
Additive Combinatorics Methods in Fractal
Geometry, Lecture 3

Pablo Shmerkin

Department of Mathematics
The University of British Columbia

School on Dimension Theory of Fractals, Erdős Center,
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Lecture 3: Discretized Fractal Geometry
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Recap

• Plünnecke-Ruzsa Inequalities: if |A + B| ≤ K |A|, then
|nB| ≤ K n|A|.

• Balog-Szemerédi-Gowers Theorem: if E(A,A) ≥ |A|3/K ,
then there is a A′ ⊂ A such that |A′| ≥ c|A|/K and
|A′ + A′| ≤ CK 4|A′|.

• Freiman’s Theorem: if |A + A| ≤ K |A|, then there is a GAP
P such that A ⊂ P, where |P|/|A| and rank(P) are
bounded in terms of K .

• Szemerédi’s Theorem: every set of integers of positive
density contains arbitrarily long arithmetic progressions.
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From Combinatorics to Fractal Geometry

• Additive Combinatorics studies the additive structure of
finite sets in Abelian groups.

• Fractal Geometry studies properties of (Borel) sets and
measures in metric spaces.

• To move between one and the other, there is a key
“intermediate” field: Discretized (Fractal) Geometry. It
consists of studying the combinatorial properties of sets
and measures at a fixed small resolution δ.
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Discretizing a set

Given a set A ⊂ Rd , we can discretize it at resolution δ > 0 in
several ways:

• A → δ-neighborhood of A.
• A → maximal δ-separated subset of A.
• A →minimal cover of A by δ-balls.
• A → union of δ-dyadic cubes that intersect A.
• A → corners of δ-dyadic cubes of side length δ that

intersect A.

Definition

A(m) =
⋃

{2−m(j1, . . . , jd) : A ∩ Im(j1, . . . , jd) ̸= 0},

where Im(j1, . . . , jd) is the dyadic cube

Im(j1, . . . , jd) = [2−mj1,2−m(j1 + 1))× · · · × [2−mjd ,2−m(jd + 1)).
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From covering number to dimension

Definition
Given A ⊂ Rd , and a dyadic δ > 0, the δ-covering number |A|δ
(or box counting number) is the number of dyadic cubes of side
length δ that intersect A.

• By definition, the box counting (Minkowski) dimension of A
is the growth rate of |A|δ as δ → 0:

dimB(A) = lim
δ→0

log |A|δ
log(1/δ)

.

• For Hausdorff dimension, the situation is more subtle, but
one can still relate the Hausdorff dimension of A to the
growth rate of |A′|δ for certain sets A′.
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Hausdorff dimension via covering numbers

Lemma
Let µ be a measure supported on A ⊂ Rd . If

µ(A′) ≥ m−2 =⇒ |A′|2−m ≥ 2sm,

then dimH(A) ≥ s.

Proof.
Let {B(xj , rj)} be a covering of A with rj small. Let

Am =
⋃

{B(xj , rj) : 2−m < rj ≤ 21−m}.

By dyadic pigeonholing, there is m with µ(Am) ≥ m−2. Then
|Am|2−m ≥ 2sm, and it follows that∑

j

r s
j ≳ 2sm · 2−sm = 1 > 0.
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From discrete to discretized

Remark
In some cases (but definitely not in all cases!) one can extend
results from the discrete to the discretized realm simply by
considering a finite approximation such as A(m) of the objects
involved.



Discretized Plünnecke-Ruzsa

Theorem (Plünnecke Inequalities, 1969)
Suppose |A + A| ≤ K |A|. Then |nA| ≤ K n|A|.

More generally, if |A + B| ≤ K |A|, then |nB| ≤ K n|A|.

Corollary
Let A ⊂ Rd be bounded. Suppose |A + A|δ ≤ K |A|δ. Then
|nA|δ ≤ Cn · K n · |A|δ.

More generally, if |A + B|δ ≤ K |A|δ, then |nB|δ ≤ Cn · K n · |A|δ.

Proof.
Apply the discrete version to A(m),B(m) (+ some
calculations).
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Discretized additive energy

Definition
Let A,B ⊂ Rd be bounded sets and δ = 2−m. We define the
δ-discretized additive energy Eδ(A,B) of A and B by

Eδ(A,B) = E(A(m),B(m)).

Lemma

Eδ(A,B) ∼
∣∣∣(x1, x2, y1, y2) ∈ A2 × B2 : |x1 + x2 − y1 − y2| ≤ δ

∣∣∣
δ
.
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Discretized BSG

Corollary (of BSG)
There are constants c,C > 0 such that the following holds.
Suppose A ⊂ Rd is bounded, and

Eδ(A,A) ≥
|A|3δ
K

.

Then there exists A′ ⊂ A such that:

|A′|δ≥
c|A|δ

K
,

|A′ + A′|δ≤ CK 4|A′|δ.
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Discretized Freiman?

• Recall that Freiman’s Theorem says that if |A + A| ≤ K |A|,
then A is densely contained in a GAP of bounded rank.

• Freiman’s Theorem also extends in a straightforward way
to δ-covering numbers.

• However, in applications to fractal geometry, we often have
|A|δ ∼ δ−s for some s > 0, and we are interested in the
case where K = δ−ε = |A|−ε/s

δ .
• Even the best quantitative known version of Freiman’s

Theorem does not give any information whatsoever when
K grows polynomially in the size of A.

• Bourgain proved a “local” version of Freiman’s Theorem in
this “fractal setting” in the real line. Extensions and variants
were later given by M. Hochman, P.S. and P. Varju.
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Tree representation of sets

• Let ∆ = 2−k be a fixed dyadic scale.
• Given A ⊂ [0,1)d , we can represent it as a tree T∆(A)

whose vertices of level s are the dyadic cubes of side
length ∆s that intersect A. The root of the tree is the unit
cube [0,1)d .

• In most cases, we only care about A at some resolution
2−km. In this case, the tree has m levels.
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Uniform subsets

Definition
We say that a set A is ∆-uniform at scale ∆m if the associated
tree T∆(A) has the property that each vertex of level s has the
same number of Rs of children.

In other words, for every dyadic cube I of size ∆s, we have

|A ∩ I|∆s+1 = Rs.

We call Rs the branching numbers of A.



Uniformization

The following uniformization lemma is extremely useful.

Lemma
Let A ⊂ [0,1)d be a set and let ∆ ∈ 2−N be a fixed scale.
For every m ∈ N, there exists a subset A′ ⊂ A such that:

1 A′ is ∆-uniform at scale ∆m.
2 |A′|∆m ≥ (2 log(1/∆))−∆m|A|∆m .

Remark
In many cases, the factor (2 log(1/∆))−∆m is harmless
(because ∆m ≪ m). So the lemma says that that arbitrary sets
contain “dense” uniform subsets.
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Bourgain’s inverse theorem

Theorem (Bourgain, 2010)
Given ε > 0, there exist η > 0 and ∆ ∈ 2−N such that the
following holds for all large m ∈ N.
Let A ⊂ [0,1) be a set such that, writing δ = ∆m,

|A + A|δ ≤ δ−η|A|δ.

Then there exists a ∆-uniform set A′ ⊂ A at scale δ such that:
1 |A′|δ ≥ δε|A|δ.
2 Let (Rs)

m−1
s=0 be the branching numbers of A′. Then, for all

s ∈ {0, . . . ,m − 1}, either Rs = 0 or Rs ≥ |∆|−(1−ε).
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Remarks on Bourgain’s Theorem

• The theorem can be summarized as saying: if A has small
doubling in an exponential sense, then (after passing to a
“dense” uniform subset) locally it looks either like a point or
like an interval.

• The proof is very short (but very clever); it uses
Plünnecke-Ruzsa Inequalities.

• The quantitative dependency of η on ε can be made
explicit but is very poor.

• Since intervals ressemble arithmetic progressions, we can
also say that A locally ressembles an AP.



Remarks on Bourgain’s Theorem

• The theorem can be summarized as saying: if A has small
doubling in an exponential sense, then (after passing to a
“dense” uniform subset) locally it looks either like a point or
like an interval.

• The proof is very short (but very clever); it uses
Plünnecke-Ruzsa Inequalities.

• The quantitative dependency of η on ε can be made
explicit but is very poor.

• Since intervals ressemble arithmetic progressions, we can
also say that A locally ressembles an AP.



Remarks on Bourgain’s Theorem

• The theorem can be summarized as saying: if A has small
doubling in an exponential sense, then (after passing to a
“dense” uniform subset) locally it looks either like a point or
like an interval.

• The proof is very short (but very clever); it uses
Plünnecke-Ruzsa Inequalities.

• The quantitative dependency of η on ε can be made
explicit but is very poor.

• Since intervals ressemble arithmetic progressions, we can
also say that A locally ressembles an AP.



Remarks on Bourgain’s Theorem

• The theorem can be summarized as saying: if A has small
doubling in an exponential sense, then (after passing to a
“dense” uniform subset) locally it looks either like a point or
like an interval.

• The proof is very short (but very clever); it uses
Plünnecke-Ruzsa Inequalities.

• The quantitative dependency of η on ε can be made
explicit but is very poor.
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Towards higher dimensions

• The proof of Bourgain’s Theorem is very specific to
dimension 1.

• In higher dimensions, M. Hochman (using completely
different methods) developed a very general inverse
theorem using the notion of entropy.

• In higher dimension d , the statement necessarily has to be
more involved: if A is a piece of a k -dimesional plane for
1 ≤ k ≤ d − 1, then

|A + A|δ ∼ |A|δ,

but A has “intermediate branching”.
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Inverse sumset theorem in higher dimension

Theorem (P.S. 2023, based on M. Hochman 2017)
Given ε > 0, there exist η > 0 and ∆ ∈ 2−N such that the
following holds for all large m ∈ N.
Let A ⊂ [0,1)d be a set such that, writing δ = ∆m,

|A + A|δ ≤ δ−η|A|δ.

Then there exists a ∆-uniform set A′ ⊂ A at scale δ such that:
1 |A′|δ ≥ δε|A|δ.
2 Let (Rs)

m−1
s=0 be the branching numbers of A′. Then, for all

s ∈ {0, . . . ,m − 1}, there exists an integer
ks ∈ {0,1, . . . ,d} such that:
(a) Rs ≥ ∆−(1−ε)ks .
(b) For each dyadic cube I of size length ∆s, there is a

ks-dimensional affine subspace WI such that

A′ ∩ I ⊂ WI
(
Cd∆

s+1).
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Remarks on the inverse theorem

• The theorem can be summarized as saying that if A has
small doubling in an exponential sense, then (after passing
to a “dense” uniform subset) locally it looks like a
k -dimensional plane for some k depending only on the
scale.

• O. Khalil (2023) proved a related inverse theorem, also
based on Hochmans’ work, but with a conceptually weaker
conclusion.

• Once again, since pieces of planes resemble arithmetic
progressions, there is a heuristic conncetion to Freiman’s
Theorem.
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Inverse theorem for convolutions: motivation

• Recall that Balog-Szemerédi-Gowers can be seen as
“reducing” inverse theorems for convolutions to inverse
theorems for sumsets.

• We have just seen inverse theorems for sumsets in the
“discretized fractal” setting.

• Each of them leads to an inverse theorem for convolutions
based on Balog-Szemerédi-Gowers (the reduction is not
trivial, but BSG is the key tool).
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Inverse theorem for Lq norms of convolutions in R

Theorem (Bourgain, 2010 again)
Given ε > 0, there exist η > 0 and ∆ ∈ 2−N such that the
following holds for all large m ∈ N.
Let A ⊂ [0,1) be a set such that, writing δ = ∆m,

|A + A|δ ≤ δ−η|A|δ.

Then there exists a ∆-uniform set A′ ⊂ A at scale δ such that:
1 |A′|δ ≥ δε|A|δ.
2 Let (Rs)

m−1
s=0 be the branching numbers of A′. Then, for all

s ∈ {0, . . . ,m − 1}, either Rs = 0 or Rs ≥ |∆|−(1−ε).
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Inverse theorem for Lq norms of convolutions in R

Theorem (P.S. 2019)
Given ε > 0, p ∈ (1,∞), there exist η > 0 and ∆ ∈ 2−N such
that the following holds for all large m ∈ N.
Write δ = ∆m. Let µ be a probability measure on ∆mZ ∩ [0,1)
such that,

∥µ ∗ µ∥p ≥ δη∥µ∥p∥µ∥1.

Then there exists a ∆-uniform set A′ at scale δ such that:
1 µ(A′) ≥ δε.
2 Let (Rs)

m−1
s=0 be the branching numbers of A′. Then, for all

s ∈ {0, . . . ,m − 1}, either Rs = 0 or Rs ≥ |∆|−(1−ε).
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Remarks and extensions

• Even though additive energy corresponds to p = 2, the
statement for general p can be reduced to p = 2 via
Hölder’s inequality.

• In applications, one often needs to take p → ∞.
• Using the asymmetric BSG theorem, the result can be

extended to the case of convolutions of two different
measures.

• The higher dimensional version of the sumset inverse
theorem yields also a higher dimensional version of the
convolution inverse theorem.
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Bernoulli convolutions

Definition
The Bernoulli convolution (BC) νλ is the self-similar measure
corresponding to the IFS {λx − 1, λx + 1} with weights
(1/2,1/2).
Alternatively, νλ is the distribution of the random sum∑∞

n=1 ±λn, where the signs are chosen independently with
probability 1/2.

1 BCs are a central object of study in fractal geometry, with
many deep connections to number theory.

2 When λ ∈ (0,1/2), νλ is supported on a Cantor set. Then
λ ∈ [1/2,1), the topological support of νλ is an interval.

3 The key problem is to understand the smoothness
properties of νλ for λ ∈ (1/2,1).



Bernoulli convolutions

Definition
The Bernoulli convolution (BC) νλ is the self-similar measure
corresponding to the IFS {λx − 1, λx + 1} with weights
(1/2,1/2).
Alternatively, νλ is the distribution of the random sum∑∞

n=1 ±λn, where the signs are chosen independently with
probability 1/2.

1 BCs are a central object of study in fractal geometry, with
many deep connections to number theory.

2 When λ ∈ (0,1/2), νλ is supported on a Cantor set. Then
λ ∈ [1/2,1), the topological support of νλ is an interval.

3 The key problem is to understand the smoothness
properties of νλ for λ ∈ (1/2,1).



Bernoulli convolutions

Definition
The Bernoulli convolution (BC) νλ is the self-similar measure
corresponding to the IFS {λx − 1, λx + 1} with weights
(1/2,1/2).
Alternatively, νλ is the distribution of the random sum∑∞

n=1 ±λn, where the signs are chosen independently with
probability 1/2.

1 BCs are a central object of study in fractal geometry, with
many deep connections to number theory.

2 When λ ∈ (0,1/2), νλ is supported on a Cantor set. Then
λ ∈ [1/2,1), the topological support of νλ is an interval.

3 The key problem is to understand the smoothness
properties of νλ for λ ∈ (1/2,1).



Bernoulli convolutions

Definition
The Bernoulli convolution (BC) νλ is the self-similar measure
corresponding to the IFS {λx − 1, λx + 1} with weights
(1/2,1/2).
Alternatively, νλ is the distribution of the random sum∑∞

n=1 ±λn, where the signs are chosen independently with
probability 1/2.

1 BCs are a central object of study in fractal geometry, with
many deep connections to number theory.

2 When λ ∈ (0,1/2), νλ is supported on a Cantor set. Then
λ ∈ [1/2,1), the topological support of νλ is an interval.

3 The key problem is to understand the smoothness
properties of νλ for λ ∈ (1/2,1).



Lq densities of Bernoulli convolutions

Theorem (P.S. 2019)
There exists a set E ⊂ (1/2,1) of zero Hausdorff dimension
such that νλ is absolutely continuous with a density in Lp for all
finite p, for all λ ∈ (1/2,1) \ E.

Theorem (P.Varju 2019)
The BC νλ has Hausdorff dimension 1 for all transcendental
λ ∈ (1/2,1).

Remark
Both result depend on inverse theorems for convolutions. The
work of M. Hochman (2012) was very influential for both results.
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No Szemerédi Theorem for fractals

• In the discrete setting, Szemerédi’s Theorem says that
every set of positive density contains arbitrarily long
arithmetic progressions.

• The most direct analog of “density” in the continuous
setting is “measure”. But it is a simple consequence of the
Lebesgue density lemma that every set of positive
measure contains arbitrarily long arithmetic progressions.

• T. Keleti (1998) constructed compact sets of full Hausdorff
dimension that contain no nontrivial arithmetic
progressions.

• P.S. (2017) constructed compact sets of even full Fourier
dimension that contain no nontrivial arithmetic
progressions.

• So it seems like a “fractal Szemerédi’s Theorem” is
impossible.
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Research directions I

Nevertheless, the study of patterns in fractals is an extremely
active area of research. Some directions include:

• Dimension+structure: even though dimension is not
enough, perhaps some additional structure (randomness,
Fourier decay, etc) may be enough to guarantee
progressions.

• Other notions of size: besides dimension, there are other
notions of “size” for fractals which are better connected to
the existence of patterns: thickness, winning sets, etc.

• Nonlinear patterns: Keleti’s example is strongly based on
the linearity of 3-APs. For nonlinear patterns, perhaps
dimension itself can detect patterns.
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Research directions II

• Abundance of patterns: rather than showing that a set
contains a specific pattern, one can aim to show that it
contains many patterns of a certain type. The Falconer
distance set problem is the most paradigmatic example.

• Set of positive measure: while one can show existence of
patterns in sets of positive measure via Lebesgue density,
this is completely non quantitative, so there are many
interesting quantitative questions to ask.

• Avoidance of patterns: one can study the opposite
problem: construct large sets that avoid patterns of a
certain type.
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Conclusion

• The Plünnecke inequalities and BSG extend to the
discretized setting with almost no changes, and (together
with variants) are important tools in fractal geometry.

• Although Freiman’s Theorem also extends to the
discretized setting, for fractal problems one often needs to
consider sets with polynomially growing doubling, and this
requires “local” inverse theorems.

• While Szemerédi’s Theorem does not directly extend to
fractals, there are many interesting questions about
patterns in fractals that are currently being studied.
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