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What is additive combinatorics?

We will see it through a sample of some important concepts
and results.

One of the main features is that is has many (bidirectional)
connections:

• Fractal geometry
• Harmonic Analysis
• Ergodic Theory
• Number Theory
• Combinatorics
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Ambient group

Additive combinatorics takes place in some ambient Abelian
group Z . For the purposes of this course, you can think of:

• Z or Zd

• R or Rd .
• C or Cd .
• The circle R/Z or the torus R/Zd (written additively as
[0,1)d ).

• Z/pZ or (Z/pZ)d (with p usually a prime).
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Arithmetic progressions

Definition
A k -AP is

a,a + v ,a + 2v , . . . ,a + (k − 1)v

with a, v ∈ Z and v ̸= 0.

Question
What conditions of size and/or structure ensure that A contains
(long) arithmetic progressions?
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Szemerédi’s Theorem

Definition
Let rk (N) be the size of the largest subset of {1, . . . ,N} that
does not contain a k -AP.

Theorem (Szemerédi 1975)
For any k ≥ 3,

lim
N→∞

rk (N)

N
= 0.

Corollary
A subset of the integers of positive upper density contains
arbitrarily long arithmetic progressions.
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Remarks on Szemerédi’s Theorem

• The case k = 3 was proved by K. Roth in the 1952 using
the Fourier transform. The Fourier transform does not work
at all if k ≥ 4.

• Very influential proofs of Szemerédi’s Theorem were given
by H. Furstenberg (Ergodic Theory), T. Gowers (Higher
order Fourier analysis), T. Tao (finitary ergodic theory), and
others.

• There have been many generalizations and extensions, the
most famous of which is the Green-Tao Theorem
extending Szemerédi’s Theorem to the primes.

• An active area of research concerns Szemerédi-type
phenomena in subsets of Euclidean space: Geometric
Measure Theory+Harmonic Analysis.
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Quantitative bounds

• Recall Szemerédi’s Theorem: limN→∞
rk (N)

N = 0, where
rk (N) is the size of the largest subset of {1, . . . ,N} that
does not contain a k -AP.

• The original proof of Szemerédi’s Theorem gave extremely
poor bounds on rk (N). Finding good bounds for rk (N) is a
very active and important problem.

• For k = 3, several recent breakthroughs have been
obtained by T. Bloom-O. Sisask, Z. Kelley-R. Meka and
others. The current world-record is

r3(N) ≤ exp(−c log(N)1/9) · N.

• For comparison, the best lower bound dates back
(essentially) to Behrend’s 1946 example:

r3(N) ≥ exp(−c′ log(N)1/2) · N.
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Sumsets and difference sets

Definition
If A,B ⊂ Z we define their sumset and difference set as

A + B = {x + y : x ∈ A, y ∈ B},
A − B = {x − y : x ∈ A, y ∈ B},

nA = A + · · ·+ A︸ ︷︷ ︸
n times

.

Remark
One of the most fundamental problems of additive
combinatorics is to understand the relationship between the
sizes (and the structure) of A,B and sets obtained from them
via sums and differences.

When the ambient group is a ring (e.g. Z, R, Z/p/Z), one is
also interested in product sets A.B.
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Size of sumsets and additive structure

• For any set A,

|A| ≤ |A + A| ≤ min

(
1
2
|A|(|A|+ 1), |Z |

)
.

So, up to multiplicative constants, |A + A| varies between
|A| and |A|2 (or |Z | if |Z | ≤ |A|2).

• The first inequality follows since A + A ⊃ A + a for a fixed
a ∈ A. The second inequality follows from the fact that
there are |A|(|A + 1)/2 possible non-ordered pairs {a,a′}
with a,a′ ∈ A.

• We think of sets A with |A + A| ∼ |A| as sets with additive
structure or as approximate subgroups.
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Generalized Arithmetic Progressions

Definition
A GAP is a set of the form

{a + i1v1 + i2v2 + . . .+ idvd : 0 ≤ ij < ki} = a + [k].v,

where k = (k1, . . . , kd) ⊂ Nd , a ∈ Z , v = (v1, . . . , vd) ∈ Z d ,
vi ̸= 0.

A GAPA is proper if
|A| = k1 · · · kd ,

i.e. all the sums a + i1v1 + i2v2 + . . .+ idvd are different.

The rank of the GAP is d (a GAP of rank 1 is an AP).
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Examples of sets with additive structure

Examples of sets for which |A + A| ∼ |A|:
• Subgroups (if they exist).
• Arithmetic progressions: |A + A| ≤ 2|A|.
• Proper GAPs: |A + A| ≤ 2d |A| where d is the rank. Indeed,

let

A = a + [k].v = {a + i1v1 + i2v2 + . . .+ idvd : 0 ≤ iℓ < kℓ}.

Then

A+A = {2a+j1v1+j2v2+. . .+jdvd : 0 ≤ jℓ < 2kℓ} = a+[2k].v,

so

|A + A| ≤ (2k1) · · · (2kℓ) = 2d(k1 · · · kℓ) = 2d |A|.

• Dense subsets of a set with |A + A| ∼ |A| (such as a GAP).
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Examples of sets without additive structure

Examples of sets for which |A + A| ∼ |A|2:
• Random sets (pick each element of Z/pZ with probability

p−α).
• Lacunary sets (e.g. powers of 2).
• A ∪ B where A,B are disjoint of the same size, A is one of

the previous examples and B is arbitrary.
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A set with intermediate additive structure

• Let A be the set of all numbers in [1,N] with N = 4k whose
base 4 expansion has only digits 0 and 1.

• This is an integer analog of a self-similar set.
• We have |A| ∼ 2k = N1/2.
• Then A + A is the set of all numbers in [2,2N] whose base

4 expansion has only digits 0, 1, 2.
• We have |A + A| ∼ 3k = N3/4 ∼ |A|3/2.
• So |A| ≪ |A + A| ≪ |A|2.
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Freiman’s Theorem

Recall: If A is a dense subset of a proper GAP, then
|A + A| ∼ |A|.

Theorem (Freiman 1966)
Given K > 1 there are d(K ) and S(K ) such that the following
holds.

Suppose |A + A| ≤ K |A|. Then there is a GAP P of rank d(K )
such that A ⊂ P and |P| ≤ S(K )|A|.

In other words, sets of small doubling are always dense
subsets of GAPs of small rank.



Quantitative Freiman

Theorem (Ruzsa, Chang, Sanders, Schoen)
Suppose |A + A| ≤ K |A|. Then there is a GAP P with

rank(P) ≤ K 1+C log(K )−1/2 ≤ K 1+ε

and such that A ⊂ P and

|P| ≤ exp(1 + C log(K )−1/2)|A| ≤ exp(K 1+ε).



Remarks on Freiman’s Theorem

• Freiman’s Theorem can be seen as an inverse or
classification theorem: based on qualitative information
about A, it returns structural information.

• In applications, the quantitative estimates on d(K ) and
S(K ) are crucial.

• The theorem does not guarantee that P is proper. But it
can be taken to be proper (with slightly worse quantitative
bounds).

• At least with the current bounds, Freiman’s Theorem says
nothing if K grows like K = |A|δ.
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Plünnecke’s inequalities

Motivation
Freiman’s Theorem says that if |A + A| ≤ K |A| then A is a
dense subset of a low-rank GAP.

Using this it is easy to show that |A + A + A| ≤ f (K )|A| and so
on. In other words, having a small sumset implies having a
small n-sumset nA.

But can we do better than Freiman’s Theorem in this direction?

Theorem (Plünnecke Inequalities, 1969)
Suppose |A + A| ≤ K |A|. Then |nA| ≤ K n|A|.

More generally, if |A + B| ≤ K |A|, then |nB| ≤ K n|A|.
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G. Petridis’ proof of Plünnecke’s inequalities

• Suppose |A + B| ≤ K |A|. We want to show |nB| ≤ K n|A|.
• Choose a subset A′ of A which minimizes the ratio

|A′ + B|
|A′|

,

let K ′ be the ratio.
• Then K ′ ≤ K (since A′ is a subset of A).
• By definition we have:

|A′ + B| = K ′|A′|,
|Z + B| ≥ K ′|Z | (Z ⊂ A).
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Plünnecke’s inequality: main lemma

Lemma (Petridis 2011)
For every set C ⊂ Z,

|A′ + B + C| ≤ K ′|A′ + C|.

Proof of Plünnecke’s inequalities, assuming lemma.
We prove by induction that

|nB| ≤|A′ + nB| ≤ (K ′)n|A′|≤ K n|A|

For n = 1, this is the definition of K ′.

For the induction step, apply the lemma to C = (n − 1)B.
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Plünnecke inequalities: proof of main lemma I

Lemma (Petridis)

|A′ + B + C| ≤ K ′|A′ + C|,

where

K ′ =
|A′ + B|
|A′|

= min
X⊂A

|X + B|
|X |

.

• Induction in |C|.
• The case |C| = {x} is true since |A′ + B + x | = |A′ + B|

and |A′ + x | = |A′|.
• Assume true for C, and let C′ = C ∪ {x}.
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Plünnecke inequalities: proof of main lemma II

Lemma (Petridis)

|A′ + B + C| ≤ K ′|A′ + C|, where
|A′ + B|
|A′|

= K ′, K ′ minimal.

• A′ + B + C′ = (A′ + B + C) ∪
(
(A′ + B + x) \ (Z + B + x)

)
,

where

Z = {a ∈ A′ : a + B + x ⊂ A + B + C}.
• |Z + B| ≥ K ′|Z | by minimality of K ′.
• By the inductive hypothesis,

|A′ + B + C′| ≤ |A′ + B + C|+
(
|A′ + B + x | − |Z + B + x |

)
≤ K ′|A′ + C|+ K ′|A′| − K ′|Z |.

• It remains to show that

|A′ + C|+ |A′| − |Z | ≤ |A′ + C′|.
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Plünnecke inequalities: proof of main lemma III

Lemma

|A′ + C|+ |A′| − |Z | ≤ |A′ + C′|,

where Z = {a ∈ A′ : a + B + x ⊂ A + B + C}.

Proof.
•

A′ + C′ = A + C ∪
(
A + x \ W + x

)
,

where W = {a ∈ A′ : a + x ∈ A′ + C}.
• Since the union is disjoint and W + x ⊂ A + x ,

|A′ + C′| = |A′ + C|+ |A′| − |W |.

• But W ⊂ Z since a + x ∈ A′ +C ⇒ a +B + x ⊂ A+B +C.
So

|A′ + C′| ≥ |A′ + C|+ |A′| − |Z |.
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Plünnecke inequalities: connections

• The Plünnecke inequalities are a key component of all the
quantitative proofs of Freiman’s Theorem.

• Usually one uses the contrapositive: in order to prove that

|A + A| ≫ |A|,

it is enough to prove that

|A + A + · · ·+ A| ≫ |A|,

which is easier since repeated sumsets have far more
structure/smoothness.

• There is a useful version of Plünnecke’s inequalities (due
to Kaimanovich-Vershik) for entropy, with convolutions of
measures in place of sumsets.
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No Plünnecke inequalities for Hausdorff dimension

Theorem (T. Körner 2010, J. Schmeling-P.S. 2012)
For any non-decreasing sequence αn of numbers in [0,1] there
exists a compact set A such that

dimH

A + · · ·+ A︸ ︷︷ ︸
n times

 = αn.

Remark
• Körner proved the result first but we were not aware of it;

the constructions are different.
• We also show that there are no Plünnecke inequalities for

upper box dimension, but they do hold for lower box
dimension.
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Some jewels of additive combinatorics

Szemerédi’s Theorem: Dense subsets of Z/pZ, Z contain
arbitrarily long arithmetic progressions.

Freiman’s Theorem: Sets with |A + A| ≤ K |A| can be densely
embedded in a GAP.

Plünnecke’s Inequalities: If A + A is small, so are A + A + A
and nA for all n.
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