Additive Combinatorics Methods in Fractal Geometry, Lecture I

Pablo Shmerkin

Department of Mathematics The University of British Columbia

School on Dimension Theory of Fractals, Erdős Center, Budapest, 26-30 August 2024

KORK ERKER ADAM ADA

KORK ERKER ADAM ADA

Lecture 1: Introduction to Additive Combinatorics.

Lecture 2: The Balog-Szemerédi-Gowers Theorem. Lecture 3: Discretized Fractal Geometry. Lecture 4: Sum-product and applications.

KORK ERKER ADAM ADA

Lecture 1: Introduction to Additive Combinatorics. Lecture 2: The Balog-Szemerédi-Gowers Theorem. Lecture 3: Discretized Fractal Geometry. Lecture 4: Sum-product and applications.

KOD KOD KED KED E VAN

Lecture 1: Introduction to Additive Combinatorics. Lecture 2: The Balog-Szemerédi-Gowers Theorem. Lecture 3: Discretized Fractal Geometry. Lecture 4: Sum-product and applications.

KOD KOD KED KED E VAN

Lecture 1: Introduction to Additive Combinatorics.

- Lecture 2: The Balog-Szemerédi-Gowers Theorem.
- Lecture 3: Discretized Fractal Geometry.
- Lecture 4: Sum-product and applications.

[Arithmetic progressions and Szemerédi's Theorem](#page-5-0)

[Sumsets and Freiman's Theorem](#page-30-0)

[Plünnecke-Ruzsa inequalities](#page-61-0)

KOD KARD KED KED BE YOUR

We will see it through a sample of some important concepts and results.

-
-
-
-
-

KORK ERKER ADAM ADA

We will see it through a sample of some important concepts and results.

- Fractal geometry
- Harmonic Analysis
- Ergodic Theory
- Number Theory
- Combinatorics

KORK ERKER ADAM ADA

We will see it through a sample of some important concepts and results.

- Fractal geometry
- Harmonic Analysis
- Ergodic Theory
- Number Theory
- Combinatorics

KORK ERKER ADAM ADA

We will see it through a sample of some important concepts and results.

- Fractal geometry
- Harmonic Analysis
- Ergodic Theory
- Number Theory
- Combinatorics

KORK ERKER ADAM ADA

We will see it through a sample of some important concepts and results.

- Fractal geometry
- Harmonic Analysis
- Ergodic Theory
- Number Theory
- Combinatorics

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

We will see it through a sample of some important concepts and results.

- Fractal geometry
- Harmonic Analysis
- Ergodic Theory
- Number Theory
- Combinatorics

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

- $\mathbb Z$ or $\mathbb Z^d$
- \mathbb{R} or \mathbb{R}^d .
- \bullet $\mathbb C$ or $\mathbb C^d$.
- The circle \mathbb{R}/\mathbb{Z} or the torus \mathbb{R}/\mathbb{Z}^d (written additively as $[0, 1)$ ^d).
- $\mathbb{Z}/p\mathbb{Z}$ or $(\mathbb{Z}/p\mathbb{Z})^d$ (with *p* usually a prime).

KORK ERKER ADAM ADA

- $\mathbb Z$ or $\mathbb Z^d$
- \mathbb{R} or \mathbb{R}^d .
- \bullet $\mathbb C$ or $\mathbb C^d$.
- The circle \mathbb{R}/\mathbb{Z} or the torus \mathbb{R}/\mathbb{Z}^d (written additively as $[0, 1)$ ^d).
- $\mathbb{Z}/p\mathbb{Z}$ or $(\mathbb{Z}/p\mathbb{Z})^d$ (with *p* usually a prime).

KORK ERKER ADAM ADA

- $\mathbb Z$ or $\mathbb Z^d$
- \mathbb{R} or \mathbb{R}^d .
- $\bullet \mathbb{C}$ or \mathbb{C}^d .
- The circle \mathbb{R}/\mathbb{Z} or the torus \mathbb{R}/\mathbb{Z}^d (written additively as $[0, 1)$ ^d).
- $\mathbb{Z}/p\mathbb{Z}$ or $(\mathbb{Z}/p\mathbb{Z})^d$ (with *p* usually a prime).

KORKARA KERKER DAGA

- $\mathbb Z$ or $\mathbb Z^d$
- \mathbb{R} or \mathbb{R}^d .
- $\bullet \mathbb{C}$ or \mathbb{C}^d .
- The circle \mathbb{R}/\mathbb{Z} or the torus \mathbb{R}/\mathbb{Z}^d (written additively as $[0, 1)$ ^d).
- $\mathbb{Z}/p\mathbb{Z}$ or $(\mathbb{Z}/p\mathbb{Z})^d$ (with *p* usually a prime).

KORK ERKER ADAM ADA

- $\mathbb Z$ or $\mathbb Z^d$
- \mathbb{R} or \mathbb{R}^d .
- $\bullet \mathbb{C}$ or \mathbb{C}^d .
- The circle \mathbb{R}/\mathbb{Z} or the torus \mathbb{R}/\mathbb{Z}^d (written additively as $[0, 1)$ ^d).
- $\mathbb{Z}/p\mathbb{Z}$ or $(\mathbb{Z}/p\mathbb{Z})^d$ (with *p* usually a prime).

Arithmetic progressions

KORK STRAIN A STRAIN A STRAIN

Definition A *k*-AP is

$a, a + v, a + 2v, \ldots, a + (k - 1)v$

with *a*, $v \in Z$ and $v \neq 0$.

What conditions of size and/or structure ensure that A contains (long) arithmetic progressions?

Arithmetic progressions

KORKARA KERKER DAGA

Definition A *k*-AP is

$a, a + v, a + 2v, \ldots, a + (k - 1)v$

with *a*, $v \in Z$ and $v \neq 0$.

Question

What conditions of size and/or structure ensure that A contains (long) arithmetic progressions?

Szemerédi's Theorem

KOD KARD KED KED BE YOUR

Definition

Let $r_k(N)$ be the size of the largest subset of $\{1,\ldots,N\}$ that does not contain a *k*-AP.

Theorem (Szemerédi 1975) *For any k* ≥ 3*,* lim *N*→∞ *r^k* (*N*) $\frac{\Delta V}{N} = 0.$

Corollary

A subset of the integers of positive upper density contains arbitrarily long arithmetic progressions.

Szemerédi's Theorem

KORK ERKER ADAM ADA

Definition

Let $r_k(N)$ be the size of the largest subset of $\{1,\ldots,N\}$ that does not contain a *k*-AP.

Theorem (Szemerédi 1975) *For any k* ≥ 3*,* lim *N*→∞ *r^k* (*N*) $\frac{\Delta V}{N} = 0.$

Corollary

A subset of the integers of positive upper density contains arbitrarily long arithmetic progressions.

Szemerédi's Theorem

KORK ERKER ADAM ADA

Definition

Let $r_k(N)$ be the size of the largest subset of $\{1,\ldots,N\}$ that does not contain a *k*-AP.

Theorem (Szemerédi 1975) *For any k* ≥ 3*,* lim *N*→∞ *r^k* (*N*) $\frac{\Delta V}{N} = 0.$

Corollary

A subset of the integers of positive upper density contains arbitrarily long arithmetic progressions.

KORK ERKER ADAM ADA

- The case $k = 3$ was proved by K. Roth in the 1952 using the Fourier transform. The Fourier transform does not work at all if $k > 4$.
- Very influential proofs of Szemerédi's Theorem were given by H. Furstenberg (Ergodic Theory), T. Gowers (Higher order Fourier analysis), T. Tao (finitary ergodic theory), and others.
- There have been many generalizations and extensions, the most famous of which is the Green-Tao Theorem extending Szemerédi's Theorem to the primes.
- An active area of research concerns Szemerédi-type phenomena in subsets of Euclidean space: Geometric Measure Theory+Harmonic Analysis.

KORK ERKER ADAM ADA

- The case $k = 3$ was proved by K. Roth in the 1952 using the Fourier transform. The Fourier transform does not work at all if $k > 4$.
- Very influential proofs of Szemerédi's Theorem were given by H. Furstenberg (Ergodic Theory), T. Gowers (Higher order Fourier analysis), T. Tao (finitary ergodic theory), and others.
- There have been many generalizations and extensions, the most famous of which is the Green-Tao Theorem extending Szemerédi's Theorem to the primes.
- An active area of research concerns Szemerédi-type phenomena in subsets of Euclidean space: Geometric Measure Theory+Harmonic Analysis.

KORK ERKEY EL POLO

- The case $k = 3$ was proved by K. Roth in the 1952 using the Fourier transform. The Fourier transform does not work at all if $k > 4$.
- Very influential proofs of Szemerédi's Theorem were given by H. Furstenberg (Ergodic Theory), T. Gowers (Higher order Fourier analysis), T. Tao (finitary ergodic theory), and others.
- There have been many generalizations and extensions, the most famous of which is the Green-Tao Theorem extending Szemerédi's Theorem to the primes.
- An active area of research concerns Szemerédi-type phenomena in subsets of Euclidean space: Geometric Measure Theory+Harmonic Analysis.

- The case $k = 3$ was proved by K. Roth in the 1952 using the Fourier transform. The Fourier transform does not work at all if $k > 4$.
- Very influential proofs of Szemerédi's Theorem were given by H. Furstenberg (Ergodic Theory), T. Gowers (Higher order Fourier analysis), T. Tao (finitary ergodic theory), and others.
- There have been many generalizations and extensions, the most famous of which is the Green-Tao Theorem extending Szemerédi's Theorem to the primes.
- An active area of research concerns Szemerédi-type phenomena in subsets of Euclidean space: Geometric Measure Theory+Harmonic Analysis.

KORK ERKER ADAM ADA

- Recall Szemerédi's Theorem: $\lim_{N\to\infty} \frac{r_k(N)}{N} = 0$, where $r_k(N)$ is the size of the largest subset of $\{1, \ldots, N\}$ that does not contain a *k*-AP.
- The original proof of Szemerédi's Theorem gave extremely poor bounds on $r_k(N)$. Finding good bounds for $r_k(N)$ is a very active and important problem.
- For $k = 3$, several recent breakthroughs have been obtained by T. Bloom-O. Sisask, Z. Kelley-R. Meka and others. The current world-record is

$$
r_3(N) \leq \exp(-c \log(N)^{1/9}) \cdot N.
$$

$$
r_3(N) \geq \exp(-c' \log(N)^{1/2}) \cdot N.
$$

KORKAR KERKER E VOOR

- Recall Szemerédi's Theorem: $\lim_{N\to\infty} \frac{r_k(N)}{N} = 0$, where $r_k(N)$ is the size of the largest subset of $\{1, \ldots, N\}$ that does not contain a *k*-AP.
- The original proof of Szemerédi's Theorem gave extremely poor bounds on $r_k(N)$. Finding good bounds for $r_k(N)$ is a very active and important problem.
- For $k = 3$, several recent breakthroughs have been obtained by T. Bloom-O. Sisask, Z. Kelley-R. Meka and others. The current world-record is

$$
r_3(N) \leq \exp(-c \log(N)^{1/9}) \cdot N.
$$

$$
r_3(N) \geq \exp(-c' \log(N)^{1/2}) \cdot N.
$$

KORKAR KERKER E VOOR

- Recall Szemerédi's Theorem: $\lim_{N\to\infty} \frac{r_k(N)}{N} = 0$, where $r_k(N)$ is the size of the largest subset of $\{1, \ldots, N\}$ that does not contain a *k*-AP.
- The original proof of Szemerédi's Theorem gave extremely poor bounds on $r_k(N)$. Finding good bounds for $r_k(N)$ is a very active and important problem.
- For $k = 3$, several recent breakthroughs have been obtained by T. Bloom-O. Sisask, Z. Kelley-R. Meka and others. The current world-record is

$$
r_3(N) \leq \exp(-c \log(N)^{1/9}) \cdot N.
$$

$$
r_3(N) \geq \exp(-c' \log(N)^{1/2}) \cdot N.
$$

KORKAR KERKER E VOOR

- Recall Szemerédi's Theorem: $\lim_{N\to\infty} \frac{r_k(N)}{N} = 0$, where $r_k(N)$ is the size of the largest subset of $\{1, \ldots, N\}$ that does not contain a *k*-AP.
- The original proof of Szemerédi's Theorem gave extremely poor bounds on $r_k(N)$. Finding good bounds for $r_k(N)$ is a very active and important problem.
- For $k = 3$, several recent breakthroughs have been obtained by T. Bloom-O. Sisask, Z. Kelley-R. Meka and others. The current world-record is

$$
r_3(N) \leq \exp(-c \log(N)^{1/9}) \cdot N.
$$

$$
r_3(N) \geq \exp(-c' \log(N)^{1/2}) \cdot N.
$$

[Arithmetic progressions and Szemerédi's Theorem](#page-5-0)

2 [Sumsets and Freiman's Theorem](#page-30-0)

3 [Plünnecke-Ruzsa inequalities](#page-61-0)

 2990

Definition

If $A, B \subset \mathbb{Z}$ we define their sumset and difference set as

$$
A + B = \{x + y : x \in A, y \in B\},
$$

\n
$$
A - B = \{x - y : x \in A, y \in B\},
$$

\n
$$
nA = \underbrace{A + \dots + A}_{n \text{ times}}.
$$

Remark

One of the most fundamental problems of additive combinatorics is to understand the relationship between the sizes (and the structure) of A, *B and sets obtained from them via sums and differences.*

モニマイボメイミメイロメ

Definition

If $A, B \subset \mathbb{Z}$ we define their sumset and difference set as

$$
A + B = \{x + y : x \in A, y \in B\},
$$

\n
$$
A - B = \{x - y : x \in A, y \in B\},
$$

\n
$$
nA = \underbrace{A + \dots + A}_{n \text{ times}}.
$$

Remark

One of the most fundamental problems of additive combinatorics is to understand the relationship between the sizes (and the structure) of A, *B and sets obtained from them via sums and differences.*

When the ambient group is a ring (e.g. Z*,* R*,* Z/*p*/Z*), one is also interested in product sets A*.*B.***KORK ERKEY EL POLO**

Definition

If $A, B \subset \mathbb{Z}$ we define their sumset and difference set as

$$
A + B = \{x + y : x \in A, y \in B\},
$$

\n
$$
A - B = \{x - y : x \in A, y \in B\},
$$

\n
$$
nA = \underbrace{A + \dots + A}_{n \text{ times}}.
$$

Remark

One of the most fundamental problems of additive combinatorics is to understand the relationship between the sizes (and the structure) of A, *B and sets obtained from them via sums and differences.*

When the ambient group is a ring (e.g. Z*,* R*,* Z/*p*/Z*), one is also interested in product sets A*.*B.***KORK ERKEY EL POLO**

Definition

If $A, B \subset \mathbb{Z}$ we define their sumset and difference set as

$$
A + B = \{x + y : x \in A, y \in B\},
$$

\n
$$
A - B = \{x - y : x \in A, y \in B\},
$$

\n
$$
nA = \underbrace{A + \dots + A}_{n \text{ times}}.
$$

Remark

One of the most fundamental problems of additive combinatorics is to understand the relationship between the sizes (and the structure) of A, *B and sets obtained from them via sums and differences.*

When the ambient group is a ring (e.g. Z*,* R*,* Z/*p*/Z*), one is also interested in product sets A*.*B.***KOD KOD KED KED E VAN**

Size of sumsets and additive structure

KORK ERKER ADAM ADA

• For any set *A*,

$$
|A|\leq |A+A|\leq \text{min}\left(\frac{1}{2}|A|(|A|+1),|Z|\right).
$$

So, up to multiplicative constants, $|A + A|$ varies between |*A*| and $|A|^2$ (or $|Z|$ if $|Z| \leq |A|^2$).

- The first inequality follows since $A + A \supset A + a$ for a fixed $a \in A$. The second inequality follows from the fact that there are $|A|(|A+1)/2$ possible non-ordered pairs $\{a, a'\}$ with $a, a' \in A$.
- We think of sets *A* with |*A* + *A*| ∼ |*A*| as sets with additive structure or as approximate subgroups.
Size of sumsets and additive structure

KORKAR KERKER E VOOR

• For any set *A*,

$$
|A|\leq |A+A|\leq \text{min}\left(\frac{1}{2}|A|(|A|+1),|Z|\right).
$$

So, up to multiplicative constants, $|A + A|$ varies between |*A*| and $|A|^2$ (or $|Z|$ if $|Z| \leq |A|^2$).

- The first inequality follows since $A + A \supset A + a$ for a fixed $a \in A$. The second inequality follows from the fact that there are $|A|(|A+1)/2$ possible non-ordered pairs $\{a, a'\}$ with $a, a' \in A$.
- We think of sets *A* with |*A* + *A*| ∼ |*A*| as sets with additive structure or as approximate subgroups.

Size of sumsets and additive structure

KORKAR KERKER E VOOR

• For any set *A*,

$$
|A|\leq |A+A|\leq \text{min}\left(\frac{1}{2}|A|(|A|+1),|Z|\right).
$$

So, up to multiplicative constants, $|A + A|$ varies between |*A*| and $|A|^2$ (or $|Z|$ if $|Z| \leq |A|^2$).

- The first inequality follows since $A + A \supset A + a$ for a fixed $a \in A$. The second inequality follows from the fact that there are $|A|(|A+1)/2$ possible non-ordered pairs $\{a, a'\}$ with $a, a' \in A$.
- We think of sets *A* with $|A + A| \sim |A|$ as sets with additive structure or as approximate subgroups.

KOD KARD KED KED BE YOUR

Definition A GAP is a set of the form

$$
\{a+i_1v_1+i_2v_2+\ldots+i_dv_d: 0\leq i_j < k_i\}=a+[k].\mathbf{v},
$$

where $\mathbf{k}=(k_1,\ldots,k_d)\subset\mathbb{N}^d$, $a\in Z$, $\mathbf{v}=(v_1,\ldots,v_d)\in Z^d$,
 $v_i\neq 0$.

A GAP*A* is proper if

$$
|A|=k_1\cdots k_d,
$$

i.e. all the sums $a + i_1v_1 + i_2v_2 + \ldots + i_dv_d$ are different.

KOD KARD KED KED BE YOUR

Definition A GAP is a set of the form

$$
\{a+i_1v_1+i_2v_2+\ldots+i_dv_d: 0\leq i_j < k_i\}=a+[k].\mathbf{v},
$$

where $\mathbf{k}=(k_1,\ldots,k_d)\subset\mathbb{N}^d$, $a\in Z$, $\mathbf{v}=(v_1,\ldots,v_d)\in Z^d$,
 $v_i\neq 0$.

A GAP*A* is proper if

$$
|A|=k_1\cdots k_d,
$$

i.e. all the sums $a + i_1v_1 + i_2v_2 + \ldots + i_dv_d$ are different.

KORK ERKER ADAM ADA

Definition A GAP is a set of the form

$$
\{a + i_1v_1 + i_2v_2 + \ldots + i_dv_d : 0 \leq i_j < k_i\} = a + [\mathbf{k}].\mathbf{v},
$$
\nwhere $\mathbf{k} = (k_1, \ldots, k_d) \subset \mathbb{N}^d$, $a \in \mathbb{Z}$, $\mathbf{v} = (v_1, \ldots, v_d) \in \mathbb{Z}^d$, $v_i \neq 0$.

A GAP*A* is proper if

$$
|A|=k_1\cdots k_d,
$$

i.e. all the sums $a + i_1v_1 + i_2v_2 + \ldots + i_dv_d$ are different.

KORK ERKER ADAM ADA

Definition A GAP is a set of the form

$$
\{a + i_1v_1 + i_2v_2 + \ldots + i_dv_d : 0 \leq i_j < k_i\} = a + [\mathbf{k}].\mathbf{v},
$$
\nwhere $\mathbf{k} = (k_1, \ldots, k_d) \subset \mathbb{N}^d$, $a \in \mathbb{Z}$, $\mathbf{v} = (v_1, \ldots, v_d) \in \mathbb{Z}^d$, $v_i \neq 0$.

A GAP*A* is proper if

$$
|A|=k_1\cdots k_d,
$$

i.e. all the sums $a + i_1v_1 + i_2v_2 + \ldots + i_dv_d$ are different.

Examples of sets for which $|A + A| \sim |A|$:

- Subgroups (if they exist).
- Arithmetic progressions: $|A + A| < 2|A|$.
- Proper GAPs: $|A + A| \leq 2^d |A|$ where *d* is the rank. Indeed, let

$$
A = a + [\mathbf{k}].\mathbf{v} = \{a + i_1v_1 + i_2v_2 + \ldots + i_dv_d : 0 \leq i_\ell < k_\ell\}.
$$

Then

 $A+A = \{2a+i_1v_1+i_2v_2+\ldots+i_dv_d: 0 \le i_\ell \le 2k_\ell\} = a+[2k].v$

so

$$
|A+A| \leq (2k_1) \cdots (2k_{\ell}) = 2^{d}(k_1 \cdots k_{\ell}) = 2^{d}|A|.
$$

• Dense subsets of a set with |*A* + *A*| ∼ |*A*| (such as a GAP).K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

Examples of sets for which $|A + A| \sim |A|$:

- Subgroups (if they exist).
- Arithmetic progressions: $|A + A| \leq 2|A|$.
- Proper GAPs: $|A + A| \leq 2^d |A|$ where *d* is the rank. Indeed, let

$$
A = a + [\mathbf{k}].\mathbf{v} = \{a + i_1v_1 + i_2v_2 + \ldots + i_dv_d : 0 \leq i_\ell < k_\ell\}.
$$

Then

 $A+A = \{2a+i_1v_1+i_2v_2+\ldots+i_dv_d: 0 \le i_\ell \le 2k_\ell\} = a+[2k].$ v.

so

$$
|A+A| \leq (2k_1) \cdots (2k_{\ell}) = 2^{d}(k_1 \cdots k_{\ell}) = 2^{d}|A|.
$$

• Dense subsets of a set with $|A + A| \sim |A|$ (such as a GAP). K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

Examples of sets for which $|A + A| \sim |A|$:

- Subgroups (if they exist).
- Arithmetic progressions: $|A + A| \leq 2|A|$.
- Proper GAPs: $|A + A| \leq 2^d |A|$ where *d* is the rank. Indeed, let

$$
A = a + [k] \cdot v = \{a + i_1 v_1 + i_2 v_2 + \ldots + i_d v_d : 0 \leq i_\ell < k_\ell\}.
$$

Then

$$
A+A=\{2a+j_1v_1+j_2v_2+\ldots+j_dv_d: 0\leq j_\ell<2k_\ell\}=a+[2k].v,
$$

so

$$
|A+A| \leq (2k_1) \cdots (2k_{\ell}) = 2^d (k_1 \cdots k_{\ell}) = 2^d |A|.
$$

• Dense subsets of a set with $|A + A| \sim |A|$ (such as a GAP). K ロ X x 4 D X X 원 X X 원 X 원 X 2 D X Q Q

Examples of sets for which $|A + A| \sim |A|$:

- Subgroups (if they exist).
- Arithmetic progressions: $|A + A| \leq 2|A|$.
- Proper GAPs: $|A + A| \leq 2^d |A|$ where *d* is the rank. Indeed, let

$$
A = a + [k] \cdot v = \{a + i_1 v_1 + i_2 v_2 + \ldots + i_d v_d : 0 \leq i_\ell < k_\ell\}.
$$

Then

$$
A+A = \{2a+j_1v_1+j_2v_2+\ldots+j_dv_d: 0 \le j_\ell < 2k_\ell\} = a+[2k].v,
$$

so

$$
|A+A| \leq (2k_1) \cdots (2k_{\ell}) = 2^d (k_1 \cdots k_{\ell}) = 2^d |A|.
$$

• Dense subsets of a set with $|A + A| \sim |A|$ (such as a GAP). .
◆ ロ ▶ ◆ @ ▶ ◆ 경 ▶ → 경 ▶ │ 경 │ ◇ 9,9,0°

KORK ERKER ADAM ADA

Examples of sets for which $|A + A| \sim |A|^2$:

- Random sets (pick each element of $\mathbb{Z}/p\mathbb{Z}$ with probability *p*^{−α}).
- Lacunary sets (e.g. powers of 2).
- *A* ∪ *B* where *A*, *B* are disjoint of the same size, *A* is one of the previous examples and *B* is arbitrary.

KORK ERKER ADAM ADA

Examples of sets for which $|A + A| \sim |A|^2$:

- Random sets (pick each element of $\mathbb{Z}/p\mathbb{Z}$ with probability *p*^{−α}).
- Lacunary sets (e.g. powers of 2).
- *A* ∪ *B* where *A*, *B* are disjoint of the same size, *A* is one of the previous examples and *B* is arbitrary.

KORKARA KERKER DAGA

Examples of sets for which $|A + A| \sim |A|^2$:

- Random sets (pick each element of $\mathbb{Z}/p\mathbb{Z}$ with probability *p*^{−α}).
- Lacunary sets (e.g. powers of 2).
- *A* ∪ *B* where *A*, *B* are disjoint of the same size, *A* is one of the previous examples and *B* is arbitrary.

KOD KOD KED KED E VOOR

- Let *A* be the set of all numbers in [1, *N*] with $N = 4^k$ whose base 4 expansion has only digits 0 and 1.
- This is an integer analog of a self-similar set.
- We have $|A| \sim 2^k = N^{1/2}$.
- Then $A + A$ is the set of all numbers in [2, 2*N*] whose base 4 expansion has only digits 0, 1, 2.
- We have $|A + A| \sim 3^k = N^{3/4} \sim |A|^{3/2}$.
- So $|A| \ll |A+A| \ll |A|^2$.

KOD KOD KED KED E VOOR

- Let *A* be the set of all numbers in [1, *N*] with $N = 4^k$ whose base 4 expansion has only digits 0 and 1.
- This is an integer analog of a self-similar set.
- We have $|A| \sim 2^k = N^{1/2}$.
- Then $A + A$ is the set of all numbers in [2, 2*N*] whose base 4 expansion has only digits 0, 1, 2.
- We have $|A + A| \sim 3^k = N^{3/4} \sim |A|^{3/2}$.
- So $|A| \ll |A+A| \ll |A|^2$.

KORKARA KERKER DAGA

- Let *A* be the set of all numbers in [1, *N*] with $N = 4^k$ whose base 4 expansion has only digits 0 and 1.
- This is an integer analog of a self-similar set.
- We have $|A| \sim 2^k = N^{1/2}$.
- Then $A + A$ is the set of all numbers in [2, 2*N*] whose base 4 expansion has only digits 0, 1, 2.
- We have $|A + A| \sim 3^k = N^{3/4} \sim |A|^{3/2}$.
- So $|A| \ll |A+A| \ll |A|^2$.

- Let *A* be the set of all numbers in [1, *N*] with $N = 4^k$ whose base 4 expansion has only digits 0 and 1.
- This is an integer analog of a self-similar set.
- We have $|A| \sim 2^k = N^{1/2}$.
- Then $A + A$ is the set of all numbers in [2, 2*N*] whose base 4 expansion has only digits 0, 1, 2.
- We have $|A + A| \sim 3^k = N^{3/4} \sim |A|^{3/2}$.
- So $|A| \ll |A+A| \ll |A|^2$.

- Let *A* be the set of all numbers in [1, *N*] with $N = 4^k$ whose base 4 expansion has only digits 0 and 1.
- This is an integer analog of a self-similar set.
- We have $|A| \sim 2^k = N^{1/2}$.
- Then $A + A$ is the set of all numbers in [2, 2*N*] whose base 4 expansion has only digits 0, 1, 2.
- We have $|A + A| \sim 3^k = N^{3/4} \sim |A|^{3/2}$.
- So $|A| \ll |A+A| \ll |A|^2$.

- Let *A* be the set of all numbers in [1, *N*] with $N = 4^k$ whose base 4 expansion has only digits 0 and 1.
- This is an integer analog of a self-similar set.
- We have $|A| \sim 2^k = N^{1/2}$.
- Then $A + A$ is the set of all numbers in [2, 2*N*] whose base 4 expansion has only digits 0, 1, 2.
- We have $|A + A| \sim 3^k = N^{3/4} \sim |A|^{3/2}$.
- So $|A| \ll |A+A| \ll |A|^2$.

Freiman's Theorem

KORK ERKER ADAM ADA

Recall: If *A* is a dense subset of a proper GAP, then $|A + A|$ ∼ | A |.

Theorem (Freiman 1966)

Given K > 1 *there are d*(*K*) *and S*(*K*) *such that the following holds.*

Suppose $|A + A| \leq K|A|$. Then there is a GAP P of rank $d(K)$ *such that* $A \subset P$ *and* $|P| \leq S(K)|A|$.

In other words, sets of small doubling are always dense subsets of GAP*s of small rank.*

Quantitative Freiman

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Theorem (Ruzsa, Chang, Sanders, Schoen) *Suppose* $|A + A| \leq K|A|$ *. Then there is a GAP P with*

$$
\text{rank}(P) \leq K^{1+C\log(K)^{-1/2}} \leq K^{1+\varepsilon}
$$

and such that A ⊂ *P and*

$$
|P| \leq \exp(1 + C \log(K)^{-1/2})|A| \leq \exp(K^{1+\varepsilon}).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

- Freiman's Theorem can be seen as an inverse or classification theorem: based on qualitative information about *A*, it returns structural information.
- In applications, the quantitative estimates on *d*(*K*) and *S*(*K*) are crucial.
- The theorem does not guarantee that *P* is proper. But it can be taken to be proper (with slightly worse quantitative bounds).
- At least with the current bounds, Freiman's Theorem says nothing if *K* grows like $K = |A|^{\delta}$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

- Freiman's Theorem can be seen as an inverse or classification theorem: based on qualitative information about *A*, it returns structural information.
- In applications, the quantitative estimates on $d(K)$ and *S*(*K*) are crucial.
- The theorem does not guarantee that *P* is proper. But it can be taken to be proper (with slightly worse quantitative bounds).
- At least with the current bounds, Freiman's Theorem says nothing if *K* grows like $K = |A|^{\delta}$.

KORKAR KERKER E VOOR

- Freiman's Theorem can be seen as an inverse or classification theorem: based on qualitative information about *A*, it returns structural information.
- In applications, the quantitative estimates on $d(K)$ and *S*(*K*) are crucial.
- The theorem does not guarantee that *P* is proper. But it can be taken to be proper (with slightly worse quantitative bounds).
- At least with the current bounds, Freiman's Theorem says nothing if *K* grows like $K = |A|^{\delta}$.

KORKAR KERKER E VOOR

- Freiman's Theorem can be seen as an inverse or classification theorem: based on qualitative information about *A*, it returns structural information.
- In applications, the quantitative estimates on $d(K)$ and *S*(*K*) are crucial.
- The theorem does not guarantee that *P* is proper. But it can be taken to be proper (with slightly worse quantitative bounds).
- At least with the current bounds, Freiman's Theorem says nothing if K grows like $K = |A|^{\delta}$.

[Arithmetic progressions and Szemerédi's Theorem](#page-5-0)

2 [Sumsets and Freiman's Theorem](#page-30-0)

3 [Plünnecke-Ruzsa inequalities](#page-61-0)

Plünnecke's inequalities

KORK ERKER ADAM ADA

Motivation

Freiman's Theorem says that if $|A + A| \le K|A|$ *then A is a dense subset of a low-rank* GAP*.*

Using this it is easy to show that $|A + A + A| \le f(K)$ and so *on. In other words, having a small sumset implies having a small n-sumset nA.*

But can we do better than Freiman's Theorem in this direction?

Theorem (Plünnecke Inequalities, 1969) *Suppose* $|A + A| \le K|A|$ *. Then* $|nA| \le K^n|A|$ *.*

More generally, if $|A + B| \le K|A|$ *, then* $|nB| \le K^n|A|$ *.*

Plünnecke's inequalities

KORK ERKER ADAM ADA

Motivation

Freiman's Theorem says that if $|A + A| \le K|A|$ *then A is a dense subset of a low-rank* GAP*.*

Using this it is easy to show that $|A + A + A| \le f(K)$ and so *on. In other words, having a small sumset implies having a small n-sumset nA.*

But can we do better than Freiman's Theorem in this direction?

Theorem (Plünnecke Inequalities, 1969) *Suppose* $|A + A| \le K|A|$ *. Then* $|nA| \le K^n|A|$ *.*

More generally, if $|A + B| \le K|A|$ *, then* $|nB| \le K^n|A|$ *.*

- Suppose $|A + B| \le K|A|$. We want to show $|nB| \le K^n|A|$.
- Choose a subset *A* ′ of *A* which minimizes the ratio

$$
\frac{|A'+B|}{|A'|}
$$

let *K* ′ be the ratio.

- Then $K' \leq K$ (since A' is a subset of A).
- By definition we have:

$$
|A' + B| = K'|A'|,
$$

$$
|Z + B| \ge K'|Z| \quad (Z \subset A).
$$

- Suppose $|A + B| \le K|A|$. We want to show $|nB| \le K^n|A|$.
- Choose a subset *A* ′ of *A* which minimizes the ratio

$$
\frac{|A'+B|}{|A'|},
$$

let *K* ′ be the ratio.

- Then $K' \leq K$ (since A' is a subset of A).
- By definition we have:

$$
|A' + B| = K'|A'|,
$$

$$
|Z + B| \ge K'|Z| \quad (Z \subset A).
$$

- Suppose $|A + B| \le K|A|$. We want to show $|nB| \le K^n|A|$.
- Choose a subset *A* ′ of *A* which minimizes the ratio

$$
\frac{|A'+B|}{|A'|},
$$

let *K* ′ be the ratio.

- Then $K' \leq K$ (since A' is a subset of A).
- By definition we have:

$$
|A' + B| = K'|A'|,
$$

$$
|Z + B| \ge K'|Z| \quad (Z \subset A).
$$

- Suppose $|A + B| \le K|A|$. We want to show $|nB| \le K^n|A|$.
- Choose a subset *A* ′ of *A* which minimizes the ratio

$$
\frac{|A'+B|}{|A'|},
$$

let *K* ′ be the ratio.

- Then $K' \leq K$ (since A' is a subset of A).
- By definition we have:

$$
|A' + B| = K'|A'|,
$$

$$
|Z + B| \ge K'|Z| \quad (Z \subset A).
$$

Plünnecke's inequality: main lemma

KEL KALEY KEY EL ORO

Lemma (Petridis 2011) *For every set* $C \subset Z$ *,*

$|A' + B + C| \leq K' |A' + C|.$

Proof of Plünnecke's inequalities, assuming lemma. We prove by induction that

 $|nB| \leq |A' + nB| \leq (K')^n |A'| \leq K^n |A|$

For $n = 1$, this is the definition of K' .

For the induction step, apply the lemma to $C = (n-1)B$.

Plünnecke's inequality: main lemma

KORK ERKER ADAM ADA

Lemma (Petridis 2011) *For every set* $C \subset Z$ *,*

$$
|A'+B+C|\leq K'|A'+C|.
$$

Proof of Plünnecke's inequalities, assuming lemma. We prove by induction that

$$
|nB| \leq |\mathbf{A}' + n\mathbf{B}| \leq (\mathbf{K}')^n |\mathbf{A}'| \leq K^n |\mathbf{A}|
$$

For $n = 1$, this is the definition of K' .

For the induction step, apply the lemma to $C = (n - 1)B$. П

Plünnecke inequalities: proof of main lemma I

Lemma (Petridis)

$$
|A'+B+C|\leq K'|A'+C|,
$$

where

$$
K'=\frac{|A'+B|}{|A'|}=\min_{X\subset A}\frac{|X+B|}{|X|}.
$$

- Induction in $|C|$.
- The case $|C| = \{x\}$ is true since $|A' + B + x| = |A' + B|$ and $|A' + x| = |A'|$.

KORK STRAIN A STRAIN A STRAIN

• Assume true for *C*, and let $C' = C \cup \{x\}$.

Plünnecke inequalities: proof of main lemma I

Lemma (Petridis)

$$
|A'+B+C|\leq K'|A'+C|,
$$

where

$$
K' = \frac{|A' + B|}{|A'|} = \min_{X \subset A} \frac{|X + B|}{|X|}.
$$

- Induction in $|C|$.
- The case $|C| = \{x\}$ is true since $|A' + B + x| = |A' + B|$ and $|A' + x| = |A'|$.

KORKARA KERKER DAGA

• Assume true for *C*, and let $C' = C \cup \{x\}$.
Lemma (Petridis)

$$
|A'+B+C|\leq K'|A'+C|,
$$

where

$$
\mathcal{K}'=\frac{|\mathcal{A}'+\mathcal{B}|}{|\mathcal{A}'|}=\min_{X\subset\mathcal{A}}\frac{|X+\mathcal{B}|}{|X|}.
$$

- Induction in $|C|$.
- The case $|C| = \{x\}$ is true since $|A' + B + x| = |A' + B|$ and $|A' + x| = |A'|$.

KORKARA KERKER DAGA

• Assume true for *C*, and let $C' = C \cup \{x\}$.

Lemma (Petridis)

$$
|A'+B+C|\leq K'|A'+C|,
$$

where

$$
\mathcal{K}'=\frac{|\mathcal{A}'+\mathcal{B}|}{|\mathcal{A}'|}=\min_{X\subset\mathcal{A}}\frac{|X+\mathcal{B}|}{|X|}.
$$

- Induction in $|C|$.
- The case $|C| = \{x\}$ is true since $|A' + B + x| = |A' + B|$ and $|A' + x| = |A'|$.

KORKARA KERKER DAGA

• Assume true for *C*, and let $C' = C \cup \{x\}$.

Lemma (Petridis) $|A' + B + C| \le K' |A' + C|$, where $\frac{|A' + B|}{|A'|}$ $\frac{+|B|}{|A'|} = K'$, K' minimal.

● $A' + B + C' = (A' + B + C) \cup ((A' + B + x) \setminus (Z + B + x)),$ where

$Z = \{a \in A': a + B + x \subset A + B + C\}.$

- $|Z + B| \geq K'|Z|$ by minimality of K' .
- By the inductive hypothesis,

 $|A' + B + C'| \leq |A' + B + C| + (|A' + B + X| - |Z + B + X|)$ $\leq K' |A' + C| + K' |A'| - K' |Z|.$

• It remains to show that

 $|A' + C| + |A'| - |Z| \leq |A' + C'|.$

Lemma (Petridis) $|A' + B + C| \le K' |A' + C|$, where $\frac{|A' + B|}{|A'|}$ $\frac{+|B|}{|A'|} = K'$, K' minimal.

● $A' + B + C' = (A' + B + C) ∪ ((A' + B + x) ∖ (Z + B + x)),$ where

$Z = \{a \in A': a + B + x \subset A + B + C\}.$

- $|Z + B| \geq K'|Z|$ by minimality of K' .
- By the inductive hypothesis,

 $|A' + B + C'| \leq |A' + B + C| + (|A' + B + X| - |Z + B + X|)$ $\leq K' |A' + C| + K' |A'| - K' |Z|.$

• It remains to show that

 $|A' + C| + |A'| - |Z| \leq |A' + C'|.$

Lemma (Petridis) $|A' + B + C| \le K' |A' + C|$, where $\frac{|A' + B|}{|A'|}$ $\frac{+|B|}{|A'|} = K'$, K' minimal.

● $A' + B + C' = (A' + B + C) ∪ ((A' + B + x) ∖ (Z + B + x)),$ where

 $Z = \{a \in A': a + B + x \subset A + B + C\}.$

• $|Z + B| \geq K'|Z|$ by minimality of K'.

• By the inductive hypothesis,

 $|A' + B + C'| \leq |A' + B + C| + (|A' + B + X| - |Z + B + X|)$ $\leq K' |A' + C| + K' |A'| - K' |Z|.$

• It remains to show that

 $|A' + C| + |A'| - |Z| \leq |A' + C'|.$

Lemma (Petridis) $|A' + B + C| \le K' |A' + C|$, where $\frac{|A' + B|}{|A'|}$ $\frac{+|B|}{|A'|} = K'$, K' minimal.

● $A' + B + C' = (A' + B + C) ∪ ((A' + B + x) ∖ (Z + B + x)),$ where

 $Z = \{a \in A': a + B + x \subset A + B + C\}.$

- $|Z + B| \geq K'|Z|$ by minimality of K'.
- By the inductive hypothesis,

 $|A' + B + C'| \leq |A' + B + C| + (|A' + B + x| - |Z + B + x|)$ $\leq K'|\mathcal{A}' + C| + K'|\mathcal{A}'| - K'|Z|.$

• It remains to show that

 $|A' + C| + |A'| - |Z| \leq |A' + C'|.$

Lemma (Petridis) $|A' + B + C| \le K' |A' + C|$, where $\frac{|A' + B|}{|A'|}$ $\frac{+|B|}{|A'|} = K'$, K' minimal.

● $A' + B + C' = (A' + B + C) ∪ ((A' + B + x) ∖ (Z + B + x)),$ where

 $Z = \{a \in A': a + B + x \subset A + B + C\}.$

- $|Z + B| \geq K'|Z|$ by minimality of K'.
- By the inductive hypothesis,

 $|A' + B + C'| \leq |A' + B + C| + (|A' + B + x| - |Z + B + x|)$ $\leq K'|\mathcal{A}' + C| + K'|\mathcal{A}'| - K'|Z|.$

• It remains to show that

$$
|A' + C| + |A'| - |Z| \le |A' + C'|.
$$

KORKAR KERKER E VOOR

Lemma

$|A' + C| + |A'| - |Z| \leq |A' + C'|$ *where* $Z = \{a \in A' : a + B + x \subset A + B + C\}.$ Proof.

$$
|A' + C'| = |A' + C| + |A'| - |W|.
$$

KEL KALEYKEN E YAN

Lemma

•

 $|A' + C| + |A'| - |Z| \leq |A' + C'|$ *where* $Z = \{a \in A' : a + B + x \subset A + B + C\}.$ Proof.

$$
A' + C' = A + C \cup (A + x \setminus W + x),
$$

where $W = \{a \in A' : a + x \in A' + C\}.$

• Since the union is disjoint and $W + x \subset A + x$,

$$
|A' + C'| = |A' + C| + |A'| - |W|.
$$

• But $W \subset Z$ since $a + x \in A' + C \Rightarrow a + B + x \subset A + B + C$. So

 $|A' + C'| \ge |A' + C| + |A'| - |Z|.$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Lemma

•

 $|A' + C| + |A'| - |Z| \leq |A' + C'|$ *where* $Z = \{a \in A' : a + B + x \subset A + B + C\}.$ Proof.

$$
A' + C' = A + C \cup (A + x \setminus W + x),
$$

 $\mathsf{where} \; \mathsf{W} = \{ \mathsf{a} \in \mathsf{A}': \mathsf{a} + \mathsf{x} \in \mathsf{A}' + \mathsf{C} \}.$

• Since the union is disjoint and $W + x \subset A + x$,

$$
|A' + C'| = |A' + C| + |A'| - |W|.
$$

• But $W \subset Z$ since $a + x \in A' + C \Rightarrow a + B + x \subset A + B + C$. So

 $|A' + C'| \ge |A' + C| + |A'| - |Z|.$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Lemma

•

 $|A' + C| + |A'| - |Z| \leq |A' + C'|$ *where* $Z = \{a \in A' : a + B + x \subset A + B + C\}.$ Proof.

$$
A' + C' = A + C \cup (A + x \setminus W + x),
$$

 $\mathsf{where} \; \mathsf{W} = \{ \mathsf{a} \in \mathsf{A}': \mathsf{a} + \mathsf{x} \in \mathsf{A}' + \mathsf{C} \}.$

• Since the union is disjoint and $W + x \subset A + x$,

$$
|A' + C'| = |A' + C| + |A'| - |W|.
$$

• But $W \subset Z$ since $a + x \in A' + C \Rightarrow a + B + x \subset A + B + C$. So

$$
|A' + C'| \ge |A' + C| + |A'| - |Z|.
$$

KORK ERKER ADAM ADA

Lemma

•

 $|A' + C| + |A'| - |Z| \leq |A' + C'|$ *where* $Z = \{a \in A' : a + B + x \subset A + B + C\}.$ Proof.

$$
A' + C' = A + C \cup (A + x \setminus W + x),
$$

 $\mathsf{where} \; \mathsf{W} = \{ \mathsf{a} \in \mathsf{A}': \mathsf{a} + \mathsf{x} \in \mathsf{A}' + \mathsf{C} \}.$

• Since the union is disjoint and $W + x \subset A + x$,

$$
|A' + C'| = |A' + C| + |A'| - |W|.
$$

• But *W* ⊂ *Z* since *a* + *x* ∈ *A* ′ + *C* ⇒ *a* + *B* + *x* ⊂ *A* + *B* + *C*. So

$$
|A' + C'| \ge |A' + C| + |A'| - |Z|.
$$

KORK ERKER ADAM ADA

Plünnecke inequalities: connections

- The Plünnecke inequalities are a key component of all the quantitative proofs of Freiman's Theorem.
- Usually one uses the contrapositive: in order to prove that

 $|A+A|\gg |A|,$

it is enough to prove that

$$
|A+A+\cdots+A|\gg |A|,
$$

which is easier since repeated sumsets have far more structure/smoothness.

• There is a useful version of Plünnecke's inequalities (due to Kaimanovich-Vershik) for entropy, with convolutions of measures in place of sumsets.

Plünnecke inequalities: connections

- The Plünnecke inequalities are a key component of all the quantitative proofs of Freiman's Theorem.
- Usually one uses the contrapositive: in order to prove that

$$
|A+A|\gg |A|,
$$

it is enough to prove that

$$
|A+A+\cdots+A|\gg |A|,
$$

which is easier since repeated sumsets have far more structure/smoothness.

• There is a useful version of Plünnecke's inequalities (due to Kaimanovich-Vershik) for entropy, with convolutions of measures in place of sumsets.

Plünnecke inequalities: connections

- The Plünnecke inequalities are a key component of all the quantitative proofs of Freiman's Theorem.
- Usually one uses the contrapositive: in order to prove that

$$
|A+A|\gg |A|,
$$

it is enough to prove that

$$
|A+A+\cdots+A|\gg |A|,
$$

which is easier since repeated sumsets have far more structure/smoothness.

• There is a useful version of Plünnecke's inequalities (due to Kaimanovich-Vershik) for entropy, with convolutions of measures in place of sumsets.

Theorem (T. Körner 2010, J. Schmeling-P.S. 2012)

For any non-decreasing sequence α_n *of numbers in* [0, 1] *there exists a compact set A such that*

$$
\dim_H\left(\underbrace{A+\cdots+A}_{n \text{ times}}\right)=\alpha_n.
$$

Remark

-
-

イロト イ押 トイヨ トイヨ トーヨー

 Ω

Theorem (T. Körner 2010, J. Schmeling-P.S. 2012)

For any non-decreasing sequence α*ⁿ of numbers in* [0, 1] *there exists a compact set A such that*

$$
\dim_H\left(\underbrace{A+\cdots+A}_{n \text{ times}}\right)=\alpha_n.
$$

Remark

- *Körner proved the result first but we were not aware of it; the constructions are different.*
- *We also show that there are no Plünnecke inequalities for upper box dimension, but they do hold for lower box dimension.*

Theorem (T. Körner 2010, J. Schmeling-P.S. 2012)

For any non-decreasing sequence α_n *of numbers in* [0, 1] *there exists a compact set A such that*

$$
\dim_H\left(\underbrace{A+\cdots+A}_{n \text{ times}}\right)=\alpha_n.
$$

Remark

- *Körner proved the result first but we were not aware of it; the constructions are different.*
- *We also show that there are no Plünnecke inequalities for upper box dimension, but they do hold for lower box dimension.*

KORK ERKER ADAM ADA

Theorem (T. Körner 2010, J. Schmeling-P.S. 2012)

For any non-decreasing sequence α*ⁿ of numbers in* [0, 1] *there exists a compact set A such that*

$$
\dim_H\left(\underbrace{A+\cdots+A}_{n \text{ times}}\right)=\alpha_n.
$$

Remark

- *Körner proved the result first but we were not aware of it; the constructions are different.*
- *We also show that there are no Plünnecke inequalities for upper box dimension, but they do hold for lower box dimension.*

[Arithmetic progressions and Szemerédi's Theorem](#page-5-0)

2 [Sumsets and Freiman's Theorem](#page-30-0)

3 [Plünnecke-Ruzsa inequalities](#page-61-0)

Some jewels of additive combinatorics

KORKARA KERKER DAGA

Szemerédi's Theorem: Dense subsets of $\mathbb{Z}/p\mathbb{Z}$, Z contain arbitrarily long arithmetic progressions.

Freiman's Theorem: Sets with $|A + A| \le K|A|$ can be densely embedded in a GAP.

Plünnecke's Inequalities: If $A + A$ is small, so are $A + A + A$ and *nA* for all *n*.

Some jewels of additive combinatorics

KORKARA KERKER DAGA

Szemerédi's Theorem: Dense subsets of $\mathbb{Z}/p\mathbb{Z}$, Z contain arbitrarily long arithmetic progressions.

Freiman's Theorem: Sets with $|A + A| \leq K|A|$ can be densely embedded in a GAP.

Plünnecke's Inequalities: If $A + A$ is small, so are $A + A + A$ and *nA* for all *n*.

Some jewels of additive combinatorics

KORKARA KERKER DAGA

- Szemerédi's Theorem: Dense subsets of $\mathbb{Z}/p\mathbb{Z}$, Z contain arbitrarily long arithmetic progressions.
- Freiman's Theorem: Sets with $|A + A| \le K|A|$ can be densely embedded in a GAP.

Plünnecke's Inequalities: If $A + A$ is small, so are $A + A + A$ and *nA* for all *n*.