On the Number of Multidimensional Integer Partitions

Multidimensional Partitions and Lower Sets

For a given d, we call a set $Q \subset \mathbb{Z}_{+}^{d}$ a lower set if for any $q=\left(q_{1}, \ldots, q_{d}\right) \in \mathbb{Z}_{+}^{d}$ the condition $q \in Q$ implies $q^{\prime}=\left(q_{1}^{\prime}, \ldots, q_{d}^{\prime}\right) \in Q$ for all $q^{\prime} \in \mathbb{Z}_{+}^{d}$ with $q_{i}^{\prime} \leq q_{i}, 1 \leq i \leq d$. Importantly, there is a one-to-one correspondence between d-dimensional lower sets of cardinality n and $(d-1)$-dimensional partitions of n, that is, representations of the form

$$
n=\sum_{i_{1}=1}^{\infty} \sum_{i_{2}=1}^{\infty} \ldots \sum_{i_{d-1}=1}^{\infty} n_{i_{1} i_{2} \ldots i_{d-1}}, \quad n_{i_{1} i_{2} \ldots i_{d-1}} \in \mathbb{Z}_{+}
$$

where $n_{i_{1} i_{2} \ldots i_{d-1}} \geq n_{j_{1} j_{2} \ldots j_{d-1}}$ if $j_{k} \geq i_{k}$ for all $k=1,2, \ldots, d-1$. By $p_{d}(n)$ we denote the number of lower sets in \mathbb{Z}_{+}^{d} containing n points.

- Integer partitions $(d=2)$. The celebrated result by Hardy and Ramanujan (1917) revealed the asymptotics of $p_{2}(n)$, while the first steps in this problem go back to Leibniz (1674) and the generating function for $p_{2}(n)$ was established by Euler (1753):

$$
p_{2}(n) \sim \frac{e^{\sqrt{\frac{2 n}{3}} \pi}}{4 \sqrt{3} n}, \quad \prod_{k=1}^{\infty}\left(1-x^{k}\right)^{-1}=\sum_{n=0}^{\infty} p_{2}(n) x^{n}
$$

- Plane partitions $(d=3)$. In this case the generated function (MacMahon, 1912) and the asymptotics (Wright, 1931) are also known:

$$
p_{3}(n) \sim \frac{(2 \zeta(3))^{\frac{7}{36}} e^{\zeta^{\prime}(-1)}}{\sqrt{2 \pi} n^{\frac{25}{36}}} e^{3(\zeta(3))^{\frac{1}{3}} 2^{-\frac{2}{3}} n^{\frac{2}{3}}}, \quad \prod_{k=1}^{\infty}\left(1-x^{k}\right)^{-k}=\sum_{n=0}^{\infty} p_{3}(n) x^{n} .
$$

General case. The general estimate for $p_{d}(n)$ was given by Bhatia, Prasad, and Arora (1997):

$$
C_{1}(d) \leq \frac{\log p_{d}(n)}{n^{1-\frac{1}{d}}} \leq C_{2}(d)
$$

Explicit constants were suggested by Dai, Prymak, Shadrin, Tikhonov, and Temlyakov (2021):

$$
C_{2}(d)=\pi \sqrt{\frac{2}{3}} d^{\log d} \quad \text { and } \quad C_{1}(d)=0.9 \frac{d}{(d!)^{\frac{1}{d}}} \log 2 \quad \text { for } n>55^{d}
$$

- Absolute constants. We show that both constants above do not depend on the dimension d provided that the number n of elements in the lower set is large enough in terms of d (K.O., 2022):

$$
1<\frac{\log p_{d}(n)}{n^{1-\frac{1}{d}}}<7200 \text { for } n \geq(30 d)^{2 d^{2}}
$$

Available Subsets of a Lower Set

The crucial role in our analysis is given to the "top subsets" of lower sets. Namely, we call a subset \widetilde{Q} of a given lower set Q available if for any $q^{\prime} \in \widetilde{Q}$ there is no $q \in Q \backslash\left\{q^{\prime}\right\}$ such that $q_{i} \geq q_{i}^{\prime}$ for all $i=1,2, \ldots, d$. Denoting by $M(Q)$ the maximal available subset of Q, we have:

- For any $d \geq 2$ and $n \geq d^{6 d \log d}$.

$$
T(n):=\max _{\text {lower sets } Q:|Q|=n}|M(Q)| \leq \prod_{k=1}^{d-1}\left(1+\frac{1}{k^{2}}\right) n^{1-\frac{1}{d}}<\frac{\sinh \pi}{\pi} n^{1-\frac{1}{d}}
$$

Note that this estimate is up to an absolute constant sharp, which can be seen by considering the sets Q_{k} defined by $x \in Q_{k} \Leftrightarrow x_{1}+\ldots+x_{d} \leq k$.

Such an estimate allows us to obtain the number of lower subsets of a lower set according to the following result:

- For the number $C(Q, k, d)$ of all lower subsets $Q^{\prime},\left|Q^{\prime}\right| \geq n-k$, of a d-dimensional lower set $Q,|Q|=n$, there holds

$$
C(Q, k, d)<\left(\max \left\{8, \frac{4 e T(n)}{k}\right\}\right)^{k}
$$

[^0]High-dimensional Lower Sets
What can we say if n is not necessarily much greater than d ?

- Cohen, Migliorati, and Nobile (2017)

$$
p_{d}(n) \leq 2^{d n} \quad \text { and } \quad p_{d}(n) \leq d^{n-1}(n-1)!
$$

- Dai, Prymak, Shadrin, Tikhonov, and Temlyakov (2021)

$$
\frac{d^{n-1}}{(n-1)!}<\binom{d+n-2}{n-1} \leq p_{d}(n) \leq d^{n-1}
$$

- K.O. (2022)
- If $d>n^{3} / 2$, then

$$
1 \leq \frac{p_{d}(n)}{\binom{d+n-2}{d-1}}<\frac{1}{1-\frac{n^{3}}{2 d}} .
$$

- If $d n^{-2} \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
\log p_{d}(n)=(n-1)(\log d-\log n+1)+o(n)
$$

- If d satisfies $c n^{2} \leq d \leq C n^{2}$ for some constants c and C,

$$
\log p_{d}(n)=n \log n+O(n)
$$

- If $d n^{-2} \rightarrow 0$ and $\log d \geq \log n+o(\log n)$ as $n \rightarrow \infty$, $\log p_{d}(n)=n \log n+o(n \log n)$.

Kristina Oganesyan

[^0]: © K. Oganesyan, Bounds for the number of multidimensional partitions, Eur. J. Comb., 120 (2024), 103982.

