
LECTURES ON DISORDERED MODELS - EXERCISE ON UNIQUENESS OF THE

GROUND STATE IN THE TWO-DIMENSIONAL RANDOM-FIELD ISING MODEL

RON PELED AND PAUL DARIO

1. General notation

1.1. Lattices. We consider the lattice Zd in dimension d ≥ 1. Given two vertices x, y ∈ Zd, we write
x ∼ y if they are nearest-neighbours in Zd.

Given an integer L ≥ 0, we consider the box ΛL ∶= {−L, . . . , L}d ⊆ Zd. Denote by ∂ΛL ∶= ΛL+1 ∖ΛL its
external vertex boundary and by ∣ΛL∣ its cardinality (i.e., ∣ΛL∣ = (2L + 1)d).

Given a measurable set A ⊆ R, we denote its Lebesgue measure by Leb(A).

1.2. Ground state of the disordered Ising model. We introduce the following notation for the
configurations of the Ising model in the box ΛL with + and - boundary conditions, respectively,

S+L ∶= {σ ∶ Zd → {−1,1} with σv = 1 for v ∉ ΛL} ,
S−L ∶= {σ ∶ Zd → {−1,1} with σv = −1 for v ∉ ΛL} .

An external field is a function h ∶ Zd → R. We will later take this function to be random, in which case
we will denote it by ζ. Given a vertex y ∈ Zd and an external field h ∶ Zd → R, we denote by τyh ∶ Zd → R
the shifted field defined by (τyh)x ∶= h(x + y).

For each external field h ∶ Zd → R, we define the energy of the finite-volume ground states of the Ising
model with + and - boundary conditions and external field h by

F +L(h) ∶= sup
σ∈S+

L

⎛
⎜⎜
⎝

∑
x∼y

{x,y}∩ΛL≠∅

σxσy + ∑
x∈ΛL

hxσx

⎞
⎟⎟
⎠

and F −L(h) ∶= sup
σ∈S−

L

⎛
⎜⎜
⎝

∑
x∼y

{x,y}∩ΛL≠∅

σxσy + ∑
x∈ΛL

hxσx

⎞
⎟⎟
⎠

and denote the energy difference by

FL(h) ∶= F +L(h) − F −L(h).

Note that, for almost every value of the field h on ΛL, there are unique maximisers in the definitions of
F +L(h) and F −L(h). We denote them by σ+L(h) and σ−L(h), respectively (the finite-volume ground states).

2. The Imry-Ma phenomenon

2.1. Preliminaries: An analysis lemma. For each pair of Lipschitz, convex functions F1, F2 ∶ R→ R,
we introduce the set (of points with δ-diverging derivatives)

Div(F1, F2, δ) ∶= {t ∈ R ∶ F1 and F2 are differentiable at t and ∣F ′1(t) − F ′2(t)∣ > δ} .

Exercise 1. Show that there exists a constant C > 0 such that for each pair of convex and 1-Lipschitz
functions F1, F2 ∶ R→ R satisfying ∣F1 − F2∣ ≤ 1 and each δ > 0, one has the upper bound,

(2.1) Leb (Div(F1, F2, δ)) ≤
C

δ2
.
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2.2. The Imry–Ma phenomenon.

Exercise 2. In this guided exercise we explain how Exercise 1 may be used to deduce the uniqueness of
the ground state in the two-dimensional random-field Ising model. The exercise is loosely based on [1],
where a quantitative bound is achieved using an additional fractal (Mandelbrot) percolation.

Fix λ ∈ (0,∞). Let (ζx)x∈Z2 be independent Gaussian random variables with expectation 0 and
variance λ2.

(1) (Convexity, differentiability and deterministic bound) Show the following properties of F +L , F
−
L , FL:

(i) The functions h↦ F +L(h) and h↦ F −L(h) are convex.
(ii) The functions h↦ F +L(h) and h↦ F −L(h) are differentiable almost everywhere and for every

x ∈ ΛL and almost every value of h on ΛL,

∂F +L
∂hx
(h) = σ+L,x(h) and

∂F −L
∂hx
(h) = σ−L,x(h).

(iii) For any external field h ∶ ΛL → R,

∣FL(h)∣ ≤ 2 ∣∂ΛL∣ .
(2) (Extremal boundary conditions) Show that, for almost every ζ and every x ∈ Zd,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ−L,x(ζ) ≤ σ+L,x(ζ),
σ−L+1,x(ζ) ≥ σ−L,x(ζ)
σ+L+1,x(ζ) ≤ σ+L,x(ζ).

(3) (Convergence and translation covariance) For almost every ζ, deduce that for every x ∈ ΛL,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

σ−L,x(ζ) Ð→
L→∞

σ−x(ζ),

σ+L,x(ζ) Ð→
L→∞

σ+x(ζ),

(where σ−, σ+ are defined as the limiting configurations) and, for every y ∈ Zd,

σ−y (ζ) = σ−0 (τyζ) and σ+y (ζ) = σ+0 (τyζ).

(4) (Magnetisation from energy) Let 1ΛL
∶ Zd → {0,1} be the indicator function of ΛL. We set

∂FL

∂ĥL

(h) ∶= lim
δ→0

FL(h + δ1ΛL
) − FL(h)

δ
.

Show that the following identity holds almost surely,

∂FL

∂ĥL

(ζ) = ∑
x∈ΛL

(σ+L,x(ζ) − σ−L,x(ζ)) .

(5) (Main bound: high density of uniqueness points) Assume that the dimension is d = 2.
Deduce, using Exercise 1, that, for any δ > 0,

lim inf
L→∞

P
⎡⎢⎢⎢⎣

1

∣ΛL∣
∑

x∈ΛL

(σ+L,x(ζ) − σ−L,x(ζ)) < δ
⎤⎥⎥⎥⎦
> 0.

(6) (Uniqueness of the ground state) Still assume that the dimension is d = 2.
Deduce from the previous questions and the ergodic theorem that, for almost every ζ,

σ−(ζ) = σ+(ζ).

Hints:

● Questions 2 and 3: for y ∈ Zd, denote by σ+y+ΛL
and σ−y+ΛL

the finite-volume ground states of the

Ising model in the box (y +ΛL) with + and - boundary conditions, respectively. Show that if
(y +ΛL) ⊆ (y′ +ΛL′) then σ+y+ΛL

≥ σ+y′+ΛL′
and σ−y+ΛL

≤ σ−y′+ΛL′
.

● Question 5: We may use the following property of the Gaussian variables: if we denote by

ζ̂L ∶=
1

∣ΛL∣
∑

x∈ΛL

ζx and ζ⊥L ∶= ζ − ζ̂L,



3

then the random variable ζ̂L and the random vector ζ⊥L are independent. Then fix a realization
of ζ⊥L and apply a suitably rescaled version of Exercise 1 with the functions

ζ̂L → F +L(ζ̂L, ζ⊥L) and ζ̂L → F −L(ζ̂L, ζ⊥L).
One also needs the fact that the standard Gaussian distribution has full support on R.
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Figure 1

3. Solution

3.1. Solution of Exercise 1. For simplicity, let us assume that the functions F1 and F2 are in the
space C1(R).

We fix δ > 0 and observe that if a point t ∈ R belongs to the set Div(F1, F2, δ), then we have:

(1) Either the inequality F ′1(t) − F ′2(t) > δ holds;
(2) Or the inequality F ′2(t) − F ′1(t) > δ holds.

Let us first assume that the inequality (1) is satisfied; we claim that it implies the estimate

(3.1) F ′2 (t +
4

δ
) ≥ F ′2(t) +

δ

2
.

To prove (3.1), note that the assumption sups∈R ∣F1(s) − F2(s)∣ ≤ 1 implies, for any s ∈ R,
(3.2) F1(s) − 1 ≤ F2(s) ≤ F1(s) + 1.
Using the inequality F ′1(t) − F ′2(t) > δ and the convexity of the map F2, we see that, for any s > t,
(3.3) F1(s) ≥ F1(t) + F ′1(t)(s − t) ≥ F2(t) − 1 + (F ′2(t) + δ) (s − t).
A combination of the estimates (3.2) and (3.3) yields

F2(s) − F2(t)
s − t > F ′2(t) + δ −

2

s − t .

Choosing the value s = t + 4/δ in the previous inequality and using the convexity of F2 shows

F ′2 (t +
4

δ
) ≥

F2 (t + 4
δ
) − F2(t)

4/δ > F ′2(t) + δ −
δ

2
≥ F ′2(t) +

δ

2
.

The proof of the claim (3.1) is complete. In the case when the inequality (2) is satisfied, a similar
argument yields the estimate

(3.4) F ′2 (t −
4

δ
) ≤ F ′2(t) −

δ

2
.

A combination of (3.1) and (3.4), and the assumption that F2 is convex (which implies that its derivative
is increasing) shows that, for any point t ∈ Div(F1, F2, δ),

(3.5) F ′2 (t +
4

δ
) ≥ F ′2 (t −

4

δ
) + δ

2
.
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Using that the map F2 is convex and 1-Lipschitz, we see that, for any triplet of real numbers t−, t, t+ ∈ R
satisfying t− < t < t+,
(3.6) −1 ≤ F ′2(t−) ≤ F ′2(t) ≤ F ′2(t+) ≤ 1.
The estimates (3.5) and (3.6) imply that there cannot exist a family t1, . . . , t⌊ 4δ ⌋+1 of (⌊ 4

δ
⌋ + 1)-points

satisfying the following properties:

(1) For any pair of distinct integers i, j ∈ {1, . . . , ⌊4/δ⌋ + 1}, one has ∣ti − tj ∣ > 8
δ
;

(2) For any integer i ∈ {1, . . . , ⌊4/δ⌋ + 1}, the point ti belongs to the set Div(F1, F2, δ).
This property implies that the set Div(F1, F2, δ) is included in the union of (at most) ⌊ 4

δ
⌋ intervals of

length 16/δ which implies the upper bound

Leb (Div(F1, F2, δ)) ≤
C

δ2
.

This is (2.1).

3.2. Solution of Exercise 2.

3.2.1. Question 1. (i) The maps h↦ F +L(h) and h↦ F −L(h) are suprema of affine functions (in h). They
are thus convex.

(ii) We only prove the formula for F +L . Since h↦ F +L(h) is the supremum of a finite number of affine
functions in h, the following properties hold for almost every h ∶ ΛL → R:

● The maximum σ+L,x(h) is uniquely defined;

● There exists a neighborhood Vh of h such that, for any h′ ∈ Vh,

F +L(h′) = ∑
x,y∈ΛL+1

x∼y

σ+L,x(h)σ+L,y(h) + ∑
x∈ΛL

h′xσ
+
L,x(h).

The result is then obtained by noting that the right-hand of the previous display is an affine
function in h′ and by differentiating both sides at the value h′ = h.

(iii) To prove the inequality ∣FL(h)∣ ≤ 2 ∣∂ΛL∣, we consider a maximiser σ+L(h) and define

σ̃x ∶= {
σ+L,x(h) for x ∈ ΛL,

−1 on x ∈ ∂ΛL.

Note that σ̃x ∈ S−. By definition of the maximum F −L(h) and of σ̃, we have

F +L(h) = ∑
x,y∈ΛL+1

x∼y

σ+L,x(h)σ+L,y(h) + ∑
x∈ΛL

hxσ
+
L,x(h)

≤ ∑
x,y∈ΛL+1

x∼y

σ̃xσ̃y + ∑
x∈ΛL

hxσ̃x + 2 ∣∂ΛL∣

≤ F −L(h) + 2 ∣∂ΛL∣ .
A similar argument shows

F −L(h) ≤ F +L(h) + 2 ∣∂ΛL∣ ,
and a combination of the two previous inequalities completes the proof.

3.2.2. Question 2. Let us fix L ∈ N and an external field h ∶ ΛL → R (to avoid technical difficulties, we
assume that h is in the set of full measures in which the ground states σ−L,x(h) and σ+L,x(h) are uniquely

defined).
We argue by contradiction and assume that there exists a vertex z ∈ ΛL such that

σ+L,z(h) < σ−L,z(h).

We then denote by Cz the connected component of z in the set {x ∈ ΛL ∶ σ+L,x(h) < σ−L,x(h)} and define

two configurations σ̃+ and σ̃− as follows

σ̃+x ∶= {
σ−L,x(h) for x ∈ Cz,
σ+L,x(h) for x ∈ ΛL ∖ Cz,
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and

σ̃−x ∶= {
σ+L,x(h) for x ∈ Cz,
σ−L,x(h) for x ∈ ΛL ∖ Cz.

Note that σ̃+ ∈ S+ and σ̃− ∈ S−. Using that σ+L,x(h) = 1 ≥ −1 = σ−L,x(h) for x ∈ ∂ΛL, it can be deduced

from the definitions of σ̃+ and σ̃− that

∑
x,y∈ΛL+1

x∼y

σ̃+x σ̃
+
y + ∑

x,y∈ΛL+1
x∼y

σ̃−x σ̃
−
y > ∑

x,y∈ΛL+1
x∼y

σ+L,x(h)σ+L,y(h) + ∑
x,y∈ΛL+1

x∼y

σ−L,x(h)σ−L,y(h)

and

∑
x∈ΛL

hxσ̃
+
x + ∑

x∈ΛL

hxσ̃
−
x = ∑

x∈ΛL

hxσ
+
L,x(h) + ∑

x∈ΛL

hxσ
−
L,x(h).

A combination of the two previous displays shows that

⎛
⎜⎜
⎝
∑

x,y∈ΛL+1
x∼y

σ̃+x σ̃
+
y + ∑

x∈ΛL

hxσ̃
+
x

⎞
⎟⎟
⎠
+
⎛
⎜⎜
⎝
∑

x,y∈ΛL+1
x∼y

σ̃−x σ̃
−
y + ∑

x∈ΛL

hxσ̃
−
x

⎞
⎟⎟
⎠
> F +L(h) + F −L(h).

This is in contradiction with the fact that σ̃+ ∈ S+ and σ̃− ∈ S− and the definitions of the suprema F +L(h)
and F −L(h).

The same argument can be used to show the first Hint.

Applying this Hint with the particular choice x = x′ = 0 and L′ = L + 1, we deduce that, for any
y ∈ ΛL,

σ−L+1,y(ζ) ≥ σ−L,y(ζ) and σ+L+1,y(ζ) ≤ σ+L,y(ζ).

3.2.3. Question 3. Using Question 2, we see that the sequences L ↦ σ−L,x(ζ) and L ↦ σ+L,x(ζ) are
respectively increasing and decreasing. Since they are bounded, we deduce that they converge.

For the translation covariance, we treat the case of the ground state with + boundary condition, fix a
vertex x ∈ Zd. We first note that the following identity holds, for any L ∈ N,

σ+x+ΛL,x(ζ) = σ+L,0(τxζ).
We next select an integer L ∈ N sufficiently large (depending on x) such that ΛL/2 ⊆ (x + ΛL) ⊆ Λ2L.
Applying the Hint, we deduce that

σ+2L,x(ζ) ≤ σ+x+ΛL,x(ζ) ≤ σ+L/2,x(ζ).
Combining the two previous displays and taking the limit L→∞ implies that

σ+0 (τxζ) = lim
L→∞

σ+L,0(τxζ) = lim
L→∞

σ+x+ΛL,x(ζ) = σ+x(ζ).

3.2.4. Question 4. The result can be obtained as a consequence of Question 1.

3.2.5. Question 5. Using the Hint, we fix a realization of ζ⊥L introduce the functions F1, F2 ∶ R → R
defined by

F1 ∶ t↦
1

4 ∣∂ΛL∣
F +L
⎛
⎝

t√
∣ΛL∣

, ζ⊥L
⎞
⎠

and F2 ∶ t↦
1

4 ∣∂ΛL∣
F −L
⎛
⎝

t√
∣ΛL∣

, ζ⊥L
⎞
⎠
.

Using the properties established in Question 1, we know that the functions F1 and F2 are convex, and
that, for any t ∈ R, ∣F1(t) − F2(t)∣ ≤ 1.

By using Question 4, we have the identity

F ′1(t) =
1

4 ∣∂ΛL∣
√
∣ΛL∣

∑
x∈ΛL

σ+L,x

⎛
⎝

t√
∣ΛL∣

, ζ⊥L
⎞
⎠

and F ′2(t) =
1

4 ∣∂ΛL∣
√
∣ΛL∣

∑
x∈ΛL

σ−L,x

⎛
⎝

t√
∣ΛL∣

, ζ⊥L
⎞
⎠
.

We next note that, in dimension d = 2, we have ∣∂ΛL∣ ≃ 8L,
√
∣ΛL∣ ≃ 2L and thus (at least for L sufficiently

large)

F ′1(t) − F ′2(t) ≥
1

16 ∣ΛL∣
∑

x∈ΛL

⎛
⎝
σ+L,x

⎛
⎝

t√
∣ΛL∣

, ζ⊥L
⎞
⎠
− σ−L,x

⎛
⎝

t√
∣ΛL∣

, ζ⊥L
⎞
⎠
⎞
⎠
.
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Next, using that ζ⊥L and ζ̂L are independent and that ζ̂L is a Gaussian of variance λ2/∣ΛL∣, we deduce
that

P
⎡⎢⎢⎢⎢⎣

1

∣ΛL∣
∑

x∈ΛL

(σ+L,x (ζ̂L, ζ⊥L) − σ−L,x (ζ̂L, ζ⊥L)) ≥ δ
RRRRRRRRRRR
ζ⊥L

⎤⎥⎥⎥⎥⎦
(3.7)

= ∫
R
1
{ 1
∣ΛL ∣

∑x∈ΛL
(σ+

L,x
( t√

∣ΛL ∣
,ζ⊥

L
)−σ−

L,x
( t√

∣ΛL ∣
,ζ⊥

L
))≥δ}

e−
t2

2λ2

√
2πλ2

dt

≤ ∫
R
1{F ′1(t)−F ′2(t)≥ δ

16
}
e−

t2

2λ2

√
2πλ2

dt

By Exercise 1, we have that

Leb (Div(F1, F2, δ/16)) ≤
C

δ2
,

and thus

∫
R
1{F ′1(t)−F ′2(t)≥ δ

16
}
e−

t2

2λ2

√
2πλ2

dt ≤ ∫
C/(2δ2)

−C/(2δ2)

e−
t2

2λ2

√
2πλ2

dt ≤ 1 − cλ,δ,

for some constant cλ,δ > 0 depending only on λ, δ. A combination of the previous display with (3.7)
shows that, for any realization of ζ⊥L,

P
⎡⎢⎢⎢⎢⎣

1

∣ΛL∣
∑

x∈ΛL

(σ+L,x (ζ̂L, ζ⊥L) − σ−L,x (ζ̂L, ζ⊥L)) ≥ δ
RRRRRRRRRRR
ζ⊥L

⎤⎥⎥⎥⎥⎦
≤ 1 − cλ,δ.

Taking the expectation on both sides of the previous inequality, we obtain

P
⎡⎢⎢⎢⎣

1

∣ΛL∣
∑

x∈ΛL

(σ+L,x (ζ̂L, ζ⊥L) − σ−L,x (ζ̂L, ζ⊥L)) ≥ δ
⎤⎥⎥⎥⎦
≤ 1 − cλ,δ.

3.2.6. Question 5. We first note that, by the translation covariance of the ground states, it is enough to
show the result when x = 0. Additionally, Questions 2 and 3 imply that, for almost every realisation of
the disorder ζ,

σ+0 (ζ) ≥ σ−0 (ζ),
and thus it is sufficient to show the identity

E [σ+0 (ζ) − σ−0 (ζ)] = 0.
We argue by contradiction and assume that E [σ+0 (ζ) − σ+0 (ζ)] > 0. An application of the ergodic theorem
shows that, for almost every realization of the disorder ζ,

1

∣ΛL∣
∑

x∈ΛL

σ+0 (τxζ) − σ−0 (τxζ) Ð→
L→∞

E [σ+0 (ζ) − σ−0 (ζ)] .

Combining the previous display with the translation covariance of the ground states, we obtain the
almost-sure convergence

1

∣ΛL∣
∑

x∈ΛL

σ+x(ζ) − σ−x(ζ) Ð→
L→∞

E [σ+0 (ζ) − σ−0 (ζ)] > 0.

We then set δ ∶= E [σ+0 (ζ) − σ−0 (ζ)] /2. Since the almost-sure convergence implies the convergence in
probability, we deduce that

(3.8) lim
L→∞

P
⎡⎢⎢⎢⎣

1

∣ΛL∣
∑

x∈ΛL

σ+x(ζ) − σ−x(ζ) ≤ δ
⎤⎥⎥⎥⎦
Ð→ 0.

We then note that Question 2 implies that, for any L ∈ N,
1

∣ΛL∣
∑

x∈ΛL

σ+x(ζ) − σ−x(ζ) ≤
1

∣ΛL∣
∑

x∈ΛL

σ+L,x(ζ) − σ−L,x(ζ),

and thus

P
⎡⎢⎢⎢⎣

1

∣ΛL∣
∑

x∈ΛL

σ+x(ζ) − σ−x(ζ) ≤ δ
⎤⎥⎥⎥⎦
≥ P
⎡⎢⎢⎢⎣

1

∣ΛL∣
∑

x∈ΛL

σ+L,x(ζ) − σ−L,x(ζ) ≤ δ
⎤⎥⎥⎥⎦
.
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Applying Question 5, we finally deduce that

lim inf
L→∞

P
⎡⎢⎢⎢⎣

1

∣ΛL∣
∑

x∈ΛL

σ+x(ζ) − σ−x(ζ) ≤ δ
⎤⎥⎥⎥⎦
≥ lim inf

L→∞
P
⎡⎢⎢⎢⎣

1

∣ΛL∣
∑

x∈ΛL

σ+L,x(ζ) − σ−L,x(ζ) ≤ δ
⎤⎥⎥⎥⎦
> 0.

This is in contradiction with (3.8).
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