Hyperbolic networks

2022 spring

Outline

- Introduction
- Hyperbolic network models
- Hyperbolic embedding of networks
- Communities in hyperbolic networks

Preliminaries

What are hyperbolic networks?

Hyperbolic geometry Properties Native disk

Introduction

Preliminaries

What are hyperbolionetworks?

Hyperbolic geometry Properties

PRELIMINARIES

Introduction

Preliminaries

What are hyperbolic networks?

Why hyperbolic?

Hyperbolic geometry Properties Native disk

What are hyperbolic networks?

- Model networks (graphs) generated by placing nodes in hyperbolic spaces.
- · Real networks embedded into a hyperbolic space.

Introduction Historical timeline

Introduction

Preliminaries

- What are hyperbolic networks?
- Why hyperbolic
- Hyperbolic geometry Properties

- Random Hyperbolic Graph (RHG) or S^1/\mathbb{H}^2 model:
 - D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá: Hyperbolic geometry of complex networks. *Phys. Rev. E.* **82**, 036106 (2010).
- Popularity Similarity Optimisation (PSO) model:
 - F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov: Popularity versus similarity in growing networks. *Nature* **489**, 53 (2012).
- HyperMap for embedding into hyperbolic space:
 F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth. *IEEE/ACM Transactions* on Networking. 23, 198–211 (2015).
- · Coalescent embeddings:
 - A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci: Machine learning meets complex networks via coalescent embedding in the hyperbolic space. *Nat. Commun.* **8**, 1615 (2017).

Preliminaries

What are hyperboli networks?

Why hyperbolic?

Hyperbolic geometry Properties Native disk

Why is it a good idea to place the nodes of a network into hyperbolic spaces?

Network models

Introduction

Preliminaries

What are hyperboli networks?

Why hyperbolic?

Hyperbolic geometry Properties

What is the goal/motivation of a network model?

Network models

Introduction

- Preliminaries What are hyperbo
- Why hyperbolic?
- Hyperbolic geometry Properties Native disk

What is the goal/motivation of a network model?

· Generate interesting graphs...

Network models

Introduction

Preliminaries What are hyperbolionetworks?

Why hyperbolic?

Hyperbolic geometry Properties Native disk What is the goal/motivation of a network model?

- · Generate interesting graphs...
- Reproduce statistical properties of the networks representing real systems.

Introduction

Preliminaries

What are hyperboli networks?

Why hyperbolic?

Hyperbolic geometry Properties

Introduction

Preliminaries

What are hyperbolionetworks? Why hyperbolic?

Hyperbolic geometry Properties Native disk

Watts-Strogatz model:

- · Regular ring network with random rewiring.
- · Can generate small-world and highly clustered networks.

Introduction

Preliminaries

What are hyperbolic networks? Why hyperbolic?

Hyperbolic geometry Properties Native disk

Watts-Strogatz model:

- · Regular ring network with random rewiring.
- · Can generate small-world and highly clustered networks.

Introduction

Preliminaries

What are hyperbolic networks? Why hyperbolic?

Hyperbolic geometry Properties Native disk

Watts-Strogatz model:

- · Regular ring network with random rewiring.
- · Can generate small-world and highly clustered networks.

Introduction

Preliminaries

What are hyperbolic networks?

Why hyperbolic?

Hyperbolic geometry Properties Native disk

Barabási-Albert model

- · Network growth with preferential attachment.
- Generates scale-free networks where $p(k) \propto k^{-3}$.

Network models What features are we after?

Preliminaries

What are hyperboli networks?

Why hyperbolic?

Hyperbolic geometry Properties

Network models What features are we after?

Introduction

Preliminaries

what are hyperbolic networks? Why hyperbolic?

Hyperbolic geometry Properties Native disk Most networks representing real complex systems are in most cases:

- Small-world
- Highly clustered
- Inhomogeneous in terms of the degree (scale-free).

Network models Can we have all of these in a simple model?

Preliminaries

What are hyperboli networks?

Why hyperbolic?

Hyperbolic geometry Properties

Network models Can we have all of these in a simple model?

Introduction

Preliminaries

What are hyperbolic networks?

Why hyperbolic?

Hyperbolic geometry Properties Native disk

Holme-Kim model:

- · B-A model with extra triad formation steps
- Can generate scale-free networks with a tunable clustering coefficient.

Network models What about random geometric graphs?

Introduction

Preliminaries

What are hyperboli networks?

Why hyperbolic?

Hyperbolic geometry Properties

Preliminaries

What are hyperbolic networks?

Why hyperbolic?

Hyperbolic geometry Properties Native disk

Random geometric graphs:

- Place nodes (uniformly) at random in a (Euclidean) space,
- and connect them according to the distance.

Preliminaries

What are hyperbolic networks? Why hyperbolic?

Hyperbolic geometry Properties Native disk

Random geometric graphs:

- Place nodes (uniformly) at random in a (Euclidean) space,
- and connect them according to the distance.

Very intuitive, simple to understand model for humans...

Preliminaries

What are hyperbolic networks? Why hyperbolic?

Hyperbolic geometry Properties Native disk

Random geometric graphs:

- Place nodes (uniformly) at random in a (Euclidean) space,
- and connect them according to the distance.

Very intuitive, simple to understand model for humans...

But can we have small-world, highly clustered and scale-free networks in this approach?

Small-world vs Regular

Introduction

Preliminaries What are hyperbo

networks?

Hyperbolic geometry Properties Native disk

$$\begin{split} & N(\ell) \approx \langle k \rangle^{\ell} \\ & \langle k \rangle^{\ell} \approx N \\ & \langle \ell \rangle \approx \frac{\ln N}{\ln \langle k \rangle} \end{split}$$

 $\begin{array}{l} N(\ell) \sim \ell^2 \\ \left< \ell \right>^2 \sim N \\ \left< \ell \right> \sim N^{1/2} \end{array}$

Small-world vs Euclidean

Introduction

 The number of nodes in concentric shells around a given node grows exponentially in a small-world network.

\$

• The volume of a sphere displays only a polynomial growth in Euclidean spaces.

Preliminaries

What are hyperbolic networks?

Why hyperbolic?

Hyperbolic geometry Properties Native disk

Small-world vs Euclidean

Introduction

Why hyperbolic?

 The number of nodes in concentric shells around a given node grows exponentially in a small-world network.

• The volume of a sphere displays only a polynomial growth in Euclidean spaces.

→ We cannot have large Euclidean random geometric graphs that are also small-world!

Small-world vs Euclidean

Introduction

Why hyperbolic?

 The number of nodes in concentric shells around a given node grows exponentially in a small-world network.

 The volume of a sphere displays only a polynomial growth in Euclidean spaces.

- → We cannot have large Euclidean random geometric graphs that are also small-world!
 - However, the volume of spheres grows exponentially in hyperbolic spaces, thus, they are more suited for hosting small world networks!

Preliminaries What are hyperbol networks?

Why hyperbolic

Hyperbolic geometry

Properties Native disk

HYPERBOLIC GEOMETRY

Introduction

Preliminaries

What are hyperbolic networks?

Hyperbolic

Properties Native disk • A hyperbolic space is a metric space with constant negative curvature *K*, usually characterised by $\zeta = \sqrt{-K}$.

Introduction

- Preliminaries
- What are hyperbolic networks?
- Hyperbolic geometry
- Properties Native disk

- A hyperbolic space is a metric space with constant negative curvature *K*, usually characterised by $\zeta = \sqrt{-K}$.
- Poincaré disk model of 2d hyperbolic space:

(Figure from Krioukov et al., Phys. Rev. E. 82, 036106 (2010))

Introduction

Preliminaries

What are hyperbolic networks?

Hyperbolic geometry Properties

Native disk

· Comparing different geometries:

Property	Euclidean	Spherical	Hyperbolic
Curvature K	0	>0	<0
Parallel lines	1	0	00
Triangles are	Normal	Thick	Thin
Shape of triangles	\triangle	\bigcirc	\bigtriangleup
Sum of angles in triangles	π	$>\pi$	$<\!\pi$
Circle length	$2\pi r$	$2\pi\sin\zeta r$	$2\pi \sinh \zeta r$
Disk area	$2\pi r^2/2$	$2\pi(1-\cos\zeta r)$	$2\pi(\cosh\zeta r-1)$

(Table from Krioukov et al., Phys. Rev. E. 82, 036106 (2010))

Introduction

Preliminaries

What are hyperbolic networks?

- Hyperbolic geometry
- Properties Native disk

- Hyperbolic geometry on YouTube:
 - From CodeParade: Non-Euclidean Geometry Explained - Hyperbolica Devlog #1
 - From Henry Segerman: Illuminating hyperbolic geometry
 - From Numberphile: Playing Sports in Hyperbolic Space - Numberphile

Introduction We will work in the native disk representation of the 2d hyperbolic space: Preliminaries What are hyperbolic retwork? Why hyperbolic geometry Properties Native disk

Introduction

We will work in the native disk representation of the 2d hyperbolic space:

• The radial coordinates correspond to the true (hyperbolic) distance from disk centre, $r \equiv r_h = r_E$.

- Preliminaries
- What are hyperbolic networks?
- Hyperbolic geometry Properties Native disk

Introduction

Preliminaries

What are hyperbolic networks?

Hyperbolic geometry Properties Native disk

We will work in the native disk representation of the 2d hyperbolic space:

- The radial coordinates correspond to the true (hyperbolic) distance from disk centre, $r \equiv r_h = r_E$.
- · The circle perimeter and area are

 $L(r) = 2\pi \sinh(\zeta r),$ $A(r) = 2\pi \left(\cosh(\zeta r) - 1\right),$

both grow as $e^{\zeta r}$ as a function of *r*.

Introduction

Preliminaries

What are hyperbolic networks? Why hyperbolic?

Hyperbolic geometry Properties Native disk

We will work in the native disk representation of the 2d hyperbolic space:

- The radial coordinates correspond to the true (hyperbolic) distance from disk centre, $r \equiv r_h = r_E$.
- · The circle perimeter and area are

 $L(r) = 2\pi \sinh(\zeta r),$ $A(r) = 2\pi \left(\cosh(\zeta r) - 1\right),$

both grow as $e^{\zeta r}$ as a function of *r*.

 The hyperbolic law of cosines for the hyperbolic distance *x* between two points (*r*, θ) and (*r'*, θ'):

 $\cosh(\zeta x) = \cosh(\zeta r) \cosh(\zeta r') - \sinh(\zeta r) \sinh(\zeta r') \cos(\Delta \theta),$

where $\Delta \theta = \pi - |\pi - |\theta - \theta'||$ is the angular difference.
Native disk representation

Introduction

Preliminaries

What are hyperbolic networks? Why hyperbolic?

Hyperbolic geometry Properties Native disk We will work in the native disk representation of the 2d hyperbolic space:

- The radial coordinates correspond to the true (hyperbolic) distance from disk centre, $r \equiv r_h = r_E$.
- · The circle perimeter and area are

 $L(r) = 2\pi \sinh(\zeta r),$ $A(r) = 2\pi \left(\cosh(\zeta r) - 1\right),$

both grow as $e^{\zeta r}$ as a function of *r*.

 The hyperbolic law of cosines for the hyperbolic distance *x* between two points (*r*, θ) and (*r'*, θ'):

 $\cosh(\zeta x) = \cosh(\zeta r) \cosh(\zeta r') - \sinh(\zeta r) \sinh(\zeta r') \cos(\Delta \theta),$

where $\Delta \theta = \pi - |\pi - |\theta - \theta'||$ is the angular difference.

• For sufficiently large ζr , $\zeta r'$ and $\Delta \theta > 2\sqrt{e^{-2\zeta r} + e^{-2\zeta r'}}$ the distance can be approximated as

$$x \simeq r + r' + \frac{2}{\zeta} \ln\left(\sin\left(\frac{\Delta\theta}{2}\right)\right) \approx r + r' + \frac{2}{\zeta} \ln\left(\frac{\Delta\theta}{2}\right).$$

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribut Model 2 Clustering coeff Arbitrary ζ

E-PSO mode

nPSO model RHG model Concept

Hyperbolic network models

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary *Ç* E-PSO model

nPSO model

RHG model Concept The S¹/H² mod

POPULARITY SIMILARITY OPTIMISATION MODEL

Popularity and similarty during network growth

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributio Model 2 Clustering coeff. Arbitrary ζ E-PSO model

RHG model Concept The S¹/H² mod Plausible effects governing the connection process in growing networks representing real complex systems:

Popularity and similarty during network growth

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distributio Model 2 Clustering coeff. Arbitrary ζ E-PSO model
- RHG model Concept The S¹/H² model

Plausible effects governing the connection process in growing networks representing real complex systems:

• **Similarity** between the entities represented by the nodes is enhancing the pairwise connection probability.

Popularity and similarty during network growth

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distributio Model 2 Clustering coeff. Arbitrary ζ
- RHG model Concept The S¹/H² mod

Plausible effects governing the connection process in growing networks representing real complex systems:

- **Similarity** between the entities represented by the nodes is enhancing the pairwise connection probability.
- **Popularity** (degree) of an entity can enhance the probability for connecting to any other node in general.

Popularity and similarity in the native disk

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ
- E-PSO mode
- nPSO model
- RHG model Concept The S¹/H² mode

Analogy of these two properties in the native disk:

- Similarity: the angle and the angular separation Δθ can provide a simple model of similarity.
- Popularity: the radial distance from the disk center can model the popularity. (Smaller radius corresponds to larger popularity).

(Figure from Krioukov et al., Phys. Rev. E. 82, 036106 (2010

Hyperbolic network models

- PSO model
- Popularity and similarity Model 0 Model 1 Degree distributi Model 2 Clustering coeff. Arbitrary ζ E-PSO model
- nPSO model
- RHG model Concept The S¹/H² mod

• A growing network model where we add a new node at each iteration to the native disk:

Hyperbolic network models

- PSO model
- Popularity and similarity Model 0 Model 1 Degree distribu Model 2 Clustering coef
- E-PSO mode
- nPSO model
- RHG model Concept The S¹/H² mod

- A growing network model where we add a new node at each iteration to the native disk:
 - the angular coordinates are chosen uniformly at random,

Hyperbolic network models

- PSO model
- Popularity and similarity Model 0 Model 1 Degree distribu Model 2 Clustering coe
- E-PSO mode
- nPSO model
- RHG model Concept The S¹/H² mod

- A growing network model where we add a new node at each iteration to the native disk:
 - the angular coordinates are chosen uniformly at random,
 - the radial coordinates are chosen such that the node density is uniform.

Hyperbolic network models

- PSO model
- Popularity and similarity Model 0 Model 1 Degree distribu Model 2 Clustering coe
- E-PSO model
- nPSO model
- RHG model Concept The S¹/H² mod

- A growing network model where we add a new node at each iteration to the native disk:
 - the angular coordinates are chosen uniformly at random,
 - the radial coordinates are chosen such that the node density is uniform.
- The node pairs are connected according to a probability depending on the **hyperbolic distance**.

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributi Model 2 Clustering coeff. Arbitrary ζ

E-PSO mode

nPSO model

RHG model Concept The S¹/H² mo

How should we set the radial coordinates?

- We know that the disk area is increasing exponentially with the radius...
- → the radial coordinate of the new nodes should increase logarithmically with the node index (or birth time):

 $r_t = \ln(t)$

 \rightarrow The hyperbolic distance between nodes *s* and *t* becomes approximately

$$x_{st} \simeq r_s + r_t + \frac{2}{\zeta} \ln\left(\frac{\theta_{st}}{2}\right).$$

If we set $\zeta = 2$,

$$e^{x_{st}} \simeq \underbrace{s \cdot t}_{\text{pop.}} \cdot \underbrace{\frac{\theta_{st}}{2}}_{\text{sim.}}$$

the distance (exponentiated) is basically the logarithm of the product between popularity and similarity.

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ
- E-PSO model
- nPSO model
- RHG model Concept The S¹/H² mod

How should we connect the node pairs?

- \rightarrow A basic idea:
 - always connect to the closest *m* nodes.
 - connect to all nodes within some radius R.
 - (with appropriate choice of R the two can be made equivalent)

Hyperbolic network models

PSO model

Popularity and similarity

Model 0

- Degree distribution Model 2 Clustering coeff.
- E-PSO mode
- nPSO model
- RHG model Concept The S¹/H² mod

The PSO model (Model 0)

- The curvature $K < \text{parametrised by } \zeta = \sqrt{-K}$ is set to $\zeta = 2$, making the formula for the hyp. distance even simpler.
- The only free parameters are the number of nodes N and the average degree parametrised by m = ⟨k⟩ /2.
- · The network is grown according to the following rules:
 - At iteration *t*, the new node obtains a radial coordinate $r_t = \ln t$, and an angular coordinate $\theta_t \in [0, 2\pi]$ uniformly at random.
 - If *t* < *m*, it connects to all previous nodes, otherwise it connects to the closest *m* nodes.

Hyperbolic network models

PSO model

Popularity and similarity

Model 0

Model 1 Degree distributio Model 2 Clustering coeff.

E-PSO mode

nPSO mode

RHG model Concept

Illustration from the original paper:

Hyperbolic network models

PSO model

Popularity and similarity

- Model 0
- Model 1 Degree distribution Model 2 Clustering coeff.
- E-PSO mode
- nPSO mode
- RHG model Concept The S¹/H² mod

Network with 100 nodes:

Degree distribution (complementary cumulative):

Average clustering coeff.: 0.85

- $\rightarrow\,$ The model generates scale-free networks with $\gamma\approx 2$!
- → The clustering coefficient is also high!

PSO model

Popularity and similarity

Model 0

Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ

E-PSO mode

nPSO model

RHG model Concept The S¹/H² mo

It would be nice

- if we could control the degree decay exponent $\gamma...$
- if we could control the average clustering coefficient $\langle C \rangle$...

Hyperbolic network models

PSO model

- Popularity an similarity
- Model 0
- Model 1
- Degree distribution Model 2 Clustering coeff.
- E-PSO mode
- nPSO model
- RHG model Concept The S¹/H² mod

Controlling the degree distribution: popularity fading.

- The degree is determined by the radial coordinate, with nodes closer to the origin gaining more connections.
- → We could modify the network generation process by slowly pulling the old nodes outwards to decrease their popularity...

Hyperbolic network models

PSO model

- Popularity an
- Model 0
- Model 1
- Degree distribution Model 2 Clustering coeff. Arbitrary ζ
- E-PSO model
- nPSO model
- RHG model Concept

The PSO model (Model 1)

- The curvature *K* < parametrised by $\zeta = \sqrt{-K}$ is set to $\zeta = 2$, making the formula for the hyp. distance even simpler.
- Free parameters are N, $m = \langle k \rangle / 2$ and β , controlling the popularity fading.
- · The network is grown according to the following rules:
 - At iteration *t*, the new node obtains a radial coordinate $r_t(t) = \ln t$, and an angular coordinate $\theta_t \in [0, 2\pi]$ uniformly at random.
 - **Popularity fading**: The radial coordinate of all existing nodes is updated as

 $r_s(t) = \beta r_s(s) + (1 - \beta)r_t(t)$

- (At $\beta = 1$ we recover Model 0).
- If *t* < *m*, the new node connects to all previous nodes, otherwise it connects to the closest *m* nodes.

Model 0 vs Model 1

Hyperbolic network models

PSO model

Popularity and similarity

Model 1

Degree distributio Model 2 Clustering coeff. Arbitrary ζ

E-PSO mode

nPSO model

RHG model Concept The S¹/H² mod

Network generated with Model 0: ($N = 100, m = 3, \beta = 1$)

Network generated with Model 1: $(N = 100, m = 3, \beta = \frac{1}{2})$

Model 0 vs Model 1

Hyperbolic network models

PSO model

Popularity an similarity

- Model 0
- Model 1
- Degree distribu Model 2 Clustering coef Arbitrary ζ
- E-PSO mode
- nPSO model
- RHG model Concept

The degree distributions:

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution

Clustering coeff. Arbitrary ζ

E-PSO mode

nPSO model

RHG model Concept The S¹/H² mod

Main steps:

Convert
"connect to *m* closest nodes"

into

"connect to all nodes within a cutoff radius *R*" (by appropriate choice of *R*).

 Using that, show that the linking probability between a new node t and an old node s is equivalent to that in a generalised B-A model.

Hyperbolic network models

- PSO model
- Popularity ar similarity
- Model 1
- Degree distribution
- Model 2 Clustering coef

- RHG model Concept

- What is the **expected number of nodes within a radius** *R* from the node appearing at *t*?
- The prob. that s is closer than R is

$$P(x_{st} < R) \simeq P\left(r_s + r_t + \frac{2}{\zeta}\ln(\theta_{st}/2) < R\right) = P\left(\theta_{st} < 2e^{-\frac{\zeta}{2}(r_s + r_t - R)}\right).$$

Since we have set $\zeta = 2$, and θst is uniform in $[0, \pi]$

$$P(x_{st} < R) \simeq P\left(\theta_{st} < 2e^{-(r_s + r_t - R)}\right) = \frac{2}{\pi}e^{-(r_s + r_t - R)}$$

· By summing over all existing nodes we gain

$$\bar{N}(R) = \sum_{i=1}^{t} P(x_{it} < R) \simeq \int_{1}^{t} P(x_{it} < R) di = \frac{2}{\pi} e^{-(r_t - R)} \int_{1}^{t} e^{-r_i(t)} di.$$

• The integral can be expressed as:

$$\int_{1}^{t} e^{-r_{i}(t)} di. = \begin{cases} \frac{e^{-(1-\beta)r_{t}}}{1-\beta} \left[e^{(1-\beta)r_{t}} - 1 \right] = \frac{1}{1-\beta} \left[1 - e^{-(1-\beta)r_{t}} \right]. & \text{if } \beta < 1 \\ \ln(t) = r_{t} & \text{if } \beta = 1. \end{cases}$$

Hyperbolic network models

- PSO model
- Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff.
- E-PSO model
- nPSO model
- RHG model Concept

• The expected number of nodes within a radius *R* from the node *t*:

$$\bar{N}(R) = \begin{cases} \frac{2}{\pi} e^{-(r_l - R)} \frac{1}{1 - \beta} \left[1 - e^{-(1 - \beta)r_l} \right], & \text{if } \beta < 1 \\ \frac{2}{\pi} e^{-(r_l - R)} r_l & \text{if } \beta = 1. \end{cases}$$

 By setting N = m, we can define a *t*-dependent cutoff radius, for which the expected number of older nodes within is m as

$$R_{t} = \begin{cases} r_{t} - \ln\left[\frac{2}{\pi}\frac{\left[1-e^{-(1-\beta)r_{t}}\right]}{m(1-\beta)}\right], & \text{if } \beta < 1\\ \\ r_{t} - \ln\left[\frac{2}{\pi}\frac{r_{t}}{m}\right] & \text{if } \beta = 1. \end{cases}$$

Hyperbolic network models

PSO model

Popularity an similarity

Model 1

Degree distribution

Model 2 Clustering coe

E-PSO mode

nPSO model

RHG model Concept • Let's focus now on the probability that *t* is connecting to *s*:

$$\Pi(s,t) = P(x_{st} < R_t) = \frac{2}{\pi} e^{-(r_s(t) + r_t(t) - R_t)} = \begin{cases} \frac{e^{-r_s(t)}m}{\frac{1}{1-\beta}\left[1 - e^{-(1-\beta)r_t}\right]}, & \text{if } \beta < 1\\ \frac{e^{-r_s(t)}m}{r_t} & \text{if } \beta = 1. \end{cases}$$

By realising that the denominator is $\int_1^t e^{-r_i} di$,

$$\Pi(s,t) = m \frac{e^{-r_s(t)}}{\int\limits_{1}^{t} e^{-r_i(t)} di} = m \frac{e^{-\beta r_s(s) - (1-\beta)r_t(t)}}{\int\limits_{1}^{t} e^{-\beta r_i(i) - (1-\beta)r_t(t)} di} = m \frac{e^{-\beta r_s(s)}}{\int\limits_{1}^{t} e^{-\beta r_i(i)} di},$$

or equivalently

$$\Pi(s,t) = m \frac{s^{-\beta}}{\int\limits_{1}^{t} i^{-\beta} di} = m \frac{\left(\frac{s}{t}\right)^{-\beta}}{\int\limits_{1}^{t} \left(\frac{i}{t}\right)^{-\beta} di}.$$

Hyperbolic network models

PSO model

Popularity an similarity Model 0

Model 1

Degree distribution

Model 2 Clustering coeff. Arbitrary ζ

E-PSO mode

nPSO model

RHG model Concept • Dorogovtsev, Mendes and Samukhin generalised the B-A model where a new node bringing *m* new links is choosing *s* as

 $P(s) \propto k_s(t) - m + A,$

where A is a further model-parameter.

· The connection probability is

$$\Pi(s,t) = m \frac{k_s(t) - m + A}{t(m+A)}$$

The degree of node introduced at t = s can be written as

$$\bar{k}_s(t) = m + A\left[\left(\frac{s}{t}\right)^{-\beta} - 1\right],$$

where β is an exponent $\beta \in (0,1)$ depending on the model parameters, and

$$\beta = \frac{1}{1 - \gamma} \quad \leftrightarrow \quad \gamma = 1 + \frac{1}{\beta}.$$

N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000)

Hyperbolic network models

PSO model

- Popularity an similarity Model 0
- Model 1
- Degree distribution
- Model 2 Clustering coe
- Arbitrary ζ
- E-F30 moue
- nPSO model
- Concept

• By replacing $k_s(t)$ by its expected value

Ť

$$\tilde{\mathbf{I}}(s,t) = m \frac{\bar{k}_s(t) - m + A}{t(m+A)} = m \frac{A\left(\frac{s}{t}\right)^{-\beta}}{\int_1^t (k_i(t) - m + A)di} = m \frac{A\left(\frac{s}{t}\right)^{-\beta}}{A\int_1^t \left(\frac{i}{t}\right)^{-\beta} di} = m \frac{\left(\frac{s}{t}\right)^{-\beta}}{\int_1^t \left(\frac{i}{t}\right)^{-\beta} di}$$

- This is exactly the same as the connection prob. in Model 1!
- → Model 1 is generating scale-free networks where γ is controlled by β as

$$\gamma = 1 + \frac{1}{\beta}.$$

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution

Model 2 Clustering coe Arbitrary ζ

E-PSO mode

nPSO model

RHG model Concept

Comparing PSO and preferential attachment in the original paper:

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1

Degree distribution

- Model 2 Clustering coef Arbitrary ζ
- E-PSO mode
- nPSO model
- Concept

• Let us turn back to the expected degree of node s:

$$\bar{k}_s(t) \sim \left(\frac{s}{t}\right)^{-\beta} = e^{-\beta(r_s(s)-r_s(t))}$$

Using that $r_s(t) = \beta r_s(s) + (1 - \beta)r_t(t)$ we can write $\beta r_s(s) = r_s(t) + (\beta - 1)r_t(t)$, hence

$$\bar{k}_s(t) \sim e^{-(r_s(t)-r_t(t))}.$$

• Thus, the expected node degree is determined by the radial coordinate, or equivalently, by the birth time of the node, and the expected degree is decreasing as a function of *r*.

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1

Model 2 Clustering co

E-PSO mode

nPSO model

RHG model Concept The S¹/II² mo

How to control also the clustering coefficient?

Model 2 Concept

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distribu Model 2 Clustering coef Arbitrary ζ
- E-PSO mode
- nPSO model
- RHG model Concept The S¹/H² mod

How to control also the clustering coefficient?

• The large *C* comes from the relatively "strict" connection rule, where we connect to everybody within *R_t* and to no one farther away...

Model 2 Concept

Hyperbolic network models

PSO model

- Popularity similarity
- Model 0
- Model 1
- Degree distributio
- Model 2
- Clustering coe Arbitrary ζ
- E-PSO mode
- nPSO model
- RHG model Concept The S¹/H² mod

How to control also the clustering coefficient?

- The large *C* comes from the relatively "strict" connection rule, where we connect to everybody within *R_t* and to no one farther away...
- Softening this rule can decrease C.

Model 2 Concept

Hyperbolic network models

PSO model

- Popularity a similarity Model 0
- Model 1
- Degree distribu
- Model 2
- Clustering coef Arbitrary ζ
- E-PSO mode
- nPSO model
- RHG model Concept

How to control also the clustering coefficient?

- The large *C* comes from the relatively "strict" connection rule, where we connect to everybody within *R*_r and to no one farther away...
- Softening this rule can decrease C.
- · A natural idea is to use

 $p(x_{st}) = \frac{1}{1 + e^{\frac{x_{st} - R_t}{T}}}$

Model 2 Definition

Hyperbolic network models

PSO model

- Popularity a
- Model 0
- Model 1
- Dearee distributio
- Model 2
- Clustering coef
- E-PSO mode
- nPSO model
- RHG model Concept
- The $\mathbb{S}^1/\mathbb{H}^2$ model

The PSO model (Model 2)

- The curvature *K* < parametrised by $\zeta = \sqrt{-K}$ is set to $\zeta = 2$.
- Parameters: $N, m = \langle k \rangle / 2, \beta$, and T, controlling $\langle C \rangle$.
- The network is grown according to the following rules:
 - At iteration *t*, the new node obtains $r_t(t) = \ln t$, and $\theta_t \in [0, 2\pi]$ uniformly at random.
 - · The radial coordinate of all existing nodes is updated as

 $r_s(t) = \beta r_s(s) + (1 - \beta)r_t(t)$

- If *t* < *m*, the new node connects to all previous nodes.
- Otherwise repeat until *m* links are realised:
 - Choose a node *s* uniformly at random.
 - Connect to this node according to

$$p(x_{st}) = \frac{1}{1 + e^{\frac{1}{T}(x_{st} - R_t)}}$$

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)

Model 2 Degree distribution

What happens to the degree distribution with this modification? Hyperbolic network models Model 2

Model 2 Degree distribution

Hyperbolic network models

PSO model

Popularity ar similarity Model 0

Degree distributio

Model 2

Clustering coe Arbitrary C

E-PSO mode

nPSO model

RHG model Concept

What happens to the degree distribution with this modification?

· Let's write the distance dependent connection prob. as

$$p(x_{st}) = \frac{1}{1 + e^{\frac{1}{T}(r_s + r_t + \ln(\theta_{st}/2) - R_t)}} = \frac{1}{1 + (X(s, t)\frac{\theta_{st}}{2})^{\frac{1}{T}}},$$

where we introduced $X(s, t) = e^{r_s + r_t - R_t}$.
Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distribut Model 2 Clustering coeff Arbitrary ζ
- E-PSO model
- nPSO model
- RHG model Concept

What happens to the degree distribution with this modification?

· Let's write the distance dependent connection prob. as

$$p(x_{st}) = \frac{1}{1 + e^{\frac{1}{T}(r_s + r_t + \ln(\theta_{st}/2) - R_t)}} = \frac{1}{1 + (X(s, t)\frac{\theta_{st}}{2})^{\frac{1}{T}}},$$

where we introduced $X(s, t) = e^{r_s + r_t - R_t}$.

• Since θ_{st} is uniformly random in $[0, \pi]$, and nodes are chosen at random, the prob. that *t* connects to *s* in one round is

$$P(s,t) = \frac{1}{t} \frac{1}{\pi} \int_0^{\pi} \frac{1}{1 + \left(X(s,t)\frac{\theta_{st}}{2}\right)^{\frac{1}{T}}} d\theta_{st}.$$

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distribut Model 2 Clustering coeff. Arbitrary ζ
- E-PSO model
- nPSO model
- Concept

What happens to the degree distribution with this modification?

· Let's write the distance dependent connection prob. as

$$p(x_{st}) = \frac{1}{1 + e^{\frac{1}{T}(r_s + r_t + \ln(\theta_{st}/2) - R_t)}} = \frac{1}{1 + (X(s, t)\frac{\theta_{st}}{2})^{\frac{1}{T}}},$$

where we introduced $X(s,t) = e^{r_s + r_t - R_t}$.

 Since θ_{st} is uniformly random in [0, π], and nodes are chosen at random, the prob. that *t* connects to *s* in one round is

$$P(s,t) = \frac{1}{t} \frac{1}{\pi} \int_0^{\pi} \frac{1}{1 + \left(X(s,t)\frac{\theta_{st}}{2}\right)^{\frac{1}{T}}} d\theta_{st}.$$

• If *T* < 1, and assuming that *X*(*s*, *t*) >> 1, by change of variables the integral can be approximated as

$$P(s,t) \approx \frac{2T}{t\sin(\pi T)} \frac{1}{X(s,t)}.$$

Hyperbolic network models

- PSO model
- Popularity a
- similarity
- Model 0
- Model 1
- Degree dis
- Model 2
- Clustering co Arbitrary ζ
- E-PSO mode
- nPSO model
- RHG model Concept

• The probability that node *t* is connecting to *s* overall can be written as

$$\Pi(s,t) = m \frac{P(s,t)}{\int_1^r P(i,t)di} = m \frac{X(s,t)^{-1}}{\int_1^t X(i,t)^{-1}di} = m \frac{e^{-r_s(t)}}{\int_1^t e^{-r_i(t)}di}$$

Hyperbolic network models

- PSO model
- Popularity a
- similarity
- Model U
- Model 1
- Degree distribu
- Model 2
- Clustering coe Arbitrary ζ
- E-PSO mode
- nPSO model
- RHG model Concept

• The probability that node *t* is connecting to *s* overall can be written as

$$\Pi(s,t) = m \frac{P(s,t)}{\int_1^r P(i,t)di} = m \frac{X(s,t)^{-1}}{\int_1^t X(i,t)^{-1}di} = m \frac{e^{-r_s(t)}}{\int_1^t e^{-r_i(t)}di}$$

• This is the same as in Model 1!

Hyperbolic network models

- PSO model
- Popularity and similarity Model 0 Model 1 Degree distribu Model 2
- Clustering coel Arbitrary ζ
- E-PSO mode
- nPSO model
- RHG model Concept

• The probability that node *t* is connecting to *s* overall can be written as

$$\Pi(s,t) = m \frac{P(s,t)}{\int_1^r P(i,t)di} = m \frac{X(s,t)^{-1}}{\int_1^t X(i,t)^{-1}di} = m \frac{e^{-r_s(t)}}{\int_1^t e^{-r_i(t)}di}$$

- This is the same as in Model 1!
- → Thus, the degree distribution is not affected by changing from Model 1 to Model 2, and γ is still controlled (only) by β !

Hyperbolic network models

PSO model

Popularity an similarity

Model 1

Degree distributio

Model 2

Clustering coe Arbitrary ζ

E-PSO mode

nPSO model

RHG model Concept

What about the cutoff radius R_t ?

Hyperbolic network models

PSO model

- Popularity ai similarity Model 0
- Model 1
- Dearee distributi
- Model 2
- Clustering c
- E-PSO mod
- nPSO model
- RHG model Concept

What about the cutoff radius R_t ?

• Number of expected nodes t will connect to is

$$\bar{N}(R_t) = t \int_1^t P(i,t) dt = t \int_1^t \frac{2T}{t \sin(\pi T)} e^{-(r_i(t) + r_t(t) - R_t)} di = \frac{2T}{\sin(\pi T)} e^{-(r_t - R_t)} \int_1^t e^{-r_i(t)} di.$$

Hyperbolic network models

PSO model

- Popularity an similarity Model 0 Model 1
- Model 2
- Clustering co
- E-PSO mode
- nPSO model
- RHG model Concept
- The $\mathbb{S}^1/\mathbb{H}^2$ model

What about the cutoff radius R_t ?

• Number of expected nodes t will connect to is

$$\bar{N}(R_t) = t \int_1^t P(i,t) dt = t \int_1^t \frac{2T}{t \sin(\pi T)} e^{-(r_i(t) + r_i(t) - R_t)} di = \frac{2T}{\sin(\pi T)} e^{-(r_i - R_t)} \int_1^t e^{-r_i(t)} di.$$

We have calculated the same integral before, thus,

$$\bar{N}(R_t) = \begin{cases} \frac{2T}{\sin(\pi T)} e^{-(r_t - R_t)} \frac{1}{1 - \beta} \left[1 - e^{-(1 - \beta)r_t} \right], & \text{if } \beta < 1 \\ \frac{2T}{\sin(\pi T)} e^{-(r_t - R_t)} r_t & \text{if } \beta = 1 \end{cases}$$

Hyperbolic network models

PSO model

- Popularity an similarity Model 0
- Model I
- Model 2
- Clustering c
- E-PSO mode
- nPSO model
- RHG model Concept
- The S^1/\mathbb{H}^2 mode

What about the cutoff radius R_t ?

• Number of expected nodes t will connect to is

$$\bar{N}(R_t) = t \int_1^t P(i,t) dt = t \int_1^t \frac{2T}{t \sin(\pi T)} e^{-(r_i(t) + r_i(t) - R_t)} di = \frac{2T}{\sin(\pi T)} e^{-(r_i - R_t)} \int_1^t e^{-r_i(t)} di.$$

We have calculated the same integral before, thus,

$$\bar{N}(R_t) = \begin{cases} \frac{2T}{\sin(\pi T)} e^{-(r_t - R_t)} \frac{1}{1 - \beta} \left[1 - e^{-(1 - \beta)r_t} \right], & \text{if } \beta < 1 \\ \frac{2T}{\sin(\pi T)} e^{-(r_t - R_t)} r_t & \text{if } \beta = 1 \end{cases}$$

· Based on that

$$R_{t} = \begin{cases} r_{t} - \ln\left[\frac{2T}{\sin(\pi T)}\frac{\left[1-e^{-(1-\beta)r_{t}}\right]}{m(1-\beta)}\right], & \text{if } \beta < 1\\\\ r_{t} - \ln\left[\frac{2T}{\sin(\pi T)}\frac{r_{t}}{m}\right] & \text{if } \beta = 1. \end{cases}$$

Model 2 Simulations

Hyperbolic network models

From the original paper:

Model 0 Model 1 Degree distribut Model 2 Clustering coeff Arbitrary Ç E-PSO model nPSO model RHG model

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributi Model 2 Clustering coeff.

E-PSO mode

nPSO model

RHG model Concept The S¹/H² mod

How does the clustering coefficient behave in Model 2?

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distributio Model 2 Clustering coeff. Arbitrary ζ E-PSO model
- RHG model Concept

How does the clustering coefficient behave in Model 2?

- Simple closed formula for \bar{C} cannot be given.

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distributi Model 2 Clustering coeff. Arbitrary ζ
- E-PSO model
- nPSO model
- RHG model Concept The S¹/H² mode

- Simple closed formula for \bar{C} cannot be given.
- However, it can be shown that (C) is decreasing as a function of T, and at any fixed β, the strongest clustering can be achieved at T = 0.

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distributi Model 2 Clustering coeff. Arbitrary ζ E-PSO model
- nPSO model
- RHG model Concept The S¹/H² mod

- Simple closed formula for \bar{C} cannot be given.
- However, it can be shown that (C) is decreasing as a function of T, and at any fixed β, the strongest clustering can be achieved at T = 0.
- · Intuitive view:
 - At low *T* nodes connect almost only to the closest other notes.

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distributi Model 2 Clustering coeff. Arbitrary ζ E-PSO model
- nPSO model
- RHG model Concept The S¹/H² mod

- Simple closed formula for \bar{C} cannot be given.
- However, it can be shown that (C) is decreasing as a function of T, and at any fixed β, the strongest clustering can be achieved at T = 0.
- Intuitive view:
 - At low *T* nodes connect almost only to the closest other notes.
 - \rightarrow Due to the triangle inequality a lot of triangles are formed.

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distributi Model 2 Clustering coeff. Arbitrary ζ E-PSO model
- nPSO model
- RHG model Concept The S¹/H² mod

- Simple closed formula for \bar{C} cannot be given.
- However, it can be shown that (C) is decreasing as a function of T, and at any fixed β, the strongest clustering can be achieved at T = 0.
- · Intuitive view:
 - At low *T* nodes connect almost only to the closest other notes.
 - \rightarrow Due to the triangle inequality a lot of triangles are formed.
 - At high T nodes can connect to nodes further away as well.

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distributi Model 2 **Clustering coeff.** Arbitrary *ζ* E-PSO model
- nPSO model
- RHG model Concept The S¹/H² mod

How does the clustering coefficient behave in Model 2?

- Simple closed formula for \bar{C} cannot be given.
- However, it can be shown that (C) is decreasing as a function of T, and at any fixed β, the strongest clustering can be achieved at T = 0.
- · Intuitive view:
 - At low *T* nodes connect almost only to the closest other notes.
 - \rightarrow Due to the triangle inequality a lot of triangles are formed.
 - At high T nodes can connect to nodes further away as well.
 - \rightarrow The number of triangles (and consequently, \overline{C}) is reduced.

Model 2 Simulations

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ E-PSO model

From the original paper:

Model 2 Comparing with a real network

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributio Model 2 **Clustering coeff.** Arbitrary *Ç* E-PSO model nPSO model

RHG model Concept The S¹/H² mode

From the original paper:

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary *Ç* E-PSO model nPSO model RHG model Concept

How to extend the model to any curvature $K = -\zeta^2$?

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary *Ç* E-PSO model RHG model Cancerd How to extend the model to any curvature $K = -\zeta^2$?

· The radial coordinate of the new nodes has to be modified as

$$r_t = \ln t \longrightarrow r_t = \frac{2}{\zeta} \ln t$$

Hyperbolic network models

PSO model

Popularity and similarity similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary Ç E-PSO model nPSO model RHG model Concept How to extend the model to any curvature $K = -\zeta^2$?

· The radial coordinate of the new nodes has to be modified as

$$r_t = \ln t \longrightarrow r_t = \frac{2}{\zeta} \ln t.$$

· The connection probability has to be modified as

$$p(x_{st}) = \frac{1}{1 + e^{\frac{x_{st} - R_t}{T}}} \longrightarrow p(x_{st}) = \frac{1}{1 + e^{\frac{\zeta}{2T}(x_{st} - R_t)}}.$$

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributio Model 2 Clustering coeff. Arbitrary *Ç* E-PSO model nPSO model RHG model Concept The S¹/12² model How to extend the model to any curvature $K = -\zeta^2$?

· The radial coordinate of the new nodes has to be modified as

$$r_t = \ln t \longrightarrow r_t = \frac{2}{\zeta} \ln t.$$

· The connection probability has to be modified as

$$p(x_{st}) = \frac{1}{1 + e^{\frac{x_{st} - R_t}{T}}} \longrightarrow p(x_{st}) = \frac{1}{1 + e^{\frac{\zeta}{2T}(x_{st} - R_t)}}$$

· The new cutoff radius becomes

$$R_{t} = \begin{cases} r_{t} - \frac{2}{\zeta} \ln \left[\frac{2T}{\sin(\pi T)} \frac{\left[1 - e^{-\frac{\zeta}{2}(1-\beta)r_{t}}\right]}{m(1-\beta)} \right], & \text{if } \beta < 1 \\\\ r_{t} - \frac{2}{\zeta} \ln \left[\frac{2T}{\sin(\pi T)} \frac{\zeta r_{t}}{m} \right] & \text{if } \beta = 1. \end{cases}$$

Hyperbolic network models

PSO model

Popularly and similarity Model 0 Model 1 Degree distributio Model 2 Clustering coeff. Arbitrary *Ç* E-PSO model PSO model RHG model Concept The S¹/#² model How to extend the model to any curvature $K = -\zeta^2$?

· The radial coordinate of the new nodes has to be modified as

$$r_t = \ln t \longrightarrow r_t = \frac{2}{\zeta} \ln t.$$

· The connection probability has to be modified as

$$p(x_{st}) = \frac{1}{1 + e^{\frac{x_{st} - R_t}{T}}} \longrightarrow p(x_{st}) = \frac{1}{1 + e^{\frac{\zeta}{2T}(x_{st} - R_t)}}$$

· The new cutoff radius becomes

$$R_{t} = \begin{cases} r_{t} - \frac{2}{\zeta} \ln \left[\frac{2T}{\sin(\pi T)} \frac{\left[1 - e^{-\frac{\zeta}{2}(1-\beta)r_{t}}\right]}{m(1-\beta)} \right], & \text{if } \beta < 1 \\\\ r_{t} - \frac{2}{\zeta} \ln \left[\frac{2T}{\sin(\pi T)} \frac{\zeta r_{t}}{m} \right] & \text{if } \beta = 1. \end{cases}$$

· With these modifications the same results hold.

PSO model

Hyperbolic network models

Arbitrary C

The PSO model (canonical form)

- Parameters: $\zeta = \sqrt{-K}$, $m = \langle k \rangle / 2$, $\beta \in (0, 1]$, and $T \in [0, 1)$.
- · The network is grown according to the following rules:
 - At time step *t*, the new node appears at $r_t(t) = \frac{2}{\zeta} \ln t$, and $\theta_t \in [0, 2\pi]$
 - The radial coordinate of all existing nodes is updated as $r_s(t) = \beta r_s(s) + (1 - \beta)r_t(t)$
 - If *t* < *m*, the new node connects to all previous nodes.
 - Otherwise repeat until *m* links are realised:
 - Choose a node *s* uniformly at random.
 - Connect to this node according to $p(x_{st}) = \frac{1}{1+e^{\frac{\zeta}{2T}(x_{st}-R_t)}}$, where

$$R_t = \begin{cases} r_t - \frac{2}{\zeta} \ln \left[\frac{2T}{\sin(\pi T)} \frac{\left[1 - e^{-\frac{\zeta}{2}(1-\beta)r_t}\right]}{m(1-\beta)} \right], & \text{ if } \beta < 1 \\ \\ r_t - \frac{2}{\zeta} \ln \left[\frac{2T}{\sin(\pi T)} \frac{\zeta r_t}{m} \right] & \text{ if } \beta = 1. \end{cases}$$

Hyperbolic network models

PSO model

Popularily and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. **Arbitrary ζ** E-PSO model nPSO model RHG model

The main properties of the generated network:

- The degree distribution is scale-free.
- · High clustering coefficient.
- The degree of the nodes is determined by their radial coordinate.

Hyperbolic network models

PSO model Popularity and similarity Model 0 Model 1 Degree distributi Model 2 Clustering coeff. Arbitrary *Ç* E-PSO model

RHG model Concept The S¹/H² mod

Can we also define a version for T > 1?

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ E-PSO model nPSO model RHG model Concept To coll (¹⁷ and 4)

Can we also define a version for T > 1?

• The former calculation of the degree distribution does not hold.

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary *Ç* E-PSO model nPSO model RHG model

Can we also define a version for T > 1?

- The former calculation of the degree distribution does not hold.
- In order to retain the same β dependency of the degree distribution, the initial radial coordinate of the nodes has to be changed to $r_t = \frac{2T}{\zeta} \ln t$ instead of $r_t = \frac{2}{\zeta} \ln t$.

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribut Model 2 Clustering coeff. Arbitrary *Ç*

E-PSO model

nPSO model RHG model Concept The S¹/H² mode

EXTENDED POPULARITY SIMILARITY OPTIMISATION MODEL

F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth. *IEEE/ACM Transactions on Networking.* 23, 198–211 (2015).

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributi Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept • In real complex networks new connections may appear also between already existing nodes as well...

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributio Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S¹/⊞² mode

- In real complex networks new connections may appear also between already existing nodes as well...
- E.g., Internet, World Wide Web, online social media, etc.

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S¹/H² mode

- In real complex networks new connections may appear also between already existing nodes as well...
- E.g., Internet, World Wide Web, online social media, etc.
- · Let's extend the model with this feature!

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributi Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S1/H2 model

Extension to the PSO-model:

· Grow the network according the PSO model...

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S¹/H² mode

Extension to the PSO-model:

- · Grow the network according the PSO model...
- However, at each time step, after connecting the new node with *m* links to the already existing nodes, we also distribute *L* extra internal links between the old nodes:

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S¹/H² mode

Extension to the PSO-model:

- · Grow the network according the PSO model...
- However, at each time step, after connecting the new node with *m* links to the already existing nodes, we also distribute *L* extra internal links between the old nodes:
- Random *i*, *j* < *t* pairs of nodes are selected at random, and are linked according to

$$p(x_{ij}) = \frac{1}{1 + e^{\frac{\zeta}{2T}(x_{ij} - R_l)}}$$
Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributied Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S¹/H² mode

Extension to the PSO-model:

- · Grow the network according the PSO model...
- However, at each time step, after connecting the new node with *m* links to the already existing nodes, we also distribute *L* extra internal links between the old nodes:
- Random *i*, *j* < *t* pairs of nodes are selected at random, and are linked according to

$$p(x_{ij}) = \frac{1}{1 + e^{\frac{\zeta}{2T}(x_{ij} - R_t)}}$$

• The above step is repeated until *L* internal connections are realised.

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributi Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept

· The average degree becomes

 $\langle k \rangle = 2(m+L).$

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept

The average degree becomes

$$\langle k \rangle = 2(m+L).$$

• The probability for an old node to attract a link from the new node is close to what we observe in the original PSO if *k* is sufficiently large.

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S¹/H² model

The average degree becomes

$$\langle k \rangle = 2(m+L).$$

 The probability for an old node to attract a link from the new node is close to what we observe in the original PSO if k is sufficiently large.

 \rightarrow The degree decay exponent is still $\gamma = 1 + \frac{1}{\beta}$ in the asymptotic limit.

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributi Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S1/H2 mode

What is the difference then?

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributi Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S¹/H² mode

What is the difference then?

• The extra internal links can decrease further the average distance.

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S¹/H² mode

What is the difference then?

- The extra internal links can decrease further the average distance.
- The densification of sub-graphs spanning between nodes with $k > k_{\min}$ as a function of k_{\min} observed in some real networks can be reproduced this way.

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributi Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S¹/H² model How about distributing the extra "internal" links straight away together with the new links coming with the new node?

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributio Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S¹/H² mode How about distributing the extra "internal" links straight away together with the new links coming with the new node?

→ The number of new links m on the new nodes is now not uniform, instead depends on t.

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributio Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S¹/H² mode How about distributing the extra "internal" links straight away together with the new links coming with the new node?

- The number of new links *m* on the new nodes is now not uniform, instead depends on *t*.
 - Still, this allows a formulation of the model that will be very beneficial when trying to embed real networks into the hyperbolic space.

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributi Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept • The average number of links created between node *s* and all previous nodes up to a certain time *t* if we have also extra internal link formation:

$$\bar{m}_s(t) \simeq m + L \frac{2(1-\beta)}{(1-t^{-(1-\beta)})^2(2\beta-1)} \left[\left(\frac{t}{s}\right)^{2\beta-1} - 1 \right] \left(1-s^{-(1-\beta)}\right).$$

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribut Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S¹/H² mod • The average number of links created between node *s* and all previous nodes up to a certain time *t* if we have also extra internal link formation:

$$\bar{m}_s(t) \simeq m + L \frac{2(1-\beta)}{(1-t^{-(1-\beta)})^2(2\beta-1)} \left[\left(\frac{t}{s}\right)^{2\beta-1} - 1 \right] \left(1-s^{-(1-\beta)}\right).$$

 At the end of the network generation process t = N, thus, for node s the total number of links to previous nodes is

$$\bar{m}_s \simeq m + L \frac{2(1-\beta)}{(1-N^{-(1-\beta)})^2(2\beta-1)} \left[\left(\frac{N}{s} \right)^{2\beta-1} - 1 \right] \left(1 - s^{-(1-\beta)} \right).$$

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribut Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S¹/H² mod • The average number of links created between node *s* and all previous nodes up to a certain time *t* if we have also extra internal link formation:

$$\bar{m}_s(t) \simeq m + L \frac{2(1-\beta)}{(1-t^{-(1-\beta)})^2(2\beta-1)} \left[\left(\frac{t}{s}\right)^{2\beta-1} - 1 \right] \left(1-s^{-(1-\beta)}\right).$$

 At the end of the network generation process t = N, thus, for node s the total number of links to previous nodes is

$$\bar{m}_s \simeq m + L \frac{2(1-\beta)}{(1-N^{-(1-\beta)})^2(2\beta-1)} \left[\left(\frac{N}{s} \right)^{2\beta-1} - 1 \right] \left(1 - s^{-(1-\beta)} \right).$$

 \rightarrow We could replace *m* in the PSO model by the \bar{m}_s above!

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept

The E-PSO model

- In the Extended PSO model we have the following parameters: $\zeta = \sqrt{-K}$, *m*, *L* $\beta \in (0, 1]$, and *T* $\in [0, 1)$.
- · The network is grown according to the rules of the PSO model.
- However, at time step *t*, the number of new links with which we connect the new node to the already existing part is

$$m_t \simeq m + L \frac{2(1-\beta)}{(1-N^{-(1-\beta)})^2(2\beta-1)} \left[\left(\frac{N}{t} \right)^{2\beta-1} - 1 \right] \left(1 - t^{-(1-\beta)} \right).$$

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributio Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S¹/H² model

Comparing the Internet on the level of Autonomous Systems with the E-PSO model in the original paper:

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S¹/H² mode

What about generalising also for link deletion?

 \rightarrow In the model where we add extra links between old nodes, the basic idea would be something like this:

- Grow the network according the E-PSO model.
- However at each time step, after distributing L₊ extra internal links between the old nodes, also delete L₋ links between the old nodes...

Hyperbolic network models

E-PSO model

OK, but how to choose the links to be deleted?

- At T = 0, the natural choice is to delete the links that connect the node pairs *i*, *j* with the largest x_{ii} .
- \rightarrow At T > 0 we can extend this by declaring that for any existing link between old nodes *i*, *j*:

 - the probability to survive the link removal is $p(x_{ij}) = \frac{1}{1+e^{\frac{\zeta}{2T}(x_{ij}-R_f)}}$, and the probability to be removed is $1 p(x_{ij}) = \frac{1}{1+e^{-\frac{\zeta}{2T}(x_{ij}-R_f)}}$.
 - With this definition, when $L_{\pm} = L_{-}$, we recover a network equivalent to a graph generated by the original PSO model (without any insertion or deletion of internal links).

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S¹/H² mode Again, we can turn this into a model where the extra internal link addition or link deletion is carried out already at the birth of the new node:

- Let's redefine *L* as the net number of added and removed internal links, $L = L_+ L_-$.
- The expected number of connections from node *s* to previous nodes at the end of the network generation process:

$$\bar{m}_s \simeq m + L \frac{2(1-\beta)}{(1-N^{-(1-\beta)})^2(2\beta-1)} \left[\left(\frac{N}{s} \right)^{2\beta-1} - 1 \right] \left(1-s^{-(1-\beta)} \right).$$

• This looks identical to *m_s* in the previous version, however an important difference is that now *L* can also be negative.

B. Kovács, G. Palla: Optimisation of the coalescent hyperbolic embedding of complex networks. Sci. Rep. 11, 8350 (2021).

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept

The E-PSO model'

- In the Extended PSO model' we have the following parameters: $\zeta = \sqrt{-K}$, *m*, *L* $\beta \in (0, 1]$, and $T \in [0, 1)$. The *L* can be now also negative.
- · The network is grown according to the rules of the PSO model.
- However, at time step *t*, the number of new links with which we connect the new node to the already existing part is

$$m_t \simeq m + L \frac{2(1-\beta)}{(1-N^{-(1-\beta)})^2(2\beta-1)} \left[\left(\frac{N}{t}\right)^{2\beta-1} - 1 \right] \left(1-t^{-(1-\beta)}\right).$$

B. Kovács, G. Palla: Optimisation of the coalescent hyperbolic embedding of complex networks. Sci. Rep. 11, 8350 (2021).

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ

E-PSO model

nPSO model RHG model Concept The S¹/H² mod Average internal degree of subgraphs spanning between nodes with $k > k_{min}$ as a function of k_{min} for E-PSO' networks:

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribut Model 2 Clustering coeff Arbitrary ζ

E-PSO mode

nPSO model

RHG model Concept The S¹/H² mode

NONUNIFORM POPULARITY OPTIMISATION MODEL

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ

nPSO model

RHG model Concept The S¹/H² mode

How about non-uniform angular coordinates?

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ

nPSO model

RHG model Concept The S¹/H² mode How about non-uniform angular coordinates?

• In the region of higher node density we can also expect a higher link density (due to "locality").

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ

E-PSO mode

nPSO model

RHG model Concept The S¹/H² mode How about non-uniform angular coordinates?

- In the region of higher node density we can also expect a higher link density (due to "locality").
- → In the vicinity of the peaks communities are going to be formed in the resulting network!

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribut Model 2 Clustering coeff Arbitrary ζ

E-PSO mode

nPSO model

RHG model Concept The S¹/H² mode

What sort of distributions should we use for θ ?

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distribut Model 2 Clustering coeff.
- E-PSO model

nPSO model

RHG model Concept The S1/H2 mode

What sort of distributions should we use for θ ?

- Gaussian mixture: superposition of Gaussian distributions.
- · Gamma mixture: superposition of Gamma distributions.
- Gaussian and Gamma mixture: superposition of Gaussian and Gamma distributions.
- etc.

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distribut Model 2 Clustering coeff
- E-PSO mode

nPSO model

RHG model Concept The S¹/H² mode

Superposing distributions:

- Suppose we aim for *n* communities.
- We can define the $\mu_{1...n} \in [0, 2\pi)$ community centers (expected values),
- and also the $\sigma_{1...n} > 0$ community spreads (standard deviations).
- Furthermore, $p_{1...n}$ with $\sum_i p_i = 1$ define the relative community sizes in terms of the number of community members.
- · The mixture is

$$\rho(\theta) = \sum_{c=1}^{n} p_c \rho(\theta \mid \mu_c, \sigma_c)$$

• When the sampled θ falls beyond $[0, 2\pi)$, it is shifted back using the modulo operator.

Hyperbolic network models

nPSO model

Examples for non-uniform θ distributions:

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distributi Model 2 Clustering coeff. Arbitrary ζ
- E-PSO mode

nPSO model

RHG model Concept The S¹/H² mod

nPSO model

- · Parameters:
 - The usual PSO parameters: N, m, β, T ,
 - The parameters characterising the angular distribution: n, $\{\mu_c\}$, $\{\sigma_c\}$, $\{p_c\}$.
- · Grow the network according to the PSO model.
- However, the angular coordinate of the new node is sampled from the non-uniform mixture distribution instead of the uniform distribution over $[0, 2\pi]$.

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribut Model 2 Clustering coeff Arbitrary ζ

E-PSO mode

nPSO model

RHG model Concept The S¹/H² mode

Examples:

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distrib Model 2
- Clustering coe
- E-PSO mode
- nPSO model

RHG model

Concept The S^1/\mathbb{H}^2 model

RANDOM HYPERBOLIC GRAPH MODEL

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá: Hyperbolic geometry of complex networks. *Phys. Rev. E.* 82, 036106 (2010).

Static network models

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distribut Model 2 Clustering coeff. Arbitrary $\hat{\zeta}$ E-PSO model

RHG model Concept The S¹/H² mod

- A large class of network models are static:
 - · Erdős-Rényi model,
 - · Configuration model,
 - · Static scale-free model,
 - · Stochastic block model,
 - · Hidden variable model,
 - etc.

Static network models

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ
- E-PSO model
- nPSO model

RHG model Concept The S¹/H² mode

A large class of network models are static:

- · Erdős-Rényi model,
- · Configuration model,
- · Static scale-free model,
- · Stochastic block model,
- · Hidden variable model,
- etc.

→ What about a static hyperbolic model?

$\underset{\text{Concept}}{\text{The}} \mathbb{H}^2 \text{ model}$

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distribu Model 2 Clustering coe Arbitrary ζ

E-PSO mode

nPSO mode

RHG mode Concept

Concept

Concept of the \mathbb{H}^2 model:

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá: Hyperbolic geometry of complex networks. *Phys. Rev. E.* 82, 036106 (2010).

$\underset{\text{Concept}}{\text{The}} \mathbb{H}^2 \text{ model}$

Hyperbolic network models

Concept

Concept of the \mathbb{H}^2 model:

• Place *N* nodes uniformly at random inside a circle of radius *R* in the native disk.

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá: Hyperbolic geometry of complex networks. *Phys. Rev. E.* 82, 036106 (2010).

$\underset{\text{Concept}}{\text{The}} \mathbb{H}^2 \text{ model}$

Hyperbolic network models

PSO model

- Popularity an similarity Model 0 Model 1
- Model 2
- Clustering coe
- E BEO mod
- nPSO model
- RHG model
- Concept
- The $\mathbb{S}^1/\mathbb{H}^2$ model

Concept of the \mathbb{H}^2 model:

- Place *N* nodes uniformly at random inside a circle of radius *R* in the native disk.
- Connect the node pairs according to a probability decaying with the hyperbolic distance.
$\underset{\text{Concept}}{\text{The}} \mathbb{H}^2 \text{ model}$

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distribu Model 2 Clustering coe
- E-PSO mode
- nPSO model
- RHG model Concept
- The S^1/\mathbb{H}^2 mod

Concept of the \mathbb{H}^2 model:

- Place *N* nodes uniformly at random inside a circle of radius *R* in the native disk.
- Connect the node pairs according to a probability decaying with the hyperbolic distance.
- \rightarrow Simplest idea is to connect with all other nodes closer than R:

$\underset{\text{Concept}}{\text{The}} \mathbb{H}^2 \text{ model}$

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distribut Model 2 Clustering coeff Arbitrary ζ
- E-PSO model
- nPSO model
- RHG model Concept
- The $\mathbb{S}^1/\mathbb{H}^2$ model

Concept of the \mathbb{H}^2 model:

- Place *N* nodes uniformly at random inside a circle of radius *R* in the native disk.
- Connect the node pairs according to a probability decaying with the hyperbolic distance.
- \rightarrow Simplest idea is to connect with all other nodes closer than R:

• The $\langle k \rangle$ can be controlled by the choice of *R*, and the resulting network is scale-free and highly clustered.

$\underset{\text{Concept}}{\text{The}} \mathbb{H}^2 \text{ model}$

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distribut Model 2 Clustering coeff Arbitrary ζ
- E-PSO mode
- nPSO model
- RHG model Concept

Concept of the \mathbb{H}^2 model:

- Place *N* nodes uniformly at random inside a circle of radius *R* in the native disk.
- Connect the node pairs according to a probability decaying with the hyperbolic distance.
- \rightarrow Simplest idea is to connect with all other nodes closer than *R*:

- The $\langle k \rangle$ can be controlled by the choice of *R*, and the resulting network is scale-free and highly clustered.
- To allow control also over the degree decay exponent γ, the radial coordinates have to be turned slightly non-uniform (similarly to popularity fading in PSO).
 D. Krioukov, F. Papadopulos, M. Kitsäk, A. Vahdat, M. Boguňá:

• The \mathbb{H}^2 model is also equivalent to the \mathbb{S}^1 model...

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distribut Model 2 Clustering coeff
- E-PSO model
- nPSO model
- RHG model Concept

- The S¹ approach aims at modelling a network with one of the simplest possible underlying metric structure, a circle.
- It is also a hidden variable model, where the connection probability is affected by "hidden" variables associated to the nodes.

M. Á. Serrano D. Krioukov, M. Boguñá: Self-Similarity of Complex Networks and Hidden Metric Spaces. Phys. Rev. Lett. 100, 078701 (2008).

Hyperbolic network models

PSO model

- Popularity a similarity
- Model 0
- Model 1
- Degree distribut
- Model 2
- Arbitronu /*
- E-PSO model
- nPSO model
- RHG model
- The S^1/\mathbb{H}^2 mod

The \mathbb{S}^1 model

- Parameters: *N*, the hidden variable distribution $\rho(\kappa)$, a connection function $p(\chi)$, and μ , controlling the average degree.
- Place the nodes uniformly at random on a circle of radius ^N/_{2π}.
- Assign hidden variables drawn from $\rho(\kappa).$ Let us focus on the case where

$$\rho(\kappa) = \frac{(\gamma - 1)\kappa^{-\gamma}}{\kappa_0^{1-\gamma}}.$$

• Connect node pairs at θ , θ' separated by an arc distance of $d = N\Delta\theta/2\pi$ with probability

$$p(\chi)$$
 where $\chi = \frac{d}{\mu\kappa\kappa'}$.

 $(p(\chi)$ can be any integrable function).

M. Á. Serrano D. Krioukov, M. Boguñá: Self-Similarity of Complex Networks and Hidden Metric Spaces. Phys. Rev. Lett. 100, 078701 (2008).

Hyperbolic network models

PSO model

- Popularity an similarity Model 0 Model 1 Degree distril
- Model 2 Clustering coe
- E-PSO mode
- nPSO model
- RHG model
- The $\mathbb{S}^1/\mathbb{H}^2$ model

• With appropriate choice of κ_0 , the expected degree of a node with hidden variable κ becomes $\overline{k}(\kappa) = \kappa$.

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distribu Model 2 Clustering coef Arbitrary ζ E-PSO mode
- nDSO model
- RHG model
- The S^1/\mathbb{H}^2 mo

- With appropriate choice of κ_0 , the expected degree of a node with hidden variable κ becomes $\bar{k}(\kappa) = \kappa$.
- How to map this to $\mathbb{H}^2?$

Hyperbolic network models

PSO model

- Popularity an similarity Model 0 Model 1 Degree distri
- Clustering coe
- 210011000
- Concept
- The $\mathbb{S}^1/\mathbb{H}^2$ mode

- With appropriate choice of κ_0 , the expected degree of a node with hidden variable κ becomes $\overline{k}(\kappa) = \kappa$.
- How to map this to $\mathbb{H}^2?$
- In \mathbb{H}^2 the degree is controlled by *r*. The mapping

$$r_t = \hat{R} - 2\ln\left(\frac{\kappa_t}{\kappa_0}\right) \iff \kappa_t = \kappa_0 e^{\frac{\hat{R} - r}{2}}$$

with $\hat{R} = 2 \ln \left(\frac{N}{\mu \pi \kappa_0^2} \right)$ is connecting equivalent models where

$$p(\chi) = p\left(\frac{d}{\mu\kappa_s\kappa_t}\right) = p\left(\frac{N\theta_{st}}{2\pi\mu\kappa_s\kappa_t}\right) = p\left(\frac{N\theta_{st}}{2\pi\mu\kappa_0^2}e^{\frac{r_s+r_t-2\hat{R}}{2}}\right) = p\left(\frac{N\theta_{st}}{2\pi\mu\kappa_0^2}e^{\frac{r_s+r_t-2\hat{R}}{2}}\frac{\mu\pi\kappa_0^2}{N}\right) = p\left(e^{\frac{r_s+r_t+\ln(\theta_{st}/2)-\hat{R}}{2}}\right) = p\left(e^{\frac{x_{st}-\hat{R}}{2}}\right)$$

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distribution Model 2 Clustering coeff. Arbitrary ζ E-PSO model
- RHG model
- Concept

Concept of the $\mathbb{S}^1/\mathbb{H}^2$ model:

- Place N nodes uniformly at random on a circle (the S¹ space), and assign a hidden variable to each node that controls its attractiveness.
- Connect node pairs according to a probability that depends both on the hidden variables and the angular separation.
- To obtain a hyperbolic network, convert the hidden variables into radial coordinates in the native disk, and your nodes are now placed in the \mathbb{H}^2 space.

G. García-Pérez, A. Allard, M. Á. Serrano, M. Boguñá: Mercator: uncovering faithful hyperbolic embeddings of complex networks. *New J. Phys.* 21, 123033 (2019).

Hyperbolic network models

PSO model

- Popularity a similarity
- Model 0
- Model 1
- Degree distribu
- Model 2
- Clustering coe
- E-PSO model
- nPSO model
- RHG model Concept The S¹/H² model

The $\mathbb{S}^1/\mathbb{H}^2$ model

- Parameters: N, (k), the degree decay exponent γ of the target degree distribution, and α > 1, controlling the average clustering coefficient.
- Assign each node *i* an angular coordinate of $\theta_i \in [0, 2\pi)$ uniformly at random, and a hidden variable κ_i sampled from

$$\rho(\kappa) = (\gamma - 1) \cdot \frac{\kappa^{-\gamma}}{\kappa_0^{1-\gamma}}, \text{ where } \kappa_0 = \frac{\gamma - 2}{\gamma - 1} \cdot \langle k \rangle.$$

• Each pair of nodes i - j is connected with probability

$$p_{ij} = \frac{1}{1 + \left(\frac{N \cdot \Delta \theta_{ij}}{2\pi \cdot \mu \cdot \kappa_i \cdot \kappa_j}\right)^{\alpha}},$$

where $\Delta \theta_{ij} = \pi - |\pi - |\theta_i - \theta_j||$ is the angular distance between the nodes, and $\mu = \frac{\alpha}{2\pi(k)} \cdot \sin\left(\frac{\pi}{\alpha}\right)$.

• Convert the hidden variables into a radial coordinates in the native disk (at K = -1) as $r_i = \hat{R} - 2\ln\left(\frac{\kappa_i}{\kappa_0}\right)$, where $\hat{R} = 2\ln\left(\frac{N}{\mu\pi\kappa_0^2}\right)$.

G. García-Pérez, A. Allard, M. Á. Serrano, M. Boguñá:

Mercator: uncovering faithful hyperbolic embeddings of complex networks. New J. Phys. 21, 123033 (2019).

Hyperbolic network models

PSO model

- Popularity and similarity Model 0 Model 1 Degree distributit Model 2 Clustering coeff. Arbitrary ζ E-PSO model
- nPSO model
- RHG model Concept The S¹/H² model

Simulation results from the original paper:

Hyperbolic network models

PSO model

Popularity and similarity Model 0 Model 1 Degree distributi Model 2 Clustering coeff. Arbitrary ζ E-PSO model

RHG model Concept The S¹/H² model

Simulation results from the original paper:

Hyperbolic	
embedding	

Why embed?

Likelihood optimisatior

HyperMap

Dim. reduction

Hyperbolic embedding

Hyperbolic embedding

Why embed?

Likelihood optimisatior

HyperMap

Dim. reduction

WHY EMBED A NETWORK?

Why embed a network?

Hyperbolic embedding

Why embed?

- Likelihood optimisatior
- HyperMap
- Dim. reduction

- Embedding a network into a hyperbolic space can be considered as the "inverse" problem of modelling:
 - · instead of drawing links based on coordinates
 - we try to guess coordinates based on links.

Why embed a network?

Hyperbolic embedding

Why embed?

- Likelihood optimisation
- HyperMap
- Dim. reduction

- Embedding a network into a hyperbolic space can be considered as the "inverse" problem of modelling:
 - · instead of drawing links based on coordinates
 - we try to guess coordinates based on links.
- \rightarrow Interesting problem on its own.

Why embed a network?

Hyperbolic embedding

Why embed?

- Likelihood optimisation
- Dim. reduction

- Embedding a network into a hyperbolic space can be considered as the "inverse" problem of modelling:
 - · instead of drawing links based on coordinates
 - we try to guess coordinates based on links.
- \rightarrow Interesting problem on its own.
 - · Practical benefits:
 - · can be used for greedy routing.
 - can be used for missing link prediction.
 - can provide input for machine learning tasks.
 - · can define a clearly organised intuitive layout!

Hyperbolic embedding

Why embed?

Likelihood optimisatior

HyperMap

Dim. reduction

If the network is embedded into a metric space, a navigation protocol using only local information can be defined:

Hyperbolic embedding

Why embed?

- Likelihood optimisation
- HyperMap
- Dim. reduction

If the network is embedded into a metric space, a navigation protocol using only local information can be defined:

• Based on the target coordinate and the coordinates of the neighbours, the current node will forward to the neighbour that is the closest to the target.

Hyperbolic embedding

Why embed?

- Likelihood optimisation
- HyperMap
- Dim. reduction

If the network is embedded into a metric space, a navigation protocol using only local information can be defined:

- Based on the target coordinate and the coordinates of the neighbours, the current node will forward to the neighbour that is the closest to the target.
- The path can become either successful (by eventually reaching the target), or can run into a cycle. In latter case the forwarding is stopped.

Hyperbolic embedding

Why embed?

- Likelihood optimisation
- Dim. reduction

If the network is embedded into a metric space, a navigation protocol using only local information can be defined:

- Based on the target coordinate and the coordinates of the neighbours, the current node will forward to the neighbour that is the closest to the target.
- The path can become either successful (by eventually reaching the target), or can run into a cycle. In latter case the forwarding is stopped.
- In another version, if the current node is closer to the target than any of its neighbours, the forwarding is immediately stopped.

Hyperbolic embedding

Why embed?

- Likelihood optimisation
- Dim. reduction

If the network is embedded into a metric space, a navigation protocol using only local information can be defined:

- Based on the target coordinate and the coordinates of the neighbours, the current node will forward to the neighbour that is the closest to the target.
- The path can become either successful (by eventually reaching the target), or can run into a cycle. In latter case the forwarding is stopped.
- In another version, if the current node is closer to the target than any of its neighbours, the forwarding is immediately stopped.

Greedy routing can be extremely efficient in random graphs generated by hyperbolic models!

Hyperbolic embedding

Why embed?

Likelihood optimisation HyperMap Dim. reductior In RHG networks, shortest paths, greedy routing paths and geodesic lines are usually very close to each other:

Fraction of successful greedy routing paths:

How to embed a network?

Hyperbolic
embedding
Why embed?
why embed?

How to embed a network?

Hyperbolic embedding

Why embed?

- Likelihood optimisation
- HyperMap
- Dim. reduction

Likelihood optimisation

(with respect to an assumed hyperbolic model).

Dimension reduction.

Mixing the above two ideas.

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

LIKELIHOOD OPTIMISATION

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

Let's assume a network model \mathcal{M} in general, with parameter set $\{\sigma\}$, specifying the connection probability between node pairs in some way

 $P(A_{ij} = 1) = p_{\mathcal{M}}(i, j \mid \{\sigma\}), \qquad P(A_{ij} = 0) = 1 - p_{\mathcal{M}}(i, j \mid \{\sigma\}).$

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

Let's assume a network model M in general, with parameter set $\{\sigma\}$, specifying the connection probability between node pairs in some way

$$P(A_{ij}=1) = p_{\mathcal{M}}(i,j \mid \{\sigma\}), \qquad P(A_{ij}=0) = 1 - p_{\mathcal{M}}(i,j \mid \{\sigma\}).$$

The likelihood for observing a given adjacency matrix **A** can be written as $\mathcal{L}(\mathbf{A}) = P(\mathbf{A} \mid \{\sigma\}) = \prod_{i < j} \left[p_{\mathcal{M}}(i, j \mid \{\sigma\}) \right]^{A_{ij}} \left[1 - p_{\mathcal{M}}(i, j \mid \{\sigma\}) \right]^{1 - A_{ij}}$

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

Let's assume a network model M in general, with parameter set $\{\sigma\}$, specifying the connection probability between node pairs in some way

$$P(A_{ij}=1) = p_{\mathcal{M}}(i,j \mid \{\sigma\}), \qquad P(A_{ij}=0) = 1 - p_{\mathcal{M}}(i,j \mid \{\sigma\}).$$

The likelihood for observing a given adjacency matrix **A** can be written as $\mathcal{L}(\mathbf{A}) = P(\mathbf{A} \mid \{\sigma\}) = \prod_{i < j} \left[p_{\mathcal{M}}(i, j \mid \{\sigma\}) \right]^{A_{ij}} \left[1 - p_{\mathcal{M}}(i, j \mid \{\sigma\}) \right]^{1 - A_{ij}}$

By taking the logarithm we obtain the log-likelihood

$$\ln \mathcal{L}(\mathbf{A}) = \sum_{i < j} A_{ij} \ln \left[p_{\mathcal{M}}(i, j \mid \{\sigma\}) \right] + \sum_{i < j} (1 - A_{ij}) \ln \left[1 - p_{\mathcal{M}}(i, j \mid \{\sigma\}) \right].$$

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

Let's assume a network model M in general, with parameter set $\{\sigma\}$, specifying the connection probability between node pairs in some way

 $P(A_{ij}=1) = p_{\mathcal{M}}(i,j \mid \{\sigma\}), \qquad P(A_{ij}=0) = 1 - p_{\mathcal{M}}(i,j \mid \{\sigma\}).$

The likelihood for observing a given adjacency matrix **A** can be written as $\mathcal{L}(\mathbf{A}) = P(\mathbf{A} \mid \{\sigma\}) = \prod_{i < j} \left[p_{\mathcal{M}}(i, j \mid \{\sigma\}) \right]^{A_{ij}} \left[1 - p_{\mathcal{M}}(i, j \mid \{\sigma\}) \right]^{1 - A_{ij}}$

By taking the logarithm we obtain the log-likelihood

$$\ln \mathcal{L}(\mathbf{A}) = \sum_{i < j} A_{ij} \ln \left[p_{\mathcal{M}}(i, j \mid \{\sigma\}) \right] + \sum_{i < j} (1 - A_{ij}) \ln \left[1 - p_{\mathcal{M}}(i, j \mid \{\sigma\}) \right].$$

Here $\{\sigma\}$ are fixed, and A_{ij} can vary if e.g., we generate more samples using \mathcal{M} .

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

• What if we observe a given network, and would like to find the best fitting $\{\sigma\}$?

Hyperbolic embedding

- Why embed?
- Likelihood optimisation
- HyperMap
- Dim. reduction

- What if we observe a given network, and would like to find the best fitting {σ}?
- → In this case A_{ij} is fixed, and the inferred { σ } can vary if e.g., we try out different parameter estimation methods.

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

- What if we observe a given network, and would like to find the best fitting $\{\sigma\}$?
- → In this case A_{ij} is fixed, and the inferred { σ } can vary if e.g., we try out different parameter estimation methods.
 - Maximum Likelihood Estimation:

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

- What if we observe a given network, and would like to find the best fitting $\{\sigma\}$?
- → In this case A_{ij} is fixed, and the inferred { σ } can vary if e.g., we try out different parameter estimation methods.
 - Maximum Likelihood Estimation:
 - We try to find $\{\sigma\}$ that maximises $\mathcal{L}(\mathbf{A})$.

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

- What if we observe a given network, and would like to find the best fitting $\{\sigma\}$?
- → In this case A_{ij} is fixed, and the inferred { σ } can vary if e.g., we try out different parameter estimation methods.
 - Maximum Likelihood Estimation:
 - We try to find $\{\sigma\}$ that maximises $\mathcal{L}(\mathbf{A})$.
 - $\rightarrow~$ In practice it is more convenient to maximise $\ln \mathcal{L}(A)$ instead.
Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

- What if we observe a given network, and would like to find the best fitting $\{\sigma\}$?
- → In this case A_{ij} is fixed, and the inferred { σ } can vary if e.g., we try out different parameter estimation methods.
 - Maximum Likelihood Estimation:
 - We try to find $\{\sigma\}$ that maximises $\mathcal{L}(\mathbf{A})$.
 - $\rightarrow~$ In practice it is more convenient to maximise $\ln \mathcal{L}(A)$ instead.
 - Since connection probabilities cannot exceed 1, $\ln \mathcal{L}(\mathbf{A}) < 0$.

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

- What if we observe a given network, and would like to find the best fitting $\{\sigma\}$?
- → In this case A_{ij} is fixed, and the inferred $\{\sigma\}$ can vary if e.g., we try out different parameter estimation methods.
 - Maximum Likelihood Estimation:
 - We try to find $\{\sigma\}$ that maximises $\mathcal{L}(\mathbf{A})$.
 - $\rightarrow~$ In practice it is more convenient to maximise $\ln \mathcal{L}(A)$ instead.
 - Since connection probabilities cannot exceed 1, $\ln \mathcal{L}(\mathbf{A}) < 0$.
 - Equivalently to maximising $\ln \mathcal{L}(\mathbf{A})$ we can minimise the logarithmic loss

 $LL = -\ln \mathcal{L}(\mathbf{A}) = -\sum_{i < j} A_{ij} \ln \left[p_{\mathcal{M}}(i, j \mid \{\sigma\}) \right] - \sum_{i < j} (1 - A_{ij}) \ln \left[1 - p_{\mathcal{M}}(i, j \mid \{\sigma\}) \right].$

Hyperbolic embedding

Likelihood

optimisation

Bayesian inference:

According to Bayes' theorem, the conditional probability that the observed A was generated using $\{\sigma\}$ is

where

- **Prior:** The distribution of the model parameters, controlled by hyperparameter λ .
- Evidence: Also called as marginal likelihood:

$$P(\mathbf{A} \mid \lambda) = \int P(\mathbf{A} \mid \{\sigma\}) P(\{\sigma\} \mid \lambda) d\sigma_1 ... d\sigma_n.$$

Does not depend on $\{\sigma\}$, thus, **can be also treated as a constant**.

 Posterior: the distribution of {σ} we are interested in, depending on both the observed data and the prior.

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

• **Uninformed prior**: If we have no prior belief regarding the values of $\{\sigma\}$ we can assume a uniform distribution over all possible values.

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

- **Uninformed prior**: If we have no prior belief regarding the values of $\{\sigma\}$ we can assume a uniform distribution over all possible values.
- · In this case

$$P(\{\sigma\} \mid \mathbf{A}) = \frac{P(\mathbf{A} \mid \{\sigma\}) \stackrel{\text{constant}}{\overbrace{P(\mathbf{A})}} \propto P(\mathbf{A} \mid \{\sigma\})$$

the posterior distribution becomes simply proportional to the likelihood.

Hyperbolic embedding

- Why embed?
- Likelihood optimisation
- HyperMap
- Dim. reduction

- **Uninformed prior**: If we have no prior belief regarding the values of $\{\sigma\}$ we can assume a uniform distribution over all possible values.
- · In this case

$$P(\{\sigma\} \mid \mathbf{A}) = \frac{P(\mathbf{A} \mid \{\sigma\}) \overbrace{P(\{\sigma\})}^{\text{constant}} \propto P(\mathbf{A} \mid \{\sigma\})}{\underbrace{P(\mathbf{A})}_{\text{constant}}} \propto P(\mathbf{A} \mid \{\sigma\})$$

the posterior distribution becomes simply proportional to the likelihood.

· How to sample from the posterior distribution?

Hyperbolic embedding

- Why embed?
- Likelihood optimisation
- HyperMap
- Dim. reduction

- Uninformed prior: If we have no prior belief regarding the values of $\{\sigma\}$ we can assume a uniform distribution over all possible values.
- · In this case

$$P(\{\sigma\} \mid \mathbf{A}) = \frac{P(\mathbf{A} \mid \{\sigma\}) \stackrel{\text{constant}}{\overbrace{P(\mathbf{A})}} \propto P(\mathbf{A} \mid \{\sigma\})$$

the posterior distribution becomes simply proportional to the likelihood.

- · How to sample from the posterior distribution?
- → Using Markov-Chain Monte Carlo (MCMC) methods:
 - the sampled σ form a Markov-Chain, where the next σ is chosen from candidates in the vicinity of the present value,
 - and the acceptance probabilities are set such that in the long run, the distribution of the sampled σ follows the posterior.

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

Likelihood optimisation for the PSO-model:

- The *m*, β and *T* parameters can be estimated based on overall network properties such as (*k*), (*C*) and γ.
- The radial coordinates can be set by matching the actual degree of the node to the expected degree at *r*, using that $\bar{k}_s(t) \sim e^{r_t r_s(t)}$.
- The angular coordinates are optimised using MCMC.

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

Likelihood optimisation in the original PSO paper:

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

Likelihood optimisation in the original PSO paper:

Hyperbolic distance between metabolites

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

Likelihood optimisation in the original PSO paper:

Hy	perbolic
em	bedding

Why embed?

Likelihood optimisatior

HyperMap

Dim. reduction

HYPERMAP

HyperMap Concepts

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

Concepts of HyperMap:

- Perform a likelihood optimisation with respect to the E-PSO model.
- However, instead of a "standard" MCMC method, replay the assumed network growth, and find the optimal coordinate "locally" for the new node at each step.

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

Important note:

- We are going to assign coordinates to the nodes that correspond to their position at the end of the network generation process.
- However, since popularity fading is pulling the nodes outward during every time step, the actual node coordinates when the connections arise are different from these!
- Luckily, the probability that *s* and *t*, having a distance *x_{st}* at the end of the network generation are connected can be given as

$$\tilde{p}(x_{st}) = \frac{1}{N - s_{\min} + 1} \sum_{s=s_{\min}}^{N} \frac{1}{1 + e^{\frac{\zeta}{2T}(x_{st} - R_N + \Delta_s)}} \simeq \frac{1}{1 + e^{\frac{\zeta}{2T}(x_{st} - R_N)}},$$

where
$$s_{\min} = \max(2, \lceil Ne^{-\frac{\zeta x_{st}}{4(1-\beta)}} \rceil)$$
, and $\Delta_s = \frac{2}{\zeta} \ln \left[\left(\frac{N}{s} \right)^{2\beta-1} \frac{m I_s}{m_s I_N} \right]$.

Hyperbolic embedding

Why embed?

Likelihood optimisatior

HyperMap

Dim. reductior

• The likelihood of observing an adjacency matrix *A_{ij}* for given final hyperbolic distances *x_{ij}* can be written as

 $\mathcal{L}_A \equiv \mathcal{L}(A_{ij} \mid \{r_i(t=N), \theta_i\}, m, L, \zeta, \beta, T) = \prod_{1 \le j < i \le N} \tilde{p}(x_{ij})^{A_{ij}} \left[1 - \tilde{p}(x_{ij})\right]^{1 - A_{ij}}.$

· Bayes' theorem:

$$\begin{split} \mathcal{L}_{r,\theta} \equiv & \mathcal{L}_{r,\theta}(\{r_i(N), \theta_i\} \mid A_{ij}, m, L, \zeta, \beta, T) = \\ & \frac{\mathcal{L}(\{r_i(N), \theta_i\} \mid m, L, \zeta, \beta, T) \cdot \mathcal{L}_A}{\mathcal{L}(A_{ij} \mid m, L, \zeta, \beta, T)}, \end{split}$$

where the conditional probability for obtaining the final node coordinates $\{r_i(N), \theta_i\}$ given the model parameters is

$$\mathcal{L}(\{r_i(N), \theta_i\} \mid m, L, \zeta, \beta, T) = \mathcal{L}(\{r_i(N), \theta_i\} \mid \zeta, \beta) = \frac{1}{(2\pi)^N} \prod_{i=1}^N \frac{\zeta}{2\beta} e^{\frac{\zeta}{2\beta}(r_i(N) - r_N(N))},$$

where $r_N(N) = \frac{2}{\zeta} \ln N$.

Hyperbolic embedding

Why embed?

Likelihood optimisatior

HyperMap

Dim. reduction

• The logarithmic loss is

 $LL_{r,\theta} = -\ln \mathcal{L}_{r,\theta} =$

$$C - \frac{\zeta}{2\beta} \sum_{i=1}^{N} r_i(N) - \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} A_{ij} \ln \tilde{p}(x_{ij}) - \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} (1 - A_{ij}) \ln \left[1 - \tilde{p}(x_{ij})\right]$$

• The optimal value for the radial coordinates can be calculated analytically, resulting in

$$r_i^*(i) = \frac{2}{\zeta} \ln i^*, \qquad r_i^*(N) = \beta r_i^*(i) + (1 - \beta) r_N^*(N),$$

where the optimal ordering of the nodes given by i^* is following the node degrees, with the largest degree node in the network obtaining $i^* = 1$.

· Thus, we have to optimise "only" the angular coordinates based on

$$LL_{\theta} = -\sum_{i=1}^{N-1} \sum_{i=i+1}^{N} A_{ij} \ln \tilde{p}(x_{ij}) - \sum_{i=1}^{N-1} \sum_{i=i+1}^{N} (1 - A_{ij}) \ln \left[1 - \tilde{p}(x_{ij})\right].$$

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

- Instead of a general MCMC method, we take advantage of that the degrees define both a radial and a time ordering:
 - 1^{st} hub: i = 1,
 - 2^{nd} hub: i = 2,
 - etc.
- · We can replay the network growth as follows:
 - · Add the nodes one by one at their starting radial coordinates,
 - · update the radial coordinates (popularity fading),
 - and optimise the angular coordinate of the "new" node *j* based on its connections to previous nodes, using a local likelihood

$$LL_{\text{loc.}} = -\sum_{i=1}^{j-1} A_{ij} \ln p(x_{ij}) - \sum_{i=1}^{j-1} (1 - A_{ij}) \ln [1 - p(x_{ij})].$$

(Here we can use the original E-PSO connection probability).

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

HyperMap embedding algorithm

- Set *m*, *L*, β and *T* according to the "global" properties of the network such as (k), k_{min}, (C) and γ.
- Sort node degrees in decreasing order $k_1 > k_2 > \cdots > k_N$. (Break ties randomly).
- Assign node indices according to the degree order.
- Node i = 1 is born with initial radial coordinate $r_1(t = 1) = 0$ and a random $\theta_1 \in [0, 2\pi]$.
- for *i* = 2 to *N* do:
 - Node *i* is born with $r_i(t = i) = \frac{2}{\zeta} \ln(i)$.
 - Increase the radial coordinate of all previous nodes j < i as $r_j(i) = \beta r_j(j) + (1 \beta)r_i(i)$.
 - Assign node i the θ_i that maximises the local likelihood

$$LL_{\text{loc.}} = -\sum_{i=1}^{j-1} A_{ij} \ln p(x_{ij}) - \sum_{i=1}^{j-1} (1 - A_{ij}) \ln [1 - p(x_{ij})].$$

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

Embedding the Internet at level of Autonomous Systems:

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

Embedding the Internet at level of Autonomous Systems:

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

Embedding the Internet at level of Autonomous Systems:

Hypermap

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

Embedding the Internet at level of Autonomous Systems:

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

Embedding the Internet at level of Autonomous Systems:

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

EMBEDDING VIA DIMENSION REDUCTION

Why embed?

Likelihood optimisatior

HyperMap

Dim. reduction

• Rough flowchart of this approach:

network ↓ "distance" matrix ↓ dimension reduction ↓ hyperbolic coordinates

- Why embed?
- Likelihood optimisatior
- HyperMap
- Dim. reduction

· How could this work?

Hyperbolic embedding

Why embed?

Likelihood optimisatior

HyperMap

Dim. reduction

· Manifold learning:

When data is organised into some lower dimensional manifold embedded in higher dimensional space, revealing the manifold can be beneficial.

Hyperbolic embedding

Why embed?

Likelihood optimisatior

HyperMap

Dim. reduction

· Manifold learning:

When data is organised into some lower dimensional manifold embedded in higher dimensional space, revealing the manifold can be beneficial.

 \rightarrow Manifold learning techniques in Machine Learning are aimed to do this.

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

· Manifold learning:

When data is organised into some lower dimensional manifold embedded in higher dimensional space, revealing the manifold can be beneficial.

 \rightarrow Manifold learning techniques in Machine Learning are aimed to do this.

• At the heart of these techniques we often find a **dimension** reduction method.

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

· Manifold learning:

When data is organised into some lower dimensional manifold embedded in higher dimensional space, revealing the manifold can be beneficial.

 \rightarrow Manifold learning techniques in Machine Learning are aimed to do this.

• At the heart of these techniques we often find a **dimension** reduction method.

Angular coalescence:

When applying manifold learning techniques on networks generated with hyperbolic models, they can provide a 1d manifold organised according to the original angular coordinates in the network.

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

· Manifold learning:

When data is organised into some lower dimensional manifold embedded in higher dimensional space, revealing the manifold can be beneficial.

 \rightarrow Manifold learning techniques in Machine Learning are aimed to do this.

- At the heart of these techniques we often find a **dimension** reduction method.
- Angular coalescence:

When applying manifold learning techniques on networks generated with hyperbolic models, they can provide a 1d manifold organised according to the original angular coordinates in the network.

 $\rightarrow~$ We can exploit this for inferring the angular coordinates!

Coalescent embeddings

Angular coalescence

A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci: Machine learning meets complex networks via caalescent embedding in the hyperbolic space. *Nat. Commun.* **8**, 1615 (2017).

Coalescent embeddings

A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci:

Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat. Commun. 8, 1615 (2017).

ncMCE embedding

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

Non-centered minimum curvilinear embedding:

- The matrix **D** we prepare is trying to model the minimum curvilinear distances between the nodes.
- Otherwise we follow the general flowchart of coalescent embeddings with SVD dimension reduction.

A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci:

Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat. Commun. 8, 1615 (2017).

ncMCE embedding

Hyperbolic embedding

- Why embed?
- Likelihood optimisation
- HyperMap
- Dim. reduction

• Pre-weighting: we prepare a matrix W with elements

$$W_{ij} = \frac{k_i + k_j + k_i k_j}{1 + C N_{ij}},$$

where CN_{ij} is the number of common neighbours between *i* and *j*.

- → This way nodes in different neighbourhoods obtain larger W_{ij} , i.e., they are less similar.
 - We prepare the minimum weight spanning tree of W, and define D based on the pairwise distance in the spanning tree.
 D_{ij} is an estimate for the min. curvilinear distance between *i* and *j*
 - The dimension reduction is carried out via singular value decomposition, D = UΣV^T, where Σ is a diagonal matrix, from which we keep only the two largest ones (the rest is put to 0).
 - Angular coordinates are obtained from the 2^{nd} column of $\mathbf{X} = (\sqrt{\Sigma} \cdot \mathbf{V}^T)^T$.
 - These are then rescaled in an **equidistant** manner in $[0, 2\pi)$.
- Radial coords. are set based on the degree, similarly to Hypermap. A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci:

Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat. Commun. 8, 1615 (2017).

Coalescent embeddings Results

Hyperbolic embedding

Correlation between original and embedded hyperbolic distances for PSO networks:

Dim. reduction

A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci:

Machine learning meets complex networks via coalescent embedding in the hyperbolic space, Nat. Commun. 8, 1615 (2017).
Coalescent embeddings Results

Hyperbolic embedding

Average greedy routing scores for embedded real networks:

A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci:

Machine learning meets complex networks via coalescent embedding in the hyperbolic space, Nat. Commun. 8, 1615 (2017).

MCE

FA

Coalescent embeddings

Hyperbolic embedding

Why embed?

Likelihood optimisatior

HyperMap

Dim. reduction

A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci:

Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat. Commun. 8, 1615 (2017).

Coalescent embeddings

Hyperbolic embedding

Why embed?

Likelihood optimisatior

HyperMap

Dim. reduction

Embedded layouts for social networks:

A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci:

Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat. Commun. 8, 1615 (2017).

Optimised coalescent embedding

Hyperbolic embedding

- Why embed?
- Likelihood optimisation
- HyperMap
- Dim. reduction

- Dimension reduction and likelihood optimisation can also be combined.
- Since radial coordinates are set according to the PSO model also in coalescent embeddings, it can make sense to apply a further angular optimisation (using likelihood optimisation) on the coordinates obtained from dimension reduction.

Optimised coalescent embedding

Hyperbolic embedding

Why embed?

Likelihood optimisation

HyperMap

Dim. reduction

B. Kovács, G. Palla: Optimisation of the coalescent hyperbolic embedding of complex networks. Sci. Rep. 11, 8350 (2021).

Hyperbolic communities

Communities, modules, clusters, or cohesive groups:

more highly interconnected parts in networks with no widely accepted unique definition.

Hyperbolic communities

> **Communities**, **modules**, **clusters**, or **cohesive groups**: more highly interconnected parts in networks with no widely accepted unique definition.

Examples:

• A family, or a group of friends in a social network.

Hyperbolic communities

> **Communities, modules, clusters,** or **cohesive groups**: more highly interconnected parts in networks with no widely accepted unique definition.

Examples:

- A family, or a group of friends in a social network.
- A group of proteins having the same function or taking part in the same process in a protein interaction graph.

Hyperbolic communities

> **Communities, modules, clusters,** or **cohesive groups**: more highly interconnected parts in networks with no widely accepted unique definition.

Examples:

- A family, or a group of friends in a social network.
- A group of proteins having the same function or taking part in the same process in a protein interaction graph.
- · Interlinked Web pages with the same topic.

Hyperbolic communities

Communities, modules, clusters, or cohesive groups:

more highly interconnected parts in networks with no widely accepted unique definition.

Examples:

- A family, or a group of friends in a social network.
- A group of proteins having the same function or taking part in the same process in a protein interaction graph.
- Interlinked Web pages with the same topic.
- ...

Modularity

- Modularity is the most widely used quantity for measuring the "strength" of communities based on the network structure.
- It compares the observed fraction of links inside community c with expected fraction of inside links based on the configuration model:

$$Q = \sum_{c=1}^{n} \left[\frac{L_c}{L} - \left(\frac{k_c}{2L} \right)^2 \right]$$

Communities in PSO and RHG networks

Hyperbolic communities

Communities found by Louvain algorithm in PSO and RHG networks:

B. Kovács, G. Palla: The inherent community structure of hyperbolic networks *Sci. Rep.* **11**, 16050 (2021).

Communities in PSO and RHG networks

Communities in PSO and RHG networks

