the set of all numbers in [1, N] with N = 4^k whose base 4 expansion has only digits 0 and 1.
- This is an integer analog of a self-similar set.
- We have $|A| \sim 2^k = N^{1/2}$.
- Then *A* + *A* is the set of all numbers in [2, 2*N*] whose base 4 expansion has only digits 0, 1, 2.
- We have $|A + A| \sim 3^k = N^{3/4} \sim |A|^{3/2}$.
- So $|A| \ll |A + A| \ll |A|^2$.

- Let A be the set of all numbers in [1, N] with N = 4^k whose base 4 expansion has only digits 0 and 1.
- This is an integer analog of a self-similar set.
- We have $|A| \sim 2^k = N^{1/2}$.
- Then *A* + *A* is the set of all numbers in [2, 2*N*] whose base 4 expansion has only digits 0, 1, 2.
- We have $|A + A| \sim 3^k = N^{3/4} \sim |A|^{3/2}$.
- So $|A| \ll |A + A| \ll |A|^2$.

- Let A be the set of all numbers in [1, N] with N = 4^k whose base 4 expansion has only digits 0 and 1.
- This is an integer analog of a self-similar set.
- We have $|A| \sim 2^k = N^{1/2}$.
- Then *A* + *A* is the set of all numbers in [2, 2*N*] whose base 4 expansion has only digits 0, 1, 2.
- We have $|A + A| \sim 3^k = N^{3/4} \sim |A|^{3/2}$.
- So $|A| \ll |A + A| \ll |A|^2$.

- Let A be the set of all numbers in [1, N] with N = 4^k whose base 4 expansion has only digits 0 and 1.
- This is an integer analog of a self-similar set.
- We have $|A| \sim 2^k = N^{1/2}$.
- Then *A* + *A* is the set of all numbers in [2, 2*N*] whose base 4 expansion has only digits 0, 1, 2.
- We have $|A + A| \sim 3^k = N^{3/4} \sim |A|^{3/2}$.
- So $|A| \ll |A + A| \ll |A|^2$.

Freiman's Theorem

(日) (日) (日) (日) (日) (日) (日)

Recall: If *A* is a dense subset of a proper GAP, then $|A + A| \sim |A|$.

Theorem (Freiman 1966)

Given K > 1 there are d(K) and S(K) such that the following holds.

Suppose $|A + A| \le K|A|$. Then there is a GAP *P* of rank d(K) such that $A \subset P$ and $|P| \le S(K)|A|$.

In other words, sets of small doubling are always dense subsets of GAPs of small rank.

Quantitative Freiman

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem (Ruzsa, Chang, Sanders, Schoen) Suppose $|A + A| \le K|A|$. Then there is a GAP P with

$$rank(P) \leq K^{1+C\log(K)^{-1/2}} \leq K^{1+\varepsilon}$$

and such that $A \subset P$ and

$$|P| \leq \exp(1 + C\log(K)^{-1/2})|A| \leq \exp(K^{1+\varepsilon}).$$

- Freiman's Theorem can be seen as an inverse or classification theorem: based on qualitative information about *A*, it returns structural information.
- In applications, the quantitative estimates on d(K) and S(K) are crucial.
- The theorem does not guarantee that *P* is proper. But it can be taken to be proper (with slightly worse quantitative bounds).
- At least with the current bounds, Freiman's Theorem says nothing if *K* grows like $K = |A|^{\delta}$.

- Freiman's Theorem can be seen as an inverse or classification theorem: based on qualitative information about *A*, it returns structural information.
- In applications, the quantitative estimates on d(K) and S(K) are crucial.
- The theorem does not guarantee that *P* is proper. But it can be taken to be proper (with slightly worse quantitative bounds).
- At least with the current bounds, Freiman's Theorem says nothing if *K* grows like $K = |A|^{\delta}$.

- Freiman's Theorem can be seen as an inverse or classification theorem: based on qualitative information about *A*, it returns structural information.
- In applications, the quantitative estimates on d(K) and S(K) are crucial.
- The theorem does not guarantee that *P* is proper. But it can be taken to be proper (with slightly worse quantitative bounds).
- At least with the current bounds, Freiman's Theorem says nothing if *K* grows like $K = |A|^{\delta}$.

- Freiman's Theorem can be seen as an inverse or classification theorem: based on qualitative information about *A*, it returns structural information.
- In applications, the quantitative estimates on d(K) and S(K) are crucial.
- The theorem does not guarantee that *P* is proper. But it can be taken to be proper (with slightly worse quantitative bounds).
- At least with the current bounds, Freiman's Theorem says nothing if *K* grows like *K* = |*A*|^δ.

1 Arithmetic progressions and Szemerédi's Theorem

2 Sumsets and Freiman's Theorem

3 Plünnecke-Ruzsa inequalities

|▲□▶ ▲圖▶ ▲国▶ ▲国▶ | 国|||の久())

Plünnecke's inequalities

Motivation

Freiman's Theorem says that if $|A + A| \le K|A|$ then A is a dense subset of a low-rank GAP.

Using this it is easy to show that $|A + A + A| \le f(K)|A|$ and so on. In other words, having a small sumset implies having a small n-sumset nA.

But can we do better than Freiman's Theorem in this direction?

Theorem (Plünnecke Inequalities, 1969) Suppose $|A + A| \le K|A|$. Then $|nA| \le K^n|A|$.

More generally, if $|A + B| \le K|A|$, then $|nB| \le K^n|A|$.

Plünnecke's inequalities

Motivation

Freiman's Theorem says that if $|A + A| \le K|A|$ then A is a dense subset of a low-rank GAP.

Using this it is easy to show that $|A + A + A| \le f(K)|A|$ and so on. In other words, having a small sumset implies having a small n-sumset nA.

But can we do better than Freiman's Theorem in this direction?

Theorem (Plünnecke Inequalities, 1969) Suppose $|A + A| \le K|A|$. Then $|nA| \le K^n|A|$.

More generally, if $|A + B| \le K|A|$, then $|nB| \le K^n|A|$.

- Suppose $|A + B| \le K|A|$. We want to show $|nB| \le K^n|A|$.
- Choose a subset A' of A which minimizes the ratio

$$\frac{|A'+B|}{|A'|}$$

let K' be the ratio.

- Then $K' \leq K$ (since A' is a subset of A).
- By definition we have:

$$|A' + B| = K'|A'|,$$

$$|Z + B| \ge K'|Z| \quad (Z \subset A)$$

- Suppose $|A + B| \le K|A|$. We want to show $|nB| \le K^n|A|$.
- Choose a subset A' of A which minimizes the ratio

$$\frac{|\mathbf{A}'+\mathbf{B}|}{|\mathbf{A}'|},$$

let K' be the ratio.

- Then $K' \leq K$ (since A' is a subset of A).
- By definition we have:

$$|A' + B| = K'|A'|,$$

$$|Z + B| \ge K'|Z| \quad (Z \subset A).$$

- Suppose $|A + B| \le K|A|$. We want to show $|nB| \le K^n|A|$.
- Choose a subset A' of A which minimizes the ratio

$$\frac{|\mathbf{A}'+\mathbf{B}|}{|\mathbf{A}'|},$$

let K' be the ratio.

- Then $K' \leq K$ (since A' is a subset of A).
- By definition we have:

$$|A' + B| = K'|A'|,$$

$$|Z + B| \ge K'|Z| \quad (Z \subset A).$$

(ロ) (同) (三) (三) (三) (○) (○)

- Suppose $|A + B| \le K|A|$. We want to show $|nB| \le K^n|A|$.
- Choose a subset A' of A which minimizes the ratio

$$\frac{|\mathbf{A}'+\mathbf{B}|}{|\mathbf{A}'|},$$

let K' be the ratio.

- Then $K' \leq K$ (since A' is a subset of A).
- By definition we have:

$$|A' + B| = K'|A'|,$$

 $|Z + B| \ge K'|Z| \quad (Z \subset A).$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Plünnecke's inequality: main lemma

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Lemma (Petridis 2011) For every set $C \subset Z$,

$|\mathbf{A}'+\mathbf{B}+\mathbf{C}|\leq \mathbf{K}'|\mathbf{A}'+\mathbf{C}|.$

Proof of Plünnecke's inequalities, assuming lemma. We prove by induction that

 $|nB| \le |A' + nB| \le (K')^n |A'| \le K^n |A|$

For n = 1, this is the definition of K'.

For the induction step, apply the lemma to C = (n-1)B.

Plünnecke's inequality: main lemma

A D F A 同 F A E F A E F A Q A

Lemma (Petridis 2011) For every set $C \subset Z$,

$$|\mathbf{A}'+\mathbf{B}+\mathbf{C}|\leq \mathbf{K}'|\mathbf{A}'+\mathbf{C}|.$$

Proof of Plünnecke's inequalities, assuming lemma. We prove by induction that

$$|nB| \leq |A' + nB| \leq (K')^n |A'| \leq K^n |A|$$

For n = 1, this is the definition of K'.

For the induction step, apply the lemma to C = (n-1)B.

Plünnecke inequalities: proof of main lemma I

Lemma (Petridis)

$$|\mathbf{A}'+\mathbf{B}+\mathbf{C}|\leq \mathbf{K}'|\mathbf{A}'+\mathbf{C}|,$$

where

$$K' = \frac{|A' + B|}{|A'|} = \min_{X \subset A} \frac{|X + B|}{|X|}.$$

- Induction in |C|.
- The case |C| = {x} is true since |A' + B + x| = |A' + B| and |A' + x| = |A'|.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Assume true for *C*, and let $C' = C \cup \{x\}$.

Plünnecke inequalities: proof of main lemma I

Lemma (Petridis)

$$|\mathbf{A}'+\mathbf{B}+\mathbf{C}|\leq \mathbf{K}'|\mathbf{A}'+\mathbf{C}|,$$

where

$$K' = rac{|A' + B|}{|A'|} = \min_{X \subset A} rac{|X + B|}{|X|}.$$

- Induction in |C|.
- The case |C| = {x} is true since |A' + B + x| = |A' + B| and |A' + x| = |A'|.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Assume true for *C*, and let $C' = C \cup \{x\}$.

Lemma (Petridis)

$$|\mathbf{A}'+\mathbf{B}+\mathbf{C}|\leq \mathbf{K}'|\mathbf{A}'+\mathbf{C}|,$$

where

$$K' = rac{|A' + B|}{|A'|} = \min_{X \subset A} rac{|X + B|}{|X|}.$$

- Induction in |C|.
- The case |C| = {x} is true since |A' + B + x| = |A' + B| and |A' + x| = |A'|.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Assume true for *C*, and let $C' = C \cup \{x\}$.

Lemma (Petridis)

$$|\mathbf{A}'+\mathbf{B}+\mathbf{C}|\leq \mathbf{K}'|\mathbf{A}'+\mathbf{C}|,$$

where

$$K' = rac{|A' + B|}{|A'|} = \min_{X \subset A} rac{|X + B|}{|X|}.$$

- Induction in |C|.
- The case |C| = {x} is true since |A' + B + x| = |A' + B| and |A' + x| = |A'|.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Assume true for *C*, and let $C' = C \cup \{x\}$.

Lemma (Petridis) $|A' + B + C| \le K'|A' + C|$, where $\frac{|A' + B|}{|A'|} = K'$, K' minimal.

• $A' + B + C' = (A' + B + C) \cup ((A' + B + x) \setminus (Z + B + x)),$ where

 $Z = \{a \in A' : a + B + x \subset A + B + C\}.$

- $|Z + B| \ge K'|Z|$ by minimality of K'.
- By the inductive hypothesis,

 $\begin{aligned} |A' + B + C'| &\leq |A' + B + C| + \left(|A' + B + x| - |Z + B + x| \right) \\ &\leq K'|A' + C| + K'|A'| - K'|Z|. \end{aligned}$

It remains to show that

 $|A' + C| + |A'| - |Z| \le |A' + C'|$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma (Petridis) $|A' + B + C| \le K'|A' + C|$, where $\frac{|A' + B|}{|A'|} = K'$, K' minimal.

• $A' + B + C' = (A' + B + C) \cup ((A' + B + x) \setminus (Z + B + x)),$ where

$Z = \{a \in A' : a + B + x \subset A + B + C\}.$

- $|Z + B| \ge K'|Z|$ by minimality of K'.
- By the inductive hypothesis,

 $\begin{aligned} |A' + B + C'| &\leq |A' + B + C| + (|A' + B + x| - |Z + B + x|) \\ &\leq K'|A' + C| + K'|A'| - K'|Z|. \end{aligned}$

It remains to show that

$$|A' + C| + |A'| - |Z| \le |A' + C'|.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma (Petridis) $|A' + B + C| \le K'|A' + C|$, where $\frac{|A' + B|}{|A'|} = K'$, K' minimal.

• $A' + B + C' = (A' + B + C) \cup ((A' + B + x) \setminus (Z + B + x)),$ where

 $Z = \{a \in A' : a + B + x \subset A + B + C\}.$

• $|Z + B| \ge K'|Z|$ by minimality of K'.

By the inductive hypothesis,

 $\begin{aligned} |A' + B + C'| &\leq |A' + B + C| + \left(|A' + B + x| - |Z + B + x| \right) \\ &\leq K' |A' + C| + K' |A'| - K' |Z|. \end{aligned}$

It remains to show that

$$|A' + C| + |A'| - |Z| \le |A' + C'|.$$

Lemma (Petridis) $|A' + B + C| \le K'|A' + C|$, where $\frac{|A' + B|}{|A'|} = K'$, K' minimal.

• $A' + B + C' = (A' + B + C) \cup ((A' + B + x) \setminus (Z + B + x)),$ where

 $Z = \{a \in A' : a + B + x \subset A + B + C\}.$

- $|Z + B| \ge K'|Z|$ by minimality of K'.
- By the inductive hypothesis,

 $\begin{aligned} |\mathbf{A}'+\mathbf{B}+\mathbf{C}'| &\leq |\mathbf{A}'+\mathbf{B}+\mathbf{C}| + \left(|\mathbf{A}'+\mathbf{B}+\mathbf{x}|-|\mathbf{Z}+\mathbf{B}+\mathbf{x}|\right) \\ &\leq \mathbf{K}'|\mathbf{A}'+\mathbf{C}| + \mathbf{K}'|\mathbf{A}'| - \mathbf{K}'|\mathbf{Z}|. \end{aligned}$

It remains to show that

$$|A' + C| + |A'| - |Z| \le |A' + C'|.$$

A D F A 同 F A E F A E F A Q A

Lemma (Petridis) $|A' + B + C| \le K'|A' + C|$, where $\frac{|A' + B|}{|A'|} = K'$, K' minimal.

• $A' + B + C' = (A' + B + C) \cup ((A' + B + x) \setminus (Z + B + x)),$ where

 $Z = \{a \in A' : a + B + x \subset A + B + C\}.$

- $|Z + B| \ge K'|Z|$ by minimality of K'.
- By the inductive hypothesis,

 $\begin{aligned} |\mathbf{A}'+\mathbf{B}+\mathbf{C}'| &\leq |\mathbf{A}'+\mathbf{B}+\mathbf{C}| + \left(|\mathbf{A}'+\mathbf{B}+\mathbf{x}|-|\mathbf{Z}+\mathbf{B}+\mathbf{x}|\right) \\ &\leq \mathcal{K}'|\mathbf{A}'+\mathbf{C}| + \mathcal{K}'|\mathbf{A}'| - \mathcal{K}'|\mathbf{Z}|. \end{aligned}$

It remains to show that

$$|A' + C| + |A'| - |Z| \le |A' + C'|.$$

A D F A 同 F A E F A E F A Q A

Lemma

$|A' + C| + |A'| - |Z| \le |A' + C'|,$ where $Z = \{a \in A' : a + B + x \subset A + B + C\}.$ Proof.

$A'+C'=A+C\cup (A+x\setminus W+x),$

where $W = \{ a \in A' : a + x \in A' + C \}$.

• Since the union is disjoint and $W + x \subset A + x$,

$$|A' + C'| = |A' + C| + |A'| - |W|.$$

• But $W \subset Z$ since $a + x \in A' + C \Rightarrow a + B + x \subset A + B + C$. So

 $|A' + C'| \ge |A' + C| + |A'| - |Z|.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Lemma

 $|A' + C| + |A'| - |Z| \le |A' + C'|,$ where $Z = \{a \in A' : a + B + x \subset A + B + C\}.$ Proof.

$$A'+C'=A+C\cup (A+x\setminus W+x),$$

where $W = \{ a \in A' : a + x \in A' + C \}.$

• Since the union is disjoint and $W + x \subset A + x$,

$$|A' + C'| = |A' + C| + |A'| - |W|.$$

• But $W \subset Z$ since $a + x \in A' + C \Rightarrow a + B + x \subset A + B + C$. So

$$|A' + C'| \ge |A' + C| + |A'| - |Z|.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Lemma

 $|A' + C| + |A'| - |Z| \le |A' + C'|,$ where $Z = \{a \in A' : a + B + x \subset A + B + C\}.$ Proof.

$$A'+C'=A+C\cup (A+x\setminus W+x),$$

where $W = \{a \in A' : a + x \in A' + C\}.$

• Since the union is disjoint and $W + x \subset A + x$,

$$|A' + C'| = |A' + C| + |A'| - |W|.$$

• But $W \subset Z$ since $a + x \in A' + C \Rightarrow a + B + x \subset A + B + C$. So

$$|A' + C'| \ge |A' + C| + |A'| - |Z|.$$

(日) (日) (日) (日) (日) (日) (日)

Lemma

 $|A' + C| + |A'| - |Z| \le |A' + C'|,$ where $Z = \{a \in A' : a + B + x \subset A + B + C\}.$ Proof.

$$\mathbf{A}' + \mathbf{C}' = \mathbf{A} + \mathbf{C} \cup (\mathbf{A} + \mathbf{x} \setminus \mathbf{W} + \mathbf{x}),$$

where $W = \{ a \in A' : a + x \in A' + C \}.$

• Since the union is disjoint and $W + x \subset A + x$,

$$|A' + C'| = |A' + C| + |A'| - |W|.$$

• But $W \subset Z$ since $a + x \in A' + C \Rightarrow a + B + x \subset A + B + C$. So

$$|A' + C'| \ge |A' + C| + |A'| - |Z|.$$

(日) (日) (日) (日) (日) (日) (日)

Lemma

 $|A' + C| + |A'| - |Z| \le |A' + C'|,$ where $Z = \{a \in A' : a + B + x \subset A + B + C\}.$ Proof.

$$\mathbf{A}' + \mathbf{C}' = \mathbf{A} + \mathbf{C} \cup (\mathbf{A} + \mathbf{x} \setminus \mathbf{W} + \mathbf{x}),$$

where $W = \{ a \in A' : a + x \in A' + C \}.$

• Since the union is disjoint and $W + x \subset A + x$,

$$|A' + C'| = |A' + C| + |A'| - |W|.$$

• But $W \subset Z$ since $a + x \in A' + C \Rightarrow a + B + x \subset A + B + C$. So

$$|A' + C'| \ge |A' + C| + |A'| - |Z|.$$

Plünnecke inequalities: connections

- The Plünnecke inequalities are a key component of all the quantitative proofs of Freiman's Theorem.
- Usually one uses the contrapositive: in order to prove that

 $|\mathbf{A}+\mathbf{A}|\gg|\mathbf{A}|,$

it is enough to prove that

$$|\mathbf{A} + \mathbf{A} + \dots + \mathbf{A}| \gg |\mathbf{A}|,$$

which is easier since repeated sumsets have far more structure/smoothness.

 There is a useful version of Plünnecke's inequalities (due to Kaimanovich-Vershik) for entropy, with convolutions of measures in place of sumsets.

Plünnecke inequalities: connections

- The Plünnecke inequalities are a key component of all the quantitative proofs of Freiman's Theorem.
- Usually one uses the contrapositive: in order to prove that

$$|\mathbf{A}+\mathbf{A}|\gg|\mathbf{A}|,$$

it is enough to prove that

$$|\mathbf{A} + \mathbf{A} + \dots + \mathbf{A}| \gg |\mathbf{A}|,$$

which is easier since repeated sumsets have far more structure/smoothness.

 There is a useful version of Plünnecke's inequalities (due to Kaimanovich-Vershik) for entropy, with convolutions of measures in place of sumsets.

Plünnecke inequalities: connections

- The Plünnecke inequalities are a key component of all the quantitative proofs of Freiman's Theorem.
- Usually one uses the contrapositive: in order to prove that

$$|\mathbf{A}+\mathbf{A}|\gg|\mathbf{A}|,$$

it is enough to prove that

$$|\mathbf{A} + \mathbf{A} + \dots + \mathbf{A}| \gg |\mathbf{A}|,$$

which is easier since repeated sumsets have far more structure/smoothness.

 There is a useful version of Plünnecke's inequalities (due to Kaimanovich-Vershik) for entropy, with convolutions of measures in place of sumsets.

Theorem (T. Körner 2010, J. Schmeling-P.S. 2012)

For any non-decreasing sequence α_n of numbers in [0, 1] there exists a compact set A such that

$$\dim_H\left(\underbrace{A+\cdots+A}_{n \text{ times}}\right) = \alpha_n.$$

- Körner proved the result first but we were not aware of it; the constructions are different.
- We also show that there are no Plünnecke inequalities for upper box dimension, but they do hold for lower box dimension.

Theorem (T. Körner 2010, J. Schmeling-P.S. 2012)

For any non-decreasing sequence α_n of numbers in [0, 1] there exists a compact set A such that

$$\dim_H\left(\underbrace{A+\cdots+A}_{n \text{ times}}\right) = \alpha_n.$$

- Körner proved the result first but we were not aware of it; the constructions are different.
- We also show that there are no Plünnecke inequalities for upper box dimension, but they do hold for lower box dimension.

Theorem (T. Körner 2010, J. Schmeling-P.S. 2012)

For any non-decreasing sequence α_n of numbers in [0, 1] there exists a compact set A such that

$$\dim_H\left(\underbrace{A+\cdots+A}_{n \text{ times}}\right) = \alpha_n.$$

- Körner proved the result first but we were not aware of it; the constructions are different.
- We also show that there are no Plünnecke inequalities for upper box dimension, but they do hold for lower box dimension.

Theorem (T. Körner 2010, J. Schmeling-P.S. 2012)

For any non-decreasing sequence α_n of numbers in [0, 1] there exists a compact set A such that

$$\dim_H\left(\underbrace{A+\cdots+A}_{n \text{ times}}\right) = \alpha_n.$$

- Körner proved the result first but we were not aware of it; the constructions are different.
- We also show that there are no Plünnecke inequalities for upper box dimension, but they do hold for lower box dimension.

Outline

1 Arithmetic progressions and Szemerédi's Theorem

2 Sumsets and Freiman's Theorem

3 Plünnecke-Ruzsa inequalities

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQの

Some jewels of additive combinatorics

(日) (日) (日) (日) (日) (日) (日)

Szemerédi's Theorem: Dense subsets of $\mathbb{Z}/p\mathbb{Z}$, \mathbb{Z} contain arbitrarily long arithmetic progressions.

Freiman's Theorem: Sets with $|A + A| \le K|A|$ can be densely embedded in a GAP.

Plünnecke's Inequalities: If A + A is small, so are A + A + Aand *nA* for all *n*.

Some jewels of additive combinatorics

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Szemerédi's Theorem: Dense subsets of $\mathbb{Z}/p\mathbb{Z}$, \mathbb{Z} contain arbitrarily long arithmetic progressions.

Freiman's Theorem: Sets with $|A + A| \le K|A|$ can be densely embedded in a GAP.

Plünnecke's Inequalities: If A + A is small, so are A + A + Aand *nA* for all *n*.

Some jewels of additive combinatorics

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Szemerédi's Theorem: Dense subsets of $\mathbb{Z}/p\mathbb{Z}$, \mathbb{Z} contain arbitrarily long arithmetic progressions.
- Freiman's Theorem: Sets with $|A + A| \le K|A|$ can be densely embedded in a GAP.

Plünnecke's Inequalities: If A + A is small, so are A + A + Aand nA for all n.