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Sum-product principle

Heuristic Principle
If A is a finite subset of a Abelian ring Z , then one of the
following must hold:

1 A is “dense” in a finite sub-ring of Z .
2 A + A is “much larger” than A.
3 A.A is “much larger” than A.

Conjecture
If A ⊂ R is finite, then

max
{
|A + A|, |A · A|

}
≫ε |A|2−ε.

Remark
The best known current exponent (in place of 2) is slightly
larger than 4/3.
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No direct sum-product for Hausdorff dimension

Lemma
For any s ∈ (0,1), there exists a compact set A ⊂ R such that

dimH(A + A) = dimH(A · A) = dimH(A) = s.

Proof.
Idea: construct A so that it looks like an arithmetic progression
at some scales, and like a geometric progression at a
complementary set of scales.
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No direct discretized sum-product

Example
Let A = [1,1 +

√
δ]. Then

A + A = [1,1 + 2
√
δ],

A · A = [1,1 + 2
√
δ + δ]

so
|A + A|δ ∼ |A · A|δ ∼ |A|δ ∼ δ−1/2.



What is going on?

• For Hausdorff dimension, the issue is that different
behaviour can happen at different scales (this depends on
the existence of infinitely many scales).

• For the discretized version, the issue is that the set may be
too concentrated in an interval.

• Both issues can be addressed by modifying the problem in
a suitable way, leading to an extremely rich theory.
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(δ, s)-sets

Definition
A set A ⊂ Bd(0,1) is called a (δ, s,K )-set if for every r ∈ [δ, 1]
and every x ∈ Rd , we have

|A ∩ B(x , r)|δ ≤ K · r s · |A|δ.

• (δ, s)-sets with s ∈ (0,d) are not concentrated in small
balls. This strongly excludes any set that looks like
[1,1 +

√
δ] (take r =

√
δ).

• Taking r = δ shows that |A| ≥ K−1δ−s.
• This definition is a variant of the notion of (δ, s)-sets

introduced by N. Katz and T. Tao in 2001. It is inspired by
Frostman’s Lemma.

• One can think of (δ, s)-set as sets of “Hausdorff dimension
s at scale δ”
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The discretized sum-product problem

Conjecture (Katz-Tao 2001)
Let A ⊂ [0,1] be a (δ, s,K ) set with 0 < s < 1. Then there is a
constant ε = ε(s) > 0 such that

max
{
|A + A|δ, |A · A|δ

}
≥ C(K ) · δ−s−ε.

Theorem (Bourgain 2003)
The Katz-Tao conjecture is true.
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The Erdős-Volkmann sub-ring problem

Theorem (Erdős-Volkmann 1966)
For any 0 < s < 1 there is a Borel additive subgroup A ⊂ R with
dimH(A) = s. The same is true for multiplicative subgroup.

Conjecture (Erdős-Volkmann 1966)
If A ⊂ R is a Borel sub-ring (A + A = A and A · A = A), then
dimH(A) ∈ {0,1}.

Theorem (Bourgain 2003 using sum-product; Edgar-Miller
2002)
The conjecture is true.
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Remarks on discretized sum-product

• In applications, one often needs the conclusion to hold
under much weaker non-concentration assumptions on A.
This was proved by Bourgain-Gamburd (2009).

• Bourgain’s original proof was extremely complicated. It
was simplified by Borgain in 2010, using the inverse
theorem for sumsets we saw last time, but it remained very
involved.

• A much simpler and quantitative proof was obtained by
L. Guth-N. Katz-J. Zahl (2021). It still uses additive
combinatorics.

• Very recently, very strong bounds were obtained by
Y. Fu-K. Ren, T. Orponen-P.S., A. Mathe-W. O-Regan and
K. Ren-H. Wang. Most of these results ultimately use the
original non-quantitative version!
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Current best bound on discretized sum-product

Theorem (Y. Fu-K. Ren 2021)
Let A ⊂ [0,1] be a (δ, s,K ) set with s ∈ [2/3,1). Then

max
{
|A + A|δ, |A · A|δ

}
≥ C(K , ε) · δ−

s+1
2 +ε.

This is sharp.

Theorem (K. Ren-H. Wang 2023)
Let A ⊂ [0,1] be a (δ, s,K ) set with s ∈ (0,2/3]. Then

max
{
|A + A|δ, |A · A|δ

}
≥ C(K , ε) · δ−

5
4 s+ε.
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Fourier transform of measures

Definition
Let µ be a finite Borel measure on Rd . The Fourier transform of
µ is the function

µ̂(t) =
∫

e−2πix ·t dµ(x).

• The decay of |µ̂(t)| as |t | → ∞ gives significant information
about µ.

• We say that µ has power Fourier decay if |µ̂(t)| ≤ C · |t |−α

for some α > 0 and C ≥ 1.
• Measures with power Fourier decay have many nice

properties; for example, µ almost all points are normal to
all bases.
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Multiplicative convolutions

Definition
Let µ1, . . . , µk be finite Borel measures on [1,2]. The
multiplicative convolution of the µi is the push forward of
µ1 × · · · × µk via the map (x1, . . . , xk ) 7→ x1 · · · xk . It is denoted
by

µ1 ⊠ · · ·⊠ µk .

More explicitly,∫
f (x)d(µ1 ⊠ · · ·⊠ µk )(x) =

∫
f (x1 · · · xk )dµ1(x1) · · · dµk (xk ).

Remark
If we replace × by +, we get the usual convolution of measures.
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Fourier decay of multiplicative convolutions

Theorem (Bourgain 2010)
For every s ∈ (0,1) there is k = k(s) ∈ N such that the
following holds.
Let µ1, . . . , µk be finite Borel measures on [1,2] satisfying the
Frostman condition

µi(B(x , r)) ≤ C r s.

Then, µ1 ⊠ · · ·⊠ µk has power Fourier decay.



Remarks on Bourgain’s Theorem

• Bourgain’s Theorem is a (non-trivial) consequence of the
discretized sum-product theorem. The idea is that the
Fourier transform has “additive structure”, and
multiplicative convolution introduces “multiplicative
structure”; the combination of both produces decay.

• Bourgain conjectured that ks > 1 is enough. This was
proved by N. de Saxcé-T. Orponen-P.S. (2023).

• Our quantitative result has the following corollary: let
A1, . . . ,Ak be Borel sets on R such that

k∑
j=1

dimH(Aj) > 1.

Then, the additive subgroup generated by A1 · · ·Ak is R.
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Fourier decay of dynamically defined measures

• J. Bourgain-S. Dyatlov used the Fourier decay of
multiplicative convolutions to prove power decay for an
important class of dynamically defined measures
(Patterson-Sullivan measures on limits sets of Schottky
groups).

• The method was extended and adapted by many other
authors. For example, T. Sahlsten-C. Stevens proved that
self-conformal measures for nolinear analytic iterated
function systems have power Fourier decay.

• There are many other methods to prove Fourier decay of
dynamicall defined measures. Some use additive
combinatorics but not the sum-product theorem. Some do
not use additive combinatorics at all.

• Nonlinearity is crucial in most of these results. The
problem of power Fourier decay for self-similar measures
is extremely hard.
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Radial projections

Definition
Given a set A ⊂ Rd and a point x ∈ Rd , the radial projection of
A from x is the set

πx(A) =
{

y − x
|y − x |

: y ∈ A \ {x}
}
.

• The radial projection πx(A) is a subset of the unit sphere
Sd−1. It is the set of directions in which the points of A are
seen from x .

• Radial projections generalize orthogonal projections: if x is
a point at infinite in direction v , then πx(A) is the
orthogonal projection of A onto the hyperplane orthogonal
to v . Alternatively, one can convery πx to an orthogonal
projection by means of a projective transformation.
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Dimension of radial projections

Problem
Let A ⊂ R2 be a Borel set. What is

sup
x∈A

dimH πx(A)?

• If A is contained in a line, then πx(A) is a singleton. So one
needs to assume that A is not contained in a line.

• The map πx is Lipschitz outside a small neighbourhood of
x , so dimH πx(A) ≤ dimH A.
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Theorem (T. Orponen 2015)
Let A be a Borel set which is not contained in a line. Then

sup
x∈A

dimH πx(A) ≥
1
2
dimH A.

Remark
If there was a Borel sub-ring of the reals X of dimension s/2,
then the bound would be sharp: take A = X × X. Then
dimH(A) ≥ s. But up to an arctan change of coordinates, if
x = (x1, x2) ∈ A, then

πx(A) =
X − x1
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⊂ X .

This suggests a connection between radial projections and
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Sharp radial projections in the plane

Theorem (T. Orponen, P.S. and H. Wang 2023)
Let A be a Borel set which is not contained in a line. Then

sup
x∈A

dimH πx(A) ≥ min{dimH A,1}.

Corollary
Let X ⊂ R be a Borel set. Then

dimH

(
X − X
X − X

)
≥ min{2 dimH X ,1}.

Proof.
Apply the theorem to A = X × X , and the map arctan to the
radial projections.
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Remarks on sharp radial projections

• The proof of the sharp bound ultimately depends on an
iterative application of the discretized projection theorem,
which is a close cousin of the discretized sum-product
theorem.

• The Theorem can be seen as a far reaching generalization
of Kaufman’s projection theorem, Orponen’s radial
projection theorem, and the discretized sum-product
theorem.

• The theorem already has found a large number of
applications (one of them will be discussed shortly), in
fractal geometry, harmonic analysis, and combinatorics.

• K. Ren (2023) generalized the result to higher dimensions.
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Furstenberg sets

Definition
The set of lines in R2 is a 2-dimensional manifold, so there is a
notion of Hausdorff dimension for sets of lines.
Alternatively, we can identify the line y = ax + b with (a,b) ∈ R2

and consider the set of (non-vertical) lines as a subset of R2.

Definition
A set F ⊂ R2 is called an (s, t)-Furstenberg set if there exists a
set of lines L with dimH(L) = t such that for every line L ∈ L,
the intersection F ∩ L has dimension at least s.
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Dimension of Furstenberg sets

Problem
Let F be an (s, t)-Furstenberg set in R2. What is the smallest
possible dimension of F?

1 The problem arose from work of Furstenberg in the 1960s,
but was first formulated in print by T. Wolff in an influential
survey from 1999.

2 The problem is again related to sum-product (for example,
if X is a sub-ring of dimension 1/2, then X × X is a “small”
(1,1/2)-Furstenberg set).

3 The connection with sum-product was made more explicit
by N. Katz and T. Tao in 2001.
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Sharp Furstenberg bounds

Theorem (T. Orponen-P.S. (2023) + K. Ren-H. Wang
(2023))
Let F be an (s, t)-Furstenberg set in R2. Then

dimH F ≥ min

{
s + t ,

3s + t
2

, s + 1
}
.

This is sharp.



Logic of the proof

Sum-product =⇒ ε-improved Furstenberg set estimates
=⇒ radial projections
=⇒ asymmetric sum-product
=⇒ projections of regular sets
=⇒ Furstenberg sets with regular line sets
=⇒ general Furstenberg sets

and

High-low method =⇒ Furstenberg for semi-well spaced lines
=⇒ general Furstenberg sets
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Conclusion

• Additive combinatorics methods have had a profound
impact in fractal geometry.

• A number of basic tools (Plünnecke-Ruzsa,
Balog-Szemerédi-Gowers, sum-product, Freiman and
variants) appear in many different contexts.

• There are very few direct applications of additive
combinatorics in fractal geometry. This can make it
challenging to learn the methods.

• In an upcoming article, P.S-H. Wang will present a simple
proof of Bourgain’s discretized projection theorem - we
hope this will be a useful tool for the community to see
additive combinatorics in action in a key fractal-geometric
setting.
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