PLAN FOR PROBLEM SESSIONS (E. DINEZZA'S LECTURES)

1. Day 1

Exercise 1.1 ($\partial \bar{\partial}$ -lemma). Let X be a compact Kähler manifold and let $\alpha \in \mathcal{A}^{p,q}(X)$, $d\alpha = 0$. Show that TFAE:

- (i) α is d-exact;
- (ii) α is ∂ -exact;
- (iii) α is $\bar{\partial}$ -exact;
- (iv) α is $\partial \bar{\partial}$ -exact.

Exercise 1.2. Let X be an n-dimensional Fano manifold and $\omega \in c_1(X)$. Denote by $\omega_{\varphi} := \omega + \mathrm{dd}^c \varphi$. Show that TFAE:

- (i) ω_{φ} is a Kähler–Einstein metric;
- (ii) ω_{φ} is a Kähler metric with constant scalar curvature;
- (iii) φ solves

$$(\omega + \mathrm{dd^c}\varphi)^n = e^{-\varphi + h}\omega^n$$

for some smooth $h: X \to \mathbb{R}$ such that $Ric(\omega) = \omega + dd^c h$.

Exercise 1.3. Let $\Omega \subset \mathbb{C}$ be a domain. Show the following statements:

- (i) If $(u_j)_j \subset SH(\Omega)$ and $u_j \searrow u \not\equiv -\infty$, then $u \in SH(\Omega)$.
- (ii) If $u \in SH(\Omega)$, for all r > 0, $\Omega_r := \{x \in \Omega \mid \operatorname{dist}(x, \partial\Omega) > r\}$, there exists $u_j \in SH(\Omega_r) \cap \mathcal{C}^{\infty}(\Omega_r)$ such that $u_j \searrow u$.
- (iii) If $u \in SH(\Omega)$, then $u \in L^1_{loc}(\Omega)$, i.e. $\forall K \in \Omega$, $\int_K |u| dA < +\infty$.
- (iv) If $(u_j)_j \subset SH(\Omega)$ is locally uniformly bounded from above and $u_j \nearrow u$, then $u^* \in SH(\Omega)$ and $u = u^*$ almost everywhere. Here $u^*(z) = \limsup_{w \to z} u(w)$ is the upper semi-continuous regularization.

Audiences can try psh functions. Remark similar properties for functions in $PSH(X,\omega)$.

Exercise 2.1. Show the following statements:

- (i) If $\varphi, \psi \in PSH(X, \omega)$, then $\log(e^{\varphi} + e^{\psi})$, $\max{\{\varphi, \psi\}} \in PSH(X, \omega)$.
- (ii) If $\varphi \in \mathrm{PSH}(X,\omega)$, $\chi \in \mathcal{C}^2$ such that $\chi'' \geq 0$ and $0 \leq \chi' \leq 1$, then $\chi \circ \varphi \in \mathrm{PSH}(X,\omega)$.

Exercise 2.2. Compute explicit radial examples of \mathcal{E}^p functions on $(\mathbb{P}^n, \omega_{FS})$:

- (i) Example of the form $-(-\log ||z||)^{\alpha}$ for $\alpha \in (0,1)$ and $1 \le p \le \frac{n(1-\alpha)}{\alpha}$;
- (ii) Example of the form $-\log(-\log ||z||)$ for all $p \ge 1$.

Exercise 2.3. Let (X, ω) be a compact Kähler manifold and let $\varphi \in \text{PSH}(X, \omega)$ with $\varphi \leq -1$.

- (i) Show that $\varphi_{\alpha} := -(-\varphi)^{\alpha} \in \mathcal{E}^{p}(X,\omega)$ for $\alpha \in (0,1)$ and $1 \leq p \leq \frac{1-\alpha}{\alpha}$. (ii) Show that $\psi := -\log(-\varphi) \in \mathcal{E}^{p}(X,\omega)$ for all $p \geq 1$.

3. Day 3

Exercise 3.1 (Following Guedj 2014 note, section 4). Explain some properties of geodesics in the toric setting.

4. Day 4

Exercise 4.1 (Following Darvas 2019 note, page 76-78). In the Fano setting, explain (hamiltonian) holomorphic vector fields induce geodesics.