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Lecture 4: Sum-product and applications.
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Sum-product principle

Heuristic Principle

If A is a finite subset of a Abelian ring Z, then one of the
following must hold:

© Ais “dense” in a finite sub-ring of Z.
® A+ Ais “much larger” than A.
©®© A.Ais “much larger” than A.

Conjecture
If A C R is finite, then

max {|A+ Al |A- A} >. |AP.
Remark

The best known current exponent (in place of 2) is slightly
larger than 4 /3.
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No direct sum-product for Hausdorff dimension

Lemma
For any s € (0,1), there exists a compact set A C R such that

dimH(A + A) = dimH(A . A) = dimH(A) = S.

Proof.
Idea: construct A so that it looks like an arithmetic progression

at some scales, and like a geometric progression at a
complementary set of scales. O



No direct discretized sum-product

Example
Let A=[1,14/9]. Then

A+A=[1,1+2V5,
A-A=[1,142V5+4

SO
A+ Als ~ |A- Als ~ |Als ~ 57172,
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What is going on?

¢ For Hausdorff dimension, the issue is that different
behaviour can happen at different scales (this depends on
the existence of infinitely many scales).

e For the discretized version, the issue is that the set may be
too concentrated in an interval.

* Both issues can be addressed by modifying the problem in
a suitable way, leading to an extremely rich theory.
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Definition
Aset Ac B90,1)is called a (6, s, K)-set if for every r € [4, 1]
and every x € R?, we have

AN B(x,r)|s < K-r°-|As.

® (4, s)-sets with s € (0, d) are not concentrated in small
balls. This strongly excludes any set that looks like
[1,1+ /4] (take r = V/4).

e Taking r = & shows that |A| > K—1575.

¢ This definition is a variant of the notion of (9, s)-sets
introduced by N. Katz and T. Tao in 2001. It is inspired by
Frostman’s Lemma.

¢ One can think of (4, s)-set as sets of “Hausdorff dimension
s at scale ¢”
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The discretized sum-product problem

Conjecture (Katz-Tao 2001)

LetAC [0,1] be a (4,8, K) setwith0 < s < 1. Then there is a
constant e = £(s) > 0 such that

max{|A+ Al5, |A- Ajs} > C(K) - 675

Theorem (Bourgain 2003)
The Katz-Tao conjecture is true.
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The Erdds-Volkmann sub-ring problem

Theorem (Erdds-Volkmann 1966)

For any 0 < s < 1 there is a Borel additive subgroup A C R with
dimy(A) = s. The same is true for multiplicative subgroup.

Conjecture (Erdds-Volkmann 1966)

IfAC R is aBorel sub-ring A+ A=AandA-A=A), then
dimy(A) € {0,1}.

Theorem (Bourgain 2003 using sum-product; Edgar-Miller
2002)

The conjecture is true.
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Remarks on discretized sum-product

In applications, one often needs the conclusion to hold
under much weaker non-concentration assumptions on A.
This was proved by Bourgain-Gamburd (2009).

Bourgain’s original proof was extremely complicated. It
was simplified by Borgain in 2010, using the inverse
theorem for sumsets we saw last time, but it remained very
involved.

A much simpler and quantitative proof was obtained by

L. Guth-N. Katz-J. Zahl (2021). It still uses additive
combinatorics.

Very recently, very strong bounds were obtained by

Y. Fu-K. Ren, T. Orponen-P.S., A. Mathe-W. O-Regan and
K. Ren-H. Wang. Most of these results ultimately use the
original non-quantitative version!
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Theorem (Y. Fu-K. Ren 2021)
Let AcC [0,1] be a (d,s,K) set withs € [2/3,1). Then
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Current best bound on discretized sum-product

Theorem (Y. Fu-K. Ren 2021)
Let AcC [0,1] be a (d,s,K) set withs € [2/3,1). Then

max{|A + Als, |A- Als} > C(K,¢) -6~ "2 <.

This is sharp.

Theorem (K. Ren-H. Wang 2023)
Let AcC [0,1] be a (4, s, K) set withs € (0,2/3]. Then

max{|A+ Als,|A-Als} > C(K,e) - saste



Outline

® Applications: Fourier decay



Fourier transform of measures

Definition
Let 1 be a finite Borel measure on R?. The Fourier transform of
u is the function

t) = / & 27 gy (x).



Fourier transform of measures

Definition
Let 1 be a finite Borel measure on R?. The Fourier transform of
w is the function

t) = / & 27 gy (x).

® The decay of |zi(t)| as |t| — oo gives significant information
about p.



Fourier transform of measures

Definition
Let 1 be a finite Borel measure on R?. The Fourier transform of
w is the function

t) = / & 27 gy (x).

® The decay of |zi(t)| as |t| — oo gives significant information
about .

¢ We say that p has power Fourier decay if |u(f)| < C - |t|=“
forsome a >0and C > 1.



Fourier transform of measures

Definition
Let 1 be a finite Borel measure on R?. The Fourier transform of
w is the function

t) = / & 27 gy (x).

® The decay of |zi(t)| as |t| — oo gives significant information
about p.

e We say that ; has power Fourier decay if |fi(t)| < C - [t| =
forsome a >0and C > 1.

* Measures with power Fourier decay have many nice

properties; for example, p almost all points are normal to
all bases.



Multiplicative convolutions

Definition
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Multiplicative convolutions

Definition
Let u1q, ..., uk be finite Borel measures on [1,2]. The
multiplicative convolution of the p; is the push forward of
pq X -+ X g viathe map (xy,...,Xg) — X1 --- Xk. It is denoted
b
Y por B B g
More explicitly,
[ 100 dn - B) = [ -0 dn(30) - 0

Remark
If we replace x by +, we get the usual convolution of measures.



Fourier decay of multiplicative convolutions

Theorem (Bourgain 2010)

Forevery s € (0,1) there is k = k(s) € N such that the
following holds.

Let uuq, ..., uk be finite Borel measures on [1, 2] satisfying the
Frostman condition

pi(B(x,r)) < Cr®.

Then, 141 X - - - X uy has power Fourier decay.
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Remarks on Bourgain’s Theorem

e Bourgain’s Theorem is a (non-trivial) consequence of the
discretized sum-product theorem. The idea is that the
Fourier transform has “additive structure”, and
multiplicative convolution introduces “multiplicative
structure”; the combination of both produces decay.

® Bourgain conjectured that ks > 1 is enough. This was
proved by N. de Saxcé-T. Orponen-P.S. (2023).

e Qur quantitative result has the following corollary: let
Ai,..., Ak be Borel sets on R such that

K
> " dimu(A) > 1.
j=1

Then, the additive subgroup generated by Ay - - - Ak is R.
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Fourier decay of dynamically defined measures

¢ J. Bourgain-S. Dyatlov used the Fourier decay of
multiplicative convolutions to prove power decay for an
important class of dynamically defined measures
(Patterson-Sullivan measures on limits sets of Schottky
groups).

¢ The method was extended and adapted by many other
authors. For example, T. Sahlsten-C. Stevens proved that
self-conformal measures for nolinear analytic iterated
function systems have power Fourier decay.

e There are many other methods to prove Fourier decay of
dynamicall defined measures. Some use additive
combinatorics but not the sum-product theorem. Some do
not use additive combinatorics at all.

¢ Nonlinearity is crucial in most of these results. The
problem of power Fourier decay for self-similar measures
is extremely hard.
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Radial projections

Definition
Given a set A ¢ RY and a point x € R, the radial projection of
Afrom x is the set

() ={ =5 v e AL

¢ The radial projection 74 (A) is a subset of the unit sphere
S9-1. ltis the set of directions in which the points of A are
seen from x.

¢ Radial projections generalize orthogonal projections: if x is
a point at infinite in direction v, then mx(A) is the
orthogonal projection of A onto the hyperplane orthogonal
to v. Alternatively, one can convery my to an orthogonal
projection by means of a projective transformation.
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Dimension of radial projections

Problem
Let A C R? be a Borel set. What is

supdimy mx(A)?
x€eA

¢ If Ais contained in a line, then 74 (A) is a singleton. So one
needs to assume that A is not contained in a line.

* The map 7y is Lipschitz outside a small neighbourhood of
X, SO dimy 7TX(A) < dimy A.
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Theorem (T. Orponen 2015)
Let A be a Borel set which is not contained in a line. Then
1

supdimy mx(A) > = dimy A.
X€EA 2

Remark

If there was a Borel sub-ring of the reals X of dimension s/2,
then the bound would be sharp: take A= X x X. Then
dimy(A) > s. But up to an arctan change of coordinates, if

X = (xq1,X2) € A, then

_X—X1

X~ x C X.

x(A)

This suggests a connection between radial projections and
sum-product.
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Sharp radial projections in the plane

Theorem (T. Orponen, P.S. and H. Wang 2023)
Let A be a Borel set which is not contained in a line. Then

supdimy mx(A) > min{dimy A, 1}.
XEA

Corollary
Let X C R be a Borel set. Then

, X-X . .
dimy <X—X> > min{2dimy X, 1}.

Proof.
Apply the theorem to A = X x X, and the map arctan to the
radial projections. O
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Remarks on sharp radial projections

The proof of the sharp bound ultimately depends on an
iterative application of the discretized projection theorem,
which is a close cousin of the discretized sum-product
theorem.

The Theorem can be seen as a far reaching generalization
of Kaufman’s projection theorem, Orponen’s radial
projection theorem, and the discretized sum-product
theorem.

The theorem already has found a large number of
applications (one of them will be discussed shortly), in
fractal geometry, harmonic analysis, and combinatorics.

K. Ren (2023) generalized the result to higher dimensions.
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Furstenberg sets

Definition

The set of lines in R? is a 2-dimensional manifold, so there is a
notion of Hausdorff dimension for sets of lines.

Alternatively, we can identify the line y = ax + b with (&, b) € R?
and consider the set of (non-vertical) lines as a subset of R?.

Definition

A set F C R? is called an (s, t)-Furstenberg set if there exists a
set of lines £ with dimy(£) = t such that for every line L € L,
the intersection F N L has dimension at least s.
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Dimension of Furstenberg sets

Problem
Let F be an (s, t)-Furstenberg set in R?. What is the smallest

possible dimension of F?
© The problem arose from work of Furstenberg in the 1960s,
but was first formulated in print by T. Wolff in an influential

survey from 1999.

® The problem is again related to sum-product (for example,
if X is a sub-ring of dimension 1/2, then X x X is a “small”
(1,1/2)-Furstenberg set).

® The connection with sum-product was made more explicit
by N. Katz and T. Tao in 2001.



Sharp Furstenberg bounds

Theorem (T. Orponen-P.S. (2023) + K. Ren-H. Wang
(2023))

Let F be an (s, t)-Furstenberg set in R?. Then

dimHFzmin{S+t,382+t7S+1}.

This is sharp.



Logic of the proof

Sum-product = e-improved Furstenberg set estimates
— radial projections
— asymmetric sum-product
— projections of regular sets
= Furstenberg sets with regular line sets
= general Furstenberg sets

and

High-low method = Furstenberg for semi-well spaced lines
= general Furstenberg sets
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Conclusion

Additive combinatorics methods have had a profound
impact in fractal geometry.

A number of basic tools (Plinnecke-Ruzsa,
Balog-Szemerédi-Gowers, sum-product, Freiman and
variants) appear in many different contexts.

There are very few direct applications of additive
combinatorics in fractal geometry. This can make it
challenging to learn the methods.

In an upcoming article, P.S-H. Wang will present a simple
proof of Bourgain’s discretized projection theorem - we
hope this will be a useful tool for the community to see
additive combinatorics in action in a key fractal-geometric
setting.



	The discretized sum-product problem
	Applications: Fourier decay
	Applications: radial projections
	Applications: Furstenberg sets
	Conclusion

