## On the Number of Multidimensional Integer Partitions

## Multidimensional Partitions and Lower Sets

For a given d, we call a set  $Q \subset \mathbb{Z}_+^d$  a **lower set** if for any  $q = (q_1, ..., q_d) \in \mathbb{Z}_+^d$  the condition  $q \in Q$  implies  $q' = (q'_1, ..., q'_d) \in Q$  for all  $q' \in \mathbb{Z}^d_+$  with  $q'_i \leq q_i$ ,  $1 \leq i \leq d$ . Importantly, there is a one-to-one correspondence between d-dimensional lower sets of cardinality n and (d-1)-dimensional partitions of n, that is, representations of the form

$$n = \sum_{i_1=1}^{\infty} \sum_{i_2=1}^{\infty} \dots \sum_{i_{d-1}=1}^{\infty} n_{i_1 i_2 \dots i_{d-1}}, \quad n_{i_1 i_2 \dots i_{d-1}} \in \mathbb{Z}_+,$$

where  $n_{i_1i_2...i_{d-1}} \ge n_{j_1j_2...j_{d-1}}$  if  $j_k \ge i_k$  for all k = 1, 2, ..., d-1. By  $p_d(n)$  we denote the number of lower sets in  $\mathbb{Z}_+^d$  containing n points. Integer partitions (d = 2). The celebrated result by Hardy and Ramanujan (1917) revealed the asymptotics of  $p_2(n)$ , while the first steps in this problem go back to Leibniz (1674) and the generating function for  $p_2(n)$  was established by Euler (1753):

$$p_2(n) \sim \frac{e^{\sqrt{\frac{2n}{3}}\pi}}{4\sqrt{3}n}, \qquad \prod_{k=1}^{\infty} (1-x^k)^{-1} = \sum_{n=0}^{\infty} p_2(n)x^n.$$



▶ Plane partitions (d = 3). In this case the generated function (MacMahon, 1912) and the asymptotics (Wright, 1931) are also known:

$$p_3(n) \sim \frac{(2\zeta(3))^{\frac{7}{36}}e^{\zeta'(-1)}}{\sqrt{2\pi}n^{\frac{25}{36}}}e^{3(\zeta(3))^{\frac{1}{3}}2^{-\frac{2}{3}}n^{\frac{2}{3}}}, \qquad \prod_{k=1}^{\infty} (1-x^k)^{-k} = \sum_{n=0}^{\infty} p_3(n)x^n.$$



▶ **General case.** The general estimate for  $p_d(n)$  was given by Bhatia, Prasad, and Arora (1997):

$$C_1(d) \leq \frac{\log p_d(n)}{n^{1-\frac{1}{d}}} \leq C_2(d).$$

**Explicit constants** were suggested by Dai, Prymak, Shadrin, Tikhonov, and Temlyakov (2021):

$$C_2(d) = \pi \sqrt{\frac{2}{3}} d^{\log d}$$
 and  $C_1(d) = 0.9 \frac{d}{(d!)^{\frac{1}{d}}} \log 2$  for  $n > 55^d$ .

 $\triangleright$  Absolute constants. We show that both constants above do not depend on the dimension d provided that the number n of elements in the lower set is large enough in terms of d (K.O., 2022):

$$1 < \frac{\log p_d(n)}{n^{1-\frac{1}{d}}} < 7200 \quad \text{for } n \ge (30d)^{2d^2}.$$

## Available Subsets of a Lower Set

The crucial role in our analysis is given to the "top subsets" of lower sets. Namely, we call a subset Q of a given lower set Q available if for any  $q' \in Q$ there is no  $q \in Q \setminus \{q'\}$  such that  $q_i \geq q'_i$  for all i = 1, 2, ..., d. Denoting by M(Q) the maximal available subset of Q, we have:

For any  $d \ge 2$  and  $n \ge d^{6d \log d}$ ,

$$T(n) := \max_{\text{lower sets } Q: \ |Q| = n} |M(Q)| \le \prod_{k=1}^{d-1} \left(1 + \frac{1}{k^2}\right) n^{1 - \frac{1}{d}} < \frac{\sinh \pi}{\pi} n^{1 - \frac{1}{d}}.$$

Note that this estimate is up to an absolute constant sharp, which can be seen by considering the sets  $Q_k$  defined by  $x \in Q_k \Leftrightarrow x_1 + ... + x_d \leq k$ .

Such an estimate allows us to obtain the number of lower subsets of a lower set according to the following result:

▶ For the number C(Q, k, d) of all lower subsets Q',  $|Q'| \ge n - k$ , of a d-dimensional lower set Q, |Q| = n, there holds

$$C(Q, k, d) < \left(\max\left\{8, \frac{4eT(n)}{k}\right\}\right)^k.$$

K. Oganesyan, Bounds for the number of multidimensional partitions, Eur. J. Comb., 120 (2024), 103982.

## High-dimensional Lower Sets

What can we say if n is not necessarily much greater than d?

► Cohen, Migliorati, and Nobile (2017)

$$p_d(n) \le 2^{dn}$$
 and  $p_d(n) \le d^{n-1}(n-1)!$ 

Dai, Prymak, Shadrin, Tikhonov, and Temlyakov (2021)

$$\frac{d^{n-1}}{(n-1)!} < \binom{d+n-2}{n-1} \le p_d(n) \le d^{n-1}.$$

- ► K.O. (2022)
  - If  $d > n^3/2$ , then

$$1 \le \frac{p_d(n)}{\binom{d+n-2}{d-1}} < \frac{1}{1 - \frac{n^3}{2d}}.$$

• If  $dn^{-2} \to \infty$  as  $n \to \infty$ , then

$$\log p_d(n) = (n-1)(\log d - \log n + 1) + o(n).$$

- If d satisfies  $cn^2 \le d \le Cn^2$  for some constants c and C,  $\log p_d(n) = n \log n + O(n).$
- If  $dn^{-2} \to 0$  and  $\log d \ge \log n + o(\log n)$  as  $n \to \infty$ ,  $\log p_d(n) = n \log n + o(n \log n).$

Kristina Oganesyan