Additive Combinatorics Methods in Fractal Geometry, Lecture 4

Pablo Shmerkin

Department of Mathematics The University of British Columbia

School on Dimension Theory of Fractals, Erdős Center, Budapest, 26-30 August 2024

KOD KOD KED KED E VAN

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

KORK ERKER ADAM ADA

KOD KOD KED KED E VAN

KOD KOD KED KED E VAN

Outline

KOD KARD KED KED BE YOUR

1 [The discretized sum-product problem](#page-5-0)

2 [Applications: Fourier decay](#page-34-0)

3 [Applications: radial projections](#page-49-0)

4 [Applications: Furstenberg sets](#page-65-0)

[Conclusion](#page-74-0)

 $2Q$

Heuristic Principle

If A is a finite subset of a Abelian ring Z, then one of the following must hold:

- 1 *A is "dense" in a finite sub-ring of Z.*
- \bullet $A + A$ is "much larger" than A.
- 3 *A*.*A is "much larger" than A.*

Conjecture *If A* ⊂ ℝ *is finite, then*

$$
\max\big\{|A+A|,|A\cdot A|\big\}\gg_{\varepsilon}|A|^{2-\varepsilon}.
$$

Remark

The best known current exponent (in place of 2*) is slightly larger than* 4/3*.*

Heuristic Principle

If A is a finite subset of a Abelian ring Z, then one of the following must hold:

1 *A is "dense" in a finite sub-ring of Z.*

- \bullet $A + A$ is "much larger" than A.
- 3 *A*.*A is "much larger" than A.*

Conjecture *If A* ⊂ ℝ *is finite, then*

$$
\max\big\{|A+A|,|A\cdot A|\big\}\gg_{\varepsilon}|A|^{2-\varepsilon}.
$$

Remark

Heuristic Principle

If A is a finite subset of a Abelian ring Z, then one of the following must hold:

1 *A is "dense" in a finite sub-ring of Z.*

 \bullet $A + A$ is "much larger" than A.

3 *A*.*A is "much larger" than A.*

Conjecture *If* A ⊂ ℝ *is finite, then*

 $\textsf{max}\left\{|\boldsymbol{A}+\boldsymbol{A}|,|\boldsymbol{A}\cdot\boldsymbol{A}|\right\} \gg_{\varepsilon} |\boldsymbol{A}|^{2-\varepsilon}.$

Remark

The best known current exponent (in place of 2*) is slightly larger than* 4/3*.***KOD KOD KED KED E VOOR**

Heuristic Principle

If A is a finite subset of a Abelian ring Z, then one of the following must hold:

1 *A is "dense" in a finite sub-ring of Z.*

- \bullet $A + A$ is "much larger" than A.
- 3 *A*.*A is "much larger" than A.*

Conjecture *If A* ⊂ ℝ *is finite, then*

$$
\max\big\{|A+A|,|A\cdot A|\big\}\gg_{\varepsilon}|A|^{2-\varepsilon}.
$$

Remark

Heuristic Principle

If A is a finite subset of a Abelian ring Z, then one of the following must hold:

1 *A is "dense" in a finite sub-ring of Z.*

- \bullet $A + A$ is "much larger" than A.
- 3 *A*.*A is "much larger" than A.*

Conjecture *If* $A \subset \mathbb{R}$ *is finite, then*

$$
\max\big\{|A+A|,|A\cdot A|\big\}\gg_{\varepsilon}|A|^{2-\varepsilon}.
$$

Remark

Heuristic Principle

If A is a finite subset of a Abelian ring Z, then one of the following must hold:

1 *A is "dense" in a finite sub-ring of Z.*

- \bullet $A + A$ is "much larger" than A.
- 3 *A*.*A is "much larger" than A.*

Conjecture *If* $A \subset \mathbb{R}$ *is finite, then*

$$
\max\big\{|A+A|,|A\cdot A|\big\}\gg_{\varepsilon}|A|^{2-\varepsilon}.
$$

Remark

No direct sum-product for Hausdorff dimension

Lemma *For any s* \in (0, 1), there exists a compact set A $\subset \mathbb{R}$ such that

$$
\dim_{H}(A+A)=\dim_{H}(A\cdot A)=\dim_{H}(A)=s.
$$

Proof.

Idea: construct *A* so that it looks like an arithmetic progression at some scales, and like a geometric progression at a complementary set of scales.

KOD KARD KED KED BE YOUR

No direct sum-product for Hausdorff dimension

Lemma *For any s* \in (0, 1), there exists a compact set A $\subset \mathbb{R}$ such that

$$
\dim_{\mathrm{H}}(A+A)=\dim_{\mathrm{H}}(A\cdot A)=\dim_{\mathrm{H}}(A)=s.
$$

Proof.

Idea: construct *A* so that it looks like an arithmetic progression at some scales, and like a geometric progression at a complementary set of scales.

KORKARA KERKER DAGA

No direct discretized sum-product

KORK ERKER ADAM ADA

Example Let $A = [1, 1 +$ √ δ]. Then $\mathcal{A} + \mathcal{A} = [1,1+2]$ √ δ], $A \cdot A = [1, 1 + 2]$ √ $\delta+\delta]$

so

$$
|\mathbf{A} + \mathbf{A}|_{\delta} \sim |\mathbf{A} \cdot \mathbf{A}|_{\delta} \sim |\mathbf{A}|_{\delta} \sim \delta^{-1/2}.
$$

What is going on?

KORK ERKER ADAM ADA

- For Hausdorff dimension, the issue is that different behaviour can happen at different scales (this depends on the existence of infinitely many scales).
- For the discretized version, the issue is that the set may be too concentrated in an interval.
- Both issues can be addressed by modifying the problem in a suitable way, leading to an extremely rich theory.

KORK ERKER ADAM ADA

- For Hausdorff dimension, the issue is that different behaviour can happen at different scales (this depends on the existence of infinitely many scales).
- For the discretized version, the issue is that the set may be too concentrated in an interval.
- Both issues can be addressed by modifying the problem in a suitable way, leading to an extremely rich theory.

KORK ERKER ADAM ADA

- For Hausdorff dimension, the issue is that different behaviour can happen at different scales (this depends on the existence of infinitely many scales).
- For the discretized version, the issue is that the set may be too concentrated in an interval.
- Both issues can be addressed by modifying the problem in a suitable way, leading to an extremely rich theory.

KORK ERKER ADAM ADA

Definition

A set $A\subset B^d(0,1)$ is called a (δ,s,K) -set if for every $r\in [\delta,1]$ and every $x \in \mathbb{R}^d,$ we have

- (δ, s) -sets with $s \in (0, d)$ are not concentrated in small balls. This strongly excludes any set that looks like $[1, 1 + \sqrt{\delta}]$ (take $r = \sqrt{\delta}$).
- Taking $r = \delta$ shows that $|A| \geq K^{-1} \delta^{-s}$.
- This definition is a variant of the notion of (δ, s) -sets introduced by N. Katz and T. Tao in 2001. It is inspired by Frostman's Lemma.
- One can think of (δ, s) -set as sets of "Hausdorff dimension *s* at scale δ"

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Definition

A set $A\subset B^d(0,1)$ is called a (δ,s,K) -set if for every $r\in [\delta,1]$ and every $x \in \mathbb{R}^d,$ we have

$$
|A\cap B(x,r)|_{\delta}\leq K\cdot r^s\cdot |A|_{\delta}.
$$

- (δ, s) -sets with $s \in (0, d)$ are not concentrated in small balls. This strongly excludes any set that looks like $[1, 1 + \sqrt{\delta}]$ (take $r = \sqrt{\delta}$).
- Taking $r = \delta$ shows that $|A| \geq K^{-1} \delta^{-s}$.
- This definition is a variant of the notion of (δ, s) -sets introduced by N. Katz and T. Tao in 2001. It is inspired by Frostman's Lemma.
- One can think of (δ, *s*)-set as sets of "Hausdorff dimension *s* at scale δ"

KORK ERKER ADAM ADA

Definition

A set $A\subset B^d(0,1)$ is called a (δ,s,K) -set if for every $r\in [\delta,1]$ and every $x \in \mathbb{R}^d,$ we have

- (δ, s) -sets with $s \in (0, d)$ are not concentrated in small balls. This strongly excludes any set that looks like $[1, 1 + \sqrt{\delta}]$ (take $r = \sqrt{\delta}$).
- Taking $r = \delta$ shows that $|A| \geq K^{-1} \delta^{-s}$.
- This definition is a variant of the notion of (δ, s) -sets introduced by N. Katz and T. Tao in 2001. It is inspired by Frostman's Lemma.
- One can think of (δ, s) -set as sets of "Hausdorff dimension *s* at scale δ"

KORKAR KERKER E VOOR

Definition

A set $A\subset B^d(0,1)$ is called a (δ,s,K) -set if for every $r\in [\delta,1]$ and every $x \in \mathbb{R}^d,$ we have

- (δ, s) -sets with $s \in (0, d)$ are not concentrated in small balls. This strongly excludes any set that looks like $[1, 1 + \sqrt{\delta}]$ (take $r = \sqrt{\delta}$).
- Taking $r = \delta$ shows that $|A| \geq K^{-1} \delta^{-s}$.
- This definition is a variant of the notion of (δ, s) -sets introduced by N. Katz and T. Tao in 2001. It is inspired by Frostman's Lemma.
- One can think of (δ, *s*)-set as sets of "Hausdorff dimension *s* at scale δ"

KORKAR KERKER E VOOR

Definition

A set $A\subset B^d(0,1)$ is called a (δ,s,K) -set if for every $r\in [\delta,1]$ and every $x \in \mathbb{R}^d,$ we have

- (δ, s) -sets with $s \in (0, d)$ are not concentrated in small balls. This strongly excludes any set that looks like $[1, 1 + \sqrt{\delta}]$ (take $r = \sqrt{\delta}$).
- Taking $r = \delta$ shows that $|A| \geq K^{-1} \delta^{-s}$.
- This definition is a variant of the notion of (δ, s) -sets introduced by N. Katz and T. Tao in 2001. It is inspired by Frostman's Lemma.
- One can think of (δ, s)-set as sets of "Hausdorff dimension *s* at scale δ"

KOD KARD KED KED BE YOUR

Conjecture (Katz-Tao 2001)

Let $A \subset [0, 1]$ *be a* (δ, s, K) *set with* $0 < s < 1$ *. Then there is a constant* $\varepsilon = \varepsilon(s) > 0$ *such that*

 $\max\{|\boldsymbol{A}+\boldsymbol{A}|_{\delta},|\boldsymbol{A}\cdot\boldsymbol{A}|_{\delta}\}\geq C(\boldsymbol{K})\cdot\delta^{-\boldsymbol{S}-\varepsilon}.$

The Katz-Tao conjecture is true.

KORK ERKER ADAM ADA

Conjecture (Katz-Tao 2001)

Let $A \subset [0, 1]$ *be a* (δ, s, K) *set with* $0 < s < 1$ *. Then there is a constant* $\varepsilon = \varepsilon(s) > 0$ *such that*

 $\max\{|\boldsymbol{A}+\boldsymbol{A}|_{\delta},|\boldsymbol{A}\cdot\boldsymbol{A}|_{\delta}\}\geq C(\boldsymbol{K})\cdot\delta^{-\boldsymbol{S}-\varepsilon}.$

Theorem (Bourgain 2003)

The Katz-Tao conjecture is true.

The Erdős-Volkmann sub-ring problem

KOD KARD KED KED BE YOUR

Theorem (Erdős-Volkmann 1966)

For any $0 < s < 1$ *there is a Borel additive subgroup* $A \subset \mathbb{R}$ *with* $\dim_H(A) = s$. The same is true for multiplicative subgroup.

Conjecture (Erdős-Volkmann 1966) *If* $A \subset \mathbb{R}$ *is a Borel sub-ring (A + A = A and A* \cdot *A = A), then* dim_H $(A) \in \{0, 1\}$.

Theorem (Bourgain 2003 using sum-product; Edgar-Miller

The conjecture is true.

The Erdős-Volkmann sub-ring problem

KORKARA KERKER DAGA

Theorem (Erdős-Volkmann 1966)

For any 0 < *s* < 1 *there is a Borel additive subgroup A* ⊂ R *with* $\dim_H(A) = s$. The same is true for multiplicative subgroup.

Conjecture (Erdős-Volkmann 1966) *If* $A \subset \mathbb{R}$ *is a Borel sub-ring (A + A = A and A* \cdot *A = A), then* dim_H $(A) \in \{0, 1\}$.

Theorem (Bourgain 2003 using sum-product; Edgar-Miller

The conjecture is true.

The Erdős-Volkmann sub-ring problem

KORK ERKER ADAM ADA

Theorem (Erdős-Volkmann 1966)

For any 0 < *s* < 1 *there is a Borel additive subgroup A* ⊂ R *with* $\dim_H(A) = s$. The same is true for multiplicative subgroup.

Conjecture (Erdős-Volkmann 1966) *If* $A \subset \mathbb{R}$ *is a Borel sub-ring (A + A = A and A* \cdot *A = A), then* dim_H $(A) \in \{0, 1\}$.

Theorem (Bourgain 2003 using sum-product; Edgar-Miller 2002)

The conjecture is true.

- In applications, one often needs the conclusion to hold under much weaker non-concentration assumptions on *A*. This was proved by Bourgain-Gamburd (2009).
- Bourgain's original proof was extremely complicated. It was simplified by Borgain in 2010, using the inverse theorem for sumsets we saw last time, but it remained very involved.
- A much simpler and quantitative proof was obtained by L. Guth-N. Katz-J. Zahl (2021). It still uses additive combinatorics.
- Very recently, very strong bounds were obtained by Y. Fu-K. Ren, T. Orponen-P.S., A. Mathe-W. O-Regan and K. Ren-H. Wang. Most of these results ultimately use the original non-quantitative version!

- In applications, one often needs the conclusion to hold under much weaker non-concentration assumptions on *A*. This was proved by Bourgain-Gamburd (2009).
- Bourgain's original proof was extremely complicated. It was simplified by Borgain in 2010, using the inverse theorem for sumsets we saw last time, but it remained very involved.
- A much simpler and quantitative proof was obtained by L. Guth-N. Katz-J. Zahl (2021). It still uses additive combinatorics.
- Very recently, very strong bounds were obtained by Y. Fu-K. Ren, T. Orponen-P.S., A. Mathe-W. O-Regan and K. Ren-H. Wang. Most of these results ultimately use the original non-quantitative version!

- In applications, one often needs the conclusion to hold under much weaker non-concentration assumptions on *A*. This was proved by Bourgain-Gamburd (2009).
- Bourgain's original proof was extremely complicated. It was simplified by Borgain in 2010, using the inverse theorem for sumsets we saw last time, but it remained very involved.
- A much simpler and quantitative proof was obtained by L. Guth-N. Katz-J. Zahl (2021). It still uses additive combinatorics.
- Very recently, very strong bounds were obtained by Y. Fu-K. Ren, T. Orponen-P.S., A. Mathe-W. O-Regan and K. Ren-H. Wang. Most of these results ultimately use the original non-quantitative version!

- In applications, one often needs the conclusion to hold under much weaker non-concentration assumptions on *A*. This was proved by Bourgain-Gamburd (2009).
- Bourgain's original proof was extremely complicated. It was simplified by Borgain in 2010, using the inverse theorem for sumsets we saw last time, but it remained very involved.
- A much simpler and quantitative proof was obtained by L. Guth-N. Katz-J. Zahl (2021). It still uses additive combinatorics.
- Very recently, very strong bounds were obtained by Y. Fu-K. Ren, T. Orponen-P.S., A. Mathe-W. O-Regan and K. Ren-H. Wang. Most of these results ultimately use the original non-quantitative version!

Current best bound on discretized sum-product

Theorem (Y. Fu-K. Ren 2021) *Let* $A \subset [0, 1]$ *be a* (δ, s, K) *set with* $s \in [2/3, 1)$ *. Then* $\max\bigl\{|{\boldsymbol A} + {\boldsymbol A}|_{\delta}, |{\boldsymbol A}\cdot{\boldsymbol A}|_{\delta}\bigr\} \geq C({\boldsymbol K},\varepsilon)\cdot \delta^{-\frac{s+1}{2}+\varepsilon}.$

This is sharp.

Theorem (K. Ren-H. Wang 2023) *Let* $A \subset [0, 1]$ *be a* (δ, s, K) *set with* $s \in (0, 2/3]$ *. Then*

 $\max\bigl\{|{\boldsymbol A} + {\boldsymbol A}|_{\delta}, |{\boldsymbol A}\cdot{\boldsymbol A}|_{\delta}\bigr\} \geq C(K,\varepsilon)\cdot \delta^{-\frac{5}{4}s+\varepsilon}.$

KORKARA KERKER DAGA

Current best bound on discretized sum-product

Theorem (Y. Fu-K. Ren 2021) *Let* $A \subset [0, 1]$ *be a* (δ, s, K) *set with* $s \in [2/3, 1)$ *. Then* $\max\bigl\{|{\boldsymbol A} + {\boldsymbol A}|_{\delta}, |{\boldsymbol A}\cdot{\boldsymbol A}|_{\delta}\bigr\} \geq C({\boldsymbol K},\varepsilon)\cdot \delta^{-\frac{s+1}{2}+\varepsilon}.$

This is sharp.

Theorem (K. Ren-H. Wang 2023) *Let* $A \subset [0, 1]$ *be a* (δ, s, K) *set with* $s \in (0, 2/3]$ *. Then*

$$
\max\{|A+A|_{\delta},|A\cdot A|_{\delta}\}\geq C(K,\varepsilon)\cdot\delta^{-\frac{5}{4}s+\varepsilon}.
$$

KORKARA KERKER DAGA

Outline

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

1 [The discretized sum-product problem](#page-5-0)

2 [Applications: Fourier decay](#page-34-0)

3 [Applications: radial projections](#page-49-0)

4 [Applications: Furstenberg sets](#page-65-0)

[Conclusion](#page-74-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Definition

Let μ be a finite Borel measure on $\mathbb{R}^d.$ The Fourier transform of μ is the function

$$
\widehat{\mu}(t)=\int e^{-2\pi ix\cdot t}\,d\mu(x).
$$

- The decay of $|\hat{\mu}(t)|$ as $|t|\to\infty$ gives significant information about μ .
- We say that μ has power Fourier decay if $|\widehat{\mu}(t)| \leq C \cdot |t|^{-\alpha}$
for some $\alpha > 0$ and $C > 1$ for some $\alpha > 0$ and $C > 1$.
- Measures with power Fourier decay have many nice properties; for example, μ almost all points are normal to all bases.
KORK ERKER ADAM ADA

Definition

Let μ be a finite Borel measure on $\mathbb{R}^d.$ The Fourier transform of μ is the function

$$
\widehat{\mu}(t)=\int e^{-2\pi ix\cdot t}\,d\mu(x).
$$

- The decay of $|\hat{\mu}(t)|$ as $|t| \to \infty$ gives significant information about μ .
- We say that μ has power Fourier decay if $|\widehat{\mu}(t)| \leq C \cdot |t|^{-\alpha}$
for some $\alpha > 0$ and $C > 1$ for some $\alpha > 0$ and $C > 1$.
- Measures with power Fourier decay have many nice properties; for example, μ almost all points are normal to all bases.

KORKARA KERKER DAGA

Definition

Let μ be a finite Borel measure on $\mathbb{R}^d.$ The Fourier transform of μ is the function

$$
\widehat{\mu}(t)=\int e^{-2\pi ix\cdot t}\,d\mu(x).
$$

- The decay of $|\hat{\mu}(t)|$ as $|t| \to \infty$ gives significant information about μ .
- We say that μ has power Fourier decay if $|\widehat{\mu}(t)| \leq C \cdot |t|^{-\alpha}$
for some $\alpha > 0$ and $C > 1$ for some $\alpha > 0$ and $C \geq 1$.
- Measures with power Fourier decay have many nice properties; for example, μ almost all points are normal to all bases.

KORK ERKER ADAM ADA

Definition

Let μ be a finite Borel measure on $\mathbb{R}^d.$ The Fourier transform of μ is the function

$$
\widehat{\mu}(t)=\int e^{-2\pi ix\cdot t}\,d\mu(x).
$$

- The decay of $|\widehat{\mu}(t)|$ as $|t| \to \infty$ gives significant information about μ .
- We say that μ has power Fourier decay if $|\widehat{\mu}(t)| \leq C \cdot |t|^{-\alpha}$
for some $\alpha > 0$ and $C > 1$ for some $\alpha > 0$ and $C > 1$.
- Measures with power Fourier decay have many nice properties; for example, μ almost all points are normal to all bases.

Multiplicative convolutions

KOD KOD KED KED E VOOR

Definition

Let μ_1, \ldots, μ_k be finite Borel measures on [1, 2]. The multiplicative convolution of the μ_i is the push forward of $\mu_1 \times \cdots \times \mu_k$ via the map $(x_1, \ldots, x_k) \mapsto x_1 \cdots x_k$. It is denoted by

$$
\mu_1\boxtimes\cdots\boxtimes\mu_k.
$$

More explicitly,

$$
\int f(x) d(\mu_1 \boxtimes \cdots \boxtimes \mu_k)(x) = \int f(x_1 \cdots x_k) d\mu_1(x_1) \cdots d\mu_k(x_k).
$$

Remark

If we replace × *by* +*, we get the usual convolution of measures.*

Multiplicative convolutions

KOD KOD KED KED E VOOR

Definition

Let μ_1, \ldots, μ_k be finite Borel measures on [1, 2]. The multiplicative convolution of the μ_i is the push forward of $\mu_1 \times \cdots \times \mu_k$ via the map $(x_1, \ldots, x_k) \mapsto x_1 \cdots x_k$. It is denoted by

$$
\mu_1\boxtimes\cdots\boxtimes\mu_k.
$$

More explicitly,

$$
\int f(x) d(\mu_1 \boxtimes \cdots \boxtimes \mu_k)(x) = \int f(x_1 \cdots x_k) d\mu_1(x_1) \cdots d\mu_k(x_k).
$$

Remark

If we replace × *by* +*, we get the usual convolution of measures.*

KORK ERKER ADAM ADA

Theorem (Bourgain 2010)

For every s \in (0, 1) *there is* $k = k(s) \in \mathbb{N}$ *such that the following holds.*

Let µ1, . . . , µ*^k be finite Borel measures on* [1, 2] *satisfying the Frostman condition*

$$
\mu_i(B(x,r))\leq C\,r^s.
$$

Then, $\mu_1 \boxtimes \cdots \boxtimes \mu_k$ *has power Fourier decay.*

Remarks on Bourgain's Theorem

KORK ERKEY EL POLO

- Bourgain's Theorem is a (non-trivial) consequence of the discretized sum-product theorem. The idea is that the Fourier transform has "additive structure", and multiplicative convolution introduces "multiplicative structure"; the combination of both produces decay.
- Bourgain conjectured that *ks* > 1 is enough. This was proved by N. de Saxcé-T. Orponen-P.S. (2023).
- Our quantitative result has the following corollary: let A_1, \ldots, A_k be Borel sets on R such that

$$
\sum_{j=1}^k \dim_H(A_j) > 1.
$$

Then, the additive subgroup generated by $A_1 \cdots A_k$ is R.

Remarks on Bourgain's Theorem

KORK ERKEY EL POLO

- Bourgain's Theorem is a (non-trivial) consequence of the discretized sum-product theorem. The idea is that the Fourier transform has "additive structure", and multiplicative convolution introduces "multiplicative structure"; the combination of both produces decay.
- Bourgain conjectured that $ks > 1$ is enough. This was proved by N. de Saxcé-T. Orponen-P.S. (2023).
- Our quantitative result has the following corollary: let A_1, \ldots, A_k be Borel sets on R such that

 \sum $\mathsf{dim}_{\mathsf{H}}(\mathsf{A}_{\!j}) > 1.$

Then, the additive subgroup generated by $A_1 \cdots A_k$ is R.

Remarks on Bourgain's Theorem

YO A GERRITH A SHOP

- Bourgain's Theorem is a (non-trivial) consequence of the discretized sum-product theorem. The idea is that the Fourier transform has "additive structure", and multiplicative convolution introduces "multiplicative structure"; the combination of both produces decay.
- Bourgain conjectured that $ks > 1$ is enough. This was proved by N. de Saxcé-T. Orponen-P.S. (2023).
- Our quantitative result has the following corollary: let A_1, \ldots, A_k be Borel sets on $\mathbb R$ such that

$$
\sum_{j=1}^k \dim_H(A_j) > 1.
$$

Then, the additive subgroup generated by $A_1 \cdots A_k$ is \mathbb{R} .

- J. Bourgain-S. Dyatlov used the Fourier decay of multiplicative convolutions to prove power decay for an important class of dynamically defined measures (Patterson-Sullivan measures on limits sets of Schottky groups).
- The method was extended and adapted by many other authors. For example, T. Sahlsten-C. Stevens proved that self-conformal measures for nolinear analytic iterated function systems have power Fourier decay.
- There are many other methods to prove Fourier decay of dynamicall defined measures. Some use additive combinatorics but not the sum-product theorem. Some do not use additive combinatorics at all.
- Nonlinearity is crucial in most of these results. The problem of power Fourier decay for self-similar measures is extremely hard..
◆ ロ ▶ ◆ @ ▶ ◆ 경 ▶ → 경 ▶ │ 경 │ ◇ 9,9,0°

- J. Bourgain-S. Dyatlov used the Fourier decay of multiplicative convolutions to prove power decay for an important class of dynamically defined measures (Patterson-Sullivan measures on limits sets of Schottky groups).
- The method was extended and adapted by many other authors. For example, T. Sahlsten-C. Stevens proved that self-conformal measures for nolinear analytic iterated function systems have power Fourier decay.
- There are many other methods to prove Fourier decay of dynamicall defined measures. Some use additive combinatorics but not the sum-product theorem. Some do not use additive combinatorics at all.
- Nonlinearity is crucial in most of these results. The problem of power Fourier decay for self-similar measures is extremely hard..
◆ ロ ▶ ◆ @ ▶ ◆ 경 ▶ → 경 ▶ │ 경 │ ◇ 9,9,0°

- J. Bourgain-S. Dyatlov used the Fourier decay of multiplicative convolutions to prove power decay for an important class of dynamically defined measures (Patterson-Sullivan measures on limits sets of Schottky groups).
- The method was extended and adapted by many other authors. For example, T. Sahlsten-C. Stevens proved that self-conformal measures for nolinear analytic iterated function systems have power Fourier decay.
- There are many other methods to prove Fourier decay of dynamicall defined measures. Some use additive combinatorics but not the sum-product theorem. Some do not use additive combinatorics at all.
- Nonlinearity is crucial in most of these results. The problem of power Fourier decay for self-similar measures is extremely hard..
◆ ロ ▶ ◆ @ ▶ ◆ 경 ▶ → 경 ▶ │ 경 │ ◇ 9,9,0°

- J. Bourgain-S. Dyatlov used the Fourier decay of multiplicative convolutions to prove power decay for an important class of dynamically defined measures (Patterson-Sullivan measures on limits sets of Schottky groups).
- The method was extended and adapted by many other authors. For example, T. Sahlsten-C. Stevens proved that self-conformal measures for nolinear analytic iterated function systems have power Fourier decay.
- There are many other methods to prove Fourier decay of dynamicall defined measures. Some use additive combinatorics but not the sum-product theorem. Some do not use additive combinatorics at all.
- Nonlinearity is crucial in most of these results. The problem of power Fourier decay for self-similar measures is extremely hard.**KORK ERKEY EL POLO**

Outline

KOD KARD KED KED BE YOUR

2 [Applications: Fourier decay](#page-34-0)

3 [Applications: radial projections](#page-49-0)

4 [Applications: Furstenberg sets](#page-65-0)

[Conclusion](#page-74-0)

Radial projections

Definition

Given a set $A \subset \mathbb{R}^d$ and a point $x \in \mathbb{R}^d,$ the radial projection of *A* from *x* is the set

$$
\pi_X(A)=\bigg\{\frac{y-x}{|y-x|}: y\in A\setminus\{x\}\bigg\}.
$$

- The radial projection $\pi_X(A)$ is a subset of the unit sphere *S*^{d−1}. It is the set of directions in which the points of *A* are seen from *x*.
- Radial projections generalize orthogonal projections: if *x* is a point at infinite in direction *v*, then π _{*x*}(*A*) is the orthogonal projection of *A* onto the hyperplane orthogonal to *v*. Alternatively, one can convery π*^x* to an orthogonal

Radial projections

Definition

Given a set $A \subset \mathbb{R}^d$ and a point $x \in \mathbb{R}^d,$ the radial projection of *A* from *x* is the set

$$
\pi_X(A)=\bigg\{\frac{y-x}{|y-x|}: y\in A\setminus\{x\}\bigg\}.
$$

- The radial projection $\pi_X(A)$ is a subset of the unit sphere *S*^{*d*−1}. It is the set of directions in which the points of *A* are seen from *x*.
- Radial projections generalize orthogonal projections: if *x* is a point at infinite in direction *v*, then π _{*x*}(*A*) is the orthogonal projection of *A* onto the hyperplane orthogonal to *v*. Alternatively, one can convery π*^x* to an orthogonal

Radial projections

Definition

Given a set $A \subset \mathbb{R}^d$ and a point $x \in \mathbb{R}^d,$ the radial projection of *A* from *x* is the set

$$
\pi_X(A)=\bigg\{\frac{y-x}{|y-x|}: y\in A\setminus\{x\}\bigg\}.
$$

- The radial projection $\pi_X(A)$ is a subset of the unit sphere *S*^{*d*−1}. It is the set of directions in which the points of *A* are seen from *x*.
- Radial projections generalize orthogonal projections: if *x* is a point at infinite in direction *v*, then $\pi_X(A)$ is the orthogonal projection of *A* onto the hyperplane orthogonal to *v*. Alternatively, one can convery π*^x* to an orthogonal projection by means of a projective transformation.

Dimension of radial projections

KOD KARD KED KED BE YOUR

Problem *Let A* ⊂ R ² *be a Borel set. What is*

 $\mathsf{sup\,dim}_\mathsf{H} \pi_\mathsf{x}(A)$? *x*∈*A*

- If *A* is contained in a line, then $\pi_{x}(A)$ is a singleton. So one needs to assume that *A* is not contained in a line.
- The map π*^x* is Lipschitz outside a small neighbourhood of *x*, so dim_H π _{*x*}(*A*) \le dim_H *A*.

Dimension of radial projections

KORKARA KERKER DAGA

```
Problem
Let A ⊂ R
2 be a Borel set. What is
```
 $\mathsf{sup\,dim}_\mathsf{H} \pi_\mathsf{x}(A)$? *x*∈*A*

- If *A* is contained in a line, then $\pi_X(A)$ is a singleton. So one needs to assume that *A* is not contained in a line.
- The map π*^x* is Lipschitz outside a small neighbourhood of *x*, so dim_H π _{*x*}(*A*) \le dim_H *A*.

Dimension of radial projections

KORKARA KERKER DAGA

```
Problem
Let A ⊂ R
2 be a Borel set. What is
```
 $\mathsf{sup\,dim}_\mathsf{H} \pi_\mathsf{x}(A)$? *x*∈*A*

- If *A* is contained in a line, then $\pi_X(A)$ is a singleton. So one needs to assume that *A* is not contained in a line.
- The map π_X is Lipschitz outside a small neighbourhood of *x*, so dim_H π _{*x*}(*A*) \le dim_H *A*.

Theorem (T. Orponen 2015)

Let A be a Borel set which is not contained in a line. Then

$$
\sup_{x\in A} \dim_{H} \pi_{x}(A) \geq \frac{1}{2} \dim_{H} A.
$$

Remark

If there was a Borel sub-ring of the reals X of dimension s/2*, then the bound would be sharp: take* $A = X \times X$ *. Then* $dim_H(A) \geq s$. But up to an arctan *change of coordinates, if* $x = (x_1, x_2) \in A$, then

$$
\pi_X(A)=\frac{X-x_1}{X-x_2}\subset X.
$$

KOD KARD KED KED BE YOUR

sum-product.

Theorem (T. Orponen 2015)

Let A be a Borel set which is not contained in a line. Then

$$
\sup_{x\in A} \dim_{H} \pi_{x}(A) \geq \frac{1}{2} \dim_{H} A.
$$

Remark

If there was a Borel sub-ring of the reals X of dimension s/2*, then the bound would be sharp: take* $A = X \times X$ *. Then* $dim_H(A) \geq s$. But up to an arctan *change of coordinates, if* $x = (x_1, x_2) \in A$, then

$$
\pi_X(A)=\frac{X-x_1}{X-x_2}\subset X.
$$

KORK ERKER ADAM ADA

This suggests a connection between radial projections and sum-product.

Sharp radial projections in the plane

KOD KARD KED KED BE YOUR

Theorem (T. Orponen, P.S. and H. Wang 2023) *Let A be a Borel set which is not contained in a line. Then*

 $\sup \dim_H \pi_X(A) \geq \min \{\dim_H A, 1\}.$ *x*∈*A*

Corollary *Let X* ⊂ R *be a Borel set. Then*

$$
\dim_{\mathrm{H}}\left(\frac{X-X}{X-X}\right)\geq\min\{2\dim_{\mathrm{H}}X,1\}.
$$

Proof.

Apply the theorem to $A = X \times X$, and the map arctan to the radial projections.

Sharp radial projections in the plane

KOD KARD KED KED BE YOUR

Theorem (T. Orponen, P.S. and H. Wang 2023) *Let A be a Borel set which is not contained in a line. Then*

> $\sup \dim_H \pi_X(A) \geq \min \{\dim_H A, 1\}.$ *x*∈*A*

Corollary *Let X* ⊂ R *be a Borel set. Then*

$$
\dim_{\mathrm{H}}\left(\frac{X-X}{X-X}\right)\geq\min\{2\dim_{\mathrm{H}}X,1\}.
$$

Proof.

Apply the theorem to $A = X \times X$, and the map arctan to the radial projections.

Sharp radial projections in the plane

KORK ERKER ADAM ADA

Theorem (T. Orponen, P.S. and H. Wang 2023) *Let A be a Borel set which is not contained in a line. Then*

> $\sup \dim_H \pi_X(A) \geq \min \{\dim_H A, 1\}.$ *x*∈*A*

Corollary *Let X* ⊂ R *be a Borel set. Then*

$$
\dim_{\mathrm{H}}\left(\frac{X-X}{X-X}\right)\geq\min\{2\dim_{\mathrm{H}}X,1\}.
$$

Proof.

Apply the theorem to $A = X \times X$, and the map arctan to the radial projections.

KORK ERKEY EL POLO

- The proof of the sharp bound ultimately depends on an iterative application of the discretized projection theorem, which is a close cousin of the discretized sum-product theorem.
- The Theorem can be seen as a far reaching generalization of Kaufman's projection theorem, Orponen's radial projection theorem, and the discretized sum-product theorem.
- The theorem already has found a large number of applications (one of them will be discussed shortly), in fractal geometry, harmonic analysis, and combinatorics.
- K. Ren (2023) generalized the result to higher dimensions.

KORK ERKEY EL POLO

- The proof of the sharp bound ultimately depends on an iterative application of the discretized projection theorem, which is a close cousin of the discretized sum-product theorem.
- The Theorem can be seen as a far reaching generalization of Kaufman's projection theorem, Orponen's radial projection theorem, and the discretized sum-product theorem.
- The theorem already has found a large number of applications (one of them will be discussed shortly), in fractal geometry, harmonic analysis, and combinatorics.
- K. Ren (2023) generalized the result to higher dimensions.

KORK ERKEY EL POLO

- The proof of the sharp bound ultimately depends on an iterative application of the discretized projection theorem, which is a close cousin of the discretized sum-product theorem.
- The Theorem can be seen as a far reaching generalization of Kaufman's projection theorem, Orponen's radial projection theorem, and the discretized sum-product theorem.
- The theorem already has found a large number of applications (one of them will be discussed shortly), in fractal geometry, harmonic analysis, and combinatorics.
- K. Ren (2023) generalized the result to higher dimensions.

- The proof of the sharp bound ultimately depends on an iterative application of the discretized projection theorem, which is a close cousin of the discretized sum-product theorem.
- The Theorem can be seen as a far reaching generalization of Kaufman's projection theorem, Orponen's radial projection theorem, and the discretized sum-product theorem.
- The theorem already has found a large number of applications (one of them will be discussed shortly), in fractal geometry, harmonic analysis, and combinatorics.
- K. Ren (2023) generalized the result to higher dimensions.

Outline

1 [The discretized sum-product problem](#page-5-0)

- **2** [Applications: Fourier decay](#page-34-0)
- 3 [Applications: radial projections](#page-49-0)
- 4 [Applications: Furstenberg sets](#page-65-0)

[Conclusion](#page-74-0)

Furstenberg sets

KOD KOD KED KED E VOOR

Definition

The set of lines in \mathbb{R}^2 is a 2-dimensional manifold, so there is a notion of Hausdorff dimension for sets of lines.

Alternatively, we can identify the line $y = ax + b$ with $(a, b) \in \mathbb{R}^2$ and consider the set of (non-vertical) lines as a subset of \mathbb{R}^2 .

A set $F \subset \mathbb{R}^2$ is called an (s,t) -Furstenberg set if there exists a set of lines L with dim_H(L) = t such that for every line $L \in \mathcal{L}$, the intersection *F* ∩ *L* has dimension at least *s*.

KORKAR KERKER E VOOR

Definition

The set of lines in \mathbb{R}^2 is a 2-dimensional manifold, so there is a notion of Hausdorff dimension for sets of lines.

Alternatively, we can identify the line $y = ax + b$ with $(a, b) \in \mathbb{R}^2$ and consider the set of (non-vertical) lines as a subset of \mathbb{R}^2 .

Definition

A set $F \subset \mathbb{R}^2$ is called an (s,t) -Furstenberg set if there exists a set of lines L with dim_H(L) = t such that for every line $L \in \mathcal{L}$, the intersection *F* ∩ *L* has dimension at least *s*.

Dimension of Furstenberg sets

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | K 9 Q Q

Problem

- **1** The problem arose from work of Furstenberg in the 1960s, but was first formulated in print by T. Wolff in an influential survey from 1999.
- **2** The problem is again related to sum-product (for example, if X is a sub-ring of dimension 1/2, then $X \times X$ is a "small" $(1, 1/2)$ -Furstenberg set).
- **3** The connection with sum-product was made more explicit by N. Katz and T. Tao in 2001.

KORK ERKER ADAM ADA

Problem

- **1** The problem arose from work of Furstenberg in the 1960s, but was first formulated in print by T. Wolff in an influential survey from 1999.
- 2 The problem is again related to sum-product (for example, if X is a sub-ring of dimension 1/2, then $X \times X$ is a "small" $(1, 1/2)$ -Furstenberg set).
- **3** The connection with sum-product was made more explicit by N. Katz and T. Tao in 2001.

KORK ERKER ADAM ADA

Problem

- **1** The problem arose from work of Furstenberg in the 1960s, but was first formulated in print by T. Wolff in an influential survey from 1999.
- 2 The problem is again related to sum-product (for example, if X is a sub-ring of dimension $1/2$, then $X \times X$ is a "small" $(1, 1/2)$ -Furstenberg set).
- **3** The connection with sum-product was made more explicit by N. Katz and T. Tao in 2001.

KORK ERKEY EL POLO

Problem

- **1** The problem arose from work of Furstenberg in the 1960s, but was first formulated in print by T. Wolff in an influential survey from 1999.
- 2 The problem is again related to sum-product (for example, if X is a sub-ring of dimension $1/2$, then $X \times X$ is a "small" $(1, 1/2)$ -Furstenberg set).
- **3** The connection with sum-product was made more explicit by N. Katz and T. Tao in 2001.
KORKARA KERKER DAGA

Theorem (T. Orponen-P.S. $(2023) + K$. Ren-H. Wang (2023)) Let F be an (s, t) -Furstenberg set in \mathbb{R}^2 . Then

$$
\dim_{H} F \geq \min\bigg\{s+t, \frac{3s+t}{2}, s+1\bigg\}.
$$

This is sharp.

Logic of the proof

KOD KOD KED KED E VAN

Sum-product $\Longrightarrow \varepsilon$ -improved Furstenberg set estimates

- \implies radial projections
- \implies asymmetric sum-product
- \implies projections of regular sets
- \implies Furstenberg sets with regular line sets
- \implies general Furstenberg sets

and

High-low method \implies Furstenberg for semi-well spaced lines \implies general Furstenberg sets

Outline

[The discretized sum-product problem](#page-5-0)

- [Applications: Fourier decay](#page-34-0)
- [Applications: radial projections](#page-49-0)
- [Applications: Furstenberg sets](#page-65-0)

[Conclusion](#page-74-0)

Conclusion

KORK EXTERNED ARA

- Additive combinatorics methods have had a profound impact in fractal geometry.
- A number of basic tools (Plünnecke-Ruzsa, Balog-Szemerédi-Gowers, sum-product, Freiman and variants) appear in many different contexts.
- There are very few direct applications of additive combinatorics in fractal geometry. This can make it challenging to learn the methods.
- In an upcoming article, P.S-H. Wang will present a simple proof of Bourgain's discretized projection theorem - we hope this will be a useful tool for the community to see additive combinatorics in action in a key fractal-geometric setting.

KORK EXTERNED ARA

- Additive combinatorics methods have had a profound impact in fractal geometry.
- A number of basic tools (Plünnecke-Ruzsa, Balog-Szemerédi-Gowers, sum-product, Freiman and variants) appear in many different contexts.
- There are very few direct applications of additive combinatorics in fractal geometry. This can make it challenging to learn the methods.
- In an upcoming article, P.S-H. Wang will present a simple proof of Bourgain's discretized projection theorem - we hope this will be a useful tool for the community to see additive combinatorics in action in a key fractal-geometric setting.

KORK ERKEY EL POLO

- Additive combinatorics methods have had a profound impact in fractal geometry.
- A number of basic tools (Plünnecke-Ruzsa, Balog-Szemerédi-Gowers, sum-product, Freiman and variants) appear in many different contexts.
- There are very few direct applications of additive combinatorics in fractal geometry. This can make it challenging to learn the methods.
- In an upcoming article, P.S-H. Wang will present a simple proof of Bourgain's discretized projection theorem - we hope this will be a useful tool for the community to see additive combinatorics in action in a key fractal-geometric setting.
- Additive combinatorics methods have had a profound impact in fractal geometry.
- A number of basic tools (Plünnecke-Ruzsa, Balog-Szemerédi-Gowers, sum-product, Freiman and variants) appear in many different contexts.
- There are very few direct applications of additive combinatorics in fractal geometry. This can make it challenging to learn the methods.
- In an upcoming article, P.S-H. Wang will present a simple proof of Bourgain's discretized projection theorem - we hope this will be a useful tool for the community to see additive combinatorics in action in a key fractal-geometric setting.