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Relation between structure and (linear) dynamics
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Effect of structure on spreading: Uncover structure from dynamics:
S|, random walk, consensus, etc. Pagerank, Markov stability, etc.
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(1) How does the modular structure of a network affect dynamics?
(2)How can dynamics help us characterise and uncover the modular
structure of a network?



Organisation

H1: Community detection and modularity
H2: Time scale separation and modularity

H3: Diffusive dynamics to uncover communities in
networks



Problem sheets

Combination of numerics and analytics

Mathematics of Large Networks
Problem Sheet

Renaud Lambiotte and Erik Hormann

FIRST HOUR

1. Graph Laplacians.
Consider an unweighted, undirected, simple network. Show that the smallest eigenvalue of the combinatorial
graph Laplacian L = D — A is 0. How can one use the spectrum of the graph Laplacian to determine the
number of components in the network? Do you have any ideas about how one might think about a graph that
is “almost” separated into two disjoint components (and how one might measure how close the components are

to being disconnected)?

2. Modularity

(a) Apply modularity optimization techniques implemented in the library of your choice on some examples
and visualise the results.



Additional resources
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The Structure and Dynamics ~
of Complex Networks Math C5.4, Networks

MOdu lar.ity Md o R. Lambiotte

Dynamics on . renaud.lambiotte@maths.ox.ac.uk
Complex Networks

Renaud Lambiotte .
and Michael T. Schaub

https://www.dropbox.com/s/qtgr4s552e996pg/modularity-and-dynamics-on-complex-networks.pdf?dI=
https://www.youtube.com/watch?v=TQKgBORNjeY &list=PL4d5ZtfQonWOMsGE4Pn12rxUprPXB4 VS



https://www.dropbox.com/s/qtgr4s552e996pg/modularity-and-dynamics-on-complex-networks.pdf?dl=

Organisation

H1: Community detection and modularity

H2: Time scale separation and modularity

H3: Diffusive dynamics to uncover communities in
networks



What Is community detection?

Networks tend to be
organised into modules/
clusters/communities

Can we design efficient
methods to find the
modules? Understand
their impact on the
behaviour of the
system? Find
mechanisms that
explain their
emergence”?




“community detection”, SCOPUS, June 2017
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|dentify and caracterise the multi-scale structure of networks

Unsupervised GIUSIERRAG in the world of graphs, with
applications/connections in/to node classification, embeddings,

etc.
The two key tools of graph analytics: fanKiand ClusSter
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Uncovering communities/modules helps to change the resolution of the
representation and to draw a (GECIEBIENNEP of the network

Find a partition of Coarse-grained
the network into descri ti%n
communities "

Martin Rosvall and Carl T. Bergstrom, PNAS 105, 1118 —1123 (2008)
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Uncovering communities/modules helps to change the resolution of the
representation and to draw a readable map of the network
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Big data is
an all-

encompassing term for any
collection of data sets so large and
complex that it becomes difficult to
process using traditional data

processing applications. The
challenges include analysis,
capture, curation, search, sharing,
storage, transfer, visualization, and
privacy violations. Wikipedia

Recommended pages

Nearby Midway Distant

Industrial Internet 7
Data-centric programming
language 3
Trafodion 2
More

Apache Hadoop 7
MapReduce 2




Why are networks modular?
Generic (IEEHEARISHS driving the emergence of modularity?

- Simon’s watchmakers: intermediate states facilitates the
emergence of complex organisation from elementary
subsystems

- Separation of time scales: enhances diversity, locally synchronised
states

- Locally dense but globally sparse: advantages of dense structures
while minimising the wiring cost

- In social systems, offer the right balance between dense networks
(foster trust, facilitate diffusion of complex knowledge), and open
networks (small diameter, ensures connectivity, facilitates diffusion
of “simple” knowledge)

- Naturally emerges from co-evolution and duplication processes

D. Meunier, R. Lambiotte and E.T. Bullmore, “Modular and hierarchical organisation in
complex brain networks”, to appear in Frontiers in NeuroScience (2010) - 7 pages
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Community detection

What is the best partition of a network into modules?
How do we rank the quality of partitions of different sizes?
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Newman-Girvan Modularity

One of the most popular quality functions for community
detection is the so-called Newman—Girvan modularity,
denoted by Q.

Let us consider a group of nodes defined by a set A. The
underlying idea of modularity is to COpalé the number of
links connecting nodes inside A with an expectation of this
number under a random null model. The choice

of null model is, in principle, left to the user. Under the
(default) soft-configuration model, the difference between the
number of links in community A and the expected value of

such links Is _
kik ;
()

i,JEA
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Newman-Girvan Modularity

For a partition of a network into multiple communities, NEWMan®

Gianmodularity defines the quality of a partition as a sum of the
previous quantity over all communities

1 kik s

0=5p X % (40-
2m Aq€Pi,jEAy -

It can be rewritten in matrix notations by encoding the partition of

the network with a N X C indicator matrix H.

1 kkT |
OQ=—Tr|H' |A—— |H
2m 2m

k is the vector of node degrees and Tr denotes the trace of a
matrix


Renaud Lambiotte


Newman-Girvan Modularity

o kET
OQ=—Tr|H' |[A-—— |H
2m 2m

— — —

C X C matrix encoding the
connections between communities

Inherent to the construction of modularity is the assumption that a
network partition with a strong community structure will lead to high

values of modularity, in the sense that @iftiREXpectediy large number

. Modularity
GPIIMISAtIon (i.e., finding the partition of a network having the highest
value of modularity) has thus been proposed as one way to solve the
community detection problem. As modularity optimisation is NP-hard,
several AEUKISEIES have been proposed.
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Modularity

Property 1 A partition where all the vertices are grouped into the same com-
munity has a modularity equal to zero. This proves to be simply shown from
the definition of the null model k;::f for which Zij kg:f = 2m and from the
expression of modularity in this particular case

Q=%Z[Az'j—kikj]=0- (3)

— 2m
1,7 v
This property implies that any partition with a positive modularity is better

than this trivial one, but also that it is always possible to find a partition such
that Q) > 0.




Modularity A, 4

Property 2 If a partition contains a disconnected community, it is always
preferable (in terms of modularity) to split this community into connected com-
munities. Let us consider, for the sake of simplicty, the case of a disconnected
community C1 formed by two connected subgraphs C11,Ci2. In this case, mod-

ularity is given by

T
o= 5| X T (-5 )
C#C i,j€C ,gec1
1 ik
> =%zz ) DRTPILL R
-C#Cl Z)JEC ?:ajecll
k:k.
.7 .l
+ D (Ay— ) +2 Z (A — 1) -
,J€C12 1€C11,J€C12

Given that A;; = 0 if © € Ci1,j € Cia, the sum ZiECu,jECm is composed
uniquely of negative terms and it is thus preferable to split the community into

two subcommunities.

This property implies that any partition made of disconnected communities is
sub-optimal and that the optimal partition of a graph is only made of connected
communities.



Greedy optimisation
Louvain: multi-scale, agglomerative and greedy

The algorithm is based on two steps that are repeated iteratively. First phase:
Find a local maximum

1) Give an order to the nodes (0,1,2,3,...., N-1)

2) Initially, each node belongs to its own community (N nodes and N
communities)

3) One looks through all the nodes (from O to N-1) in an ordered way. The
selected node looks among its neighbours and adopt the community of the
neighbour for which the increase of modularity is maximum (and positive).
4)This step is performed iteratively until a local maximum of modularity is
reached (each node may be considered several times).

Node 0 moves to the After N nodes have After each nodes has
community of Node 3 been considered been considered 4
times

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities
in large networks, J. Stat. Mech., P10008, 2008.



Greedy optimisation

Louvain: multi-scale, agglomerative and greedy

Once a local maximum has been attained, second phase:
We build a new network whose nodes are the communities. The weight of the
links between communities is the total weight of the links between the nodes of

these communities.

New network of 4 nodes!

Note the self-loops

In typical realisations, the number of nodes diminishes drastically at this step.

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities
in large networks, J. Stat. Mech., P10008, 2008.



Greedy optimisation

Louvain: multi-scale, agglomerative and greedy

The two steps are repeated iteratively, thereby leading to a hierarchical
decomposition of the network.

Multi-scale optimisation: local search first among neighbours, then among
neighbouring communities, etc.

Hierarchical
representation

10

12

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in
large networks, J. Stat. Mech., P10008, 2008.



Louvain method
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Figure 3 Louvain method for modularity optimisation. The Louvain
method consists of repeatedly applied passes over the network until no further
increase in modularity is observed. Each pass is split into two phases. The
first phase consists in a local optimisation, where each vertex can be moved to
the community of its direct neighbours. The second phase aggregates vertices
and constructs a meta-graph whose vertices are the communities found after
the first phase. Figure adapted from Aynaud et al., (2013).



Greedy optimisation

Louvain: multi-scale, agglomerative and greedy

Very fast: O(N) in practice. The only limitation being the storage of the network in
main memory

Good accuracy (among greedy methods)

Karate Arxiv Internet Web nd.edu Phone Web uk-2005 Web WebBase 2001

Nodes/links ~ 34/77  9k/24k  70k/351k  325k/IM  2.04M/5.4M  39M/783M 118M/1B
CNM 38/0s .772/3.6s .692/799s .927/5034s i fn il
PL A42/0s  .757/3.3s .729/575s  .895/6666s iy s o
WT 42/0s  .761/0.7s .667/62s  .898/248s  .553/367s e e
Our algorithm  .42/0s  .813/0s  .781/1s 935/3s 76/44s 979/738s 984/152mn

V.D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in
large networks, J. Stat. Mech., P10008, 2008.



Limitations of Modularity (and
Louvain)

Modularity suffers from a so-called réSelGtiGRMiIMIBwhich makes it
Impossible to detect communities of nodes that are smaller than a
certain scale. In other words, even if this is not apparent from the
definition of modularity at first sight, modularity tends to favour
partitions where the communities have a Gliefactersticisizé depending
on the total size of the system.

1 kik:
0= 5.5 (%)
2m AaXE:PiJEZAa e 2m

The null model depends on
the total “size” of the network.
Optimal communities are size-
dependent.
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Limitations of Modularity (and
Louvain)

Another limitation of modularity is that its landscape over the space of

partitions is usually extremely €Igge€0, with multiple local maxima close
to the global optimum, which may limit the interpretability of the

approximate solutions found by modularity optimisation.

Modularity, Q
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Limitations of Modularity (and
Louvain)

The Louvain algorithm may in certain cases lead to intermediate
disconnected communities, which cannot be optimal for modularity.
This latter problem can, however, be remedied by adjusting the
Louvain algorithm accordingly, e.g. via the E&i@iéh method.

Figure 2
a) @ ® b) @ ®
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NS \@/

7,5\
N 7 SN R

s v s v
7 1\
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Organisation

H1: Community detection and modularity

H2: Time scale separation and modularity

H3: Diffusive dynamics to uncover communities in
networks



Introduction

Community detection aims to find a coarse-grained
description of a system from its structure (e.g. modularity
counts edges inside communities)

The function of a system depends on its dynamics.
Important to understand the impact of structure on
dynamics, and to find dynamics-based methods to uncover
communities.
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A Karate Club network B Standard consensus C Consensus + Input (zealot)

02 : - A
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Figure 13.1 Consensus dynamics on the Karate Club network. A The Karate Club network
originally analysed by Zachary [8] with nodes coloured according to the split that occurred in the real
case. B Consensus dynamics on the Karate club network starting from a random initial condition.
As time progresses, the states of the individual nodes become more aligned and eventually reach the
consensus value equal to the arithmetic average of the initial condition. Note that above the time
scale given by the eigenvalue 1/\2(L) ~ 1/0.47, the agents converge into two groups that reflect
the observed split before converging to global consensus (see Section 13.3.1). C If an external input
is applied to the system (see text), the opinion dynamics will in general not converge to a single value
but lead to a dispersed set of final opinions, which still reflect the split observed in reality.



Notations
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Consensus dynamics

Opinion formation in a society of individuals
distribution of global functions of sensors and robots
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Time-scale separation

Time-scale separation decouples the system in two
regimes and allows to reduce the dimensionality of the
dynamics
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Time-scale separation for consensus dynamics

Time-scale separation decouples the system in two
regimes and allows to reduce the dimensionality of the

dynamics Lt
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Relations between modules (structure) and time-
scale separation (spectrum)

For simplicity, let us start with the concrete example of a consensus dynamics
x = —Lx with initial condition x (0) = x(, which takes place on a network
composed of C modules with an adjacency matrix of the form

(4, L
A;
A = . + A noise =: A structure + A noise- (4-4)

\ - 4g)

Each block A, in the block-diagonal matrix A g ycure 1S SUpposed to correspond

to a densely connected graph, and A ;s 1s @ weak perturbation of this strong
assortative modular structure. Let us denote the dimension of each block by 74,
such that ) ", ny = n.

When there is no noise, the graph is made of CldiSEoRRECIEdIEIlSTErS, and the EigeRspace
associated to the zero eigenvalue has @IfERSIGANG. There is a SPECHFANGAP with he first
non-zero eigenvalue: the zero eigenvalues correspond to modes with no time evolution at
all, whereas all other eigenmodes will be associated with an exponentially decaying signal.

When noise is §ffidd (the graph is almost disconnected), we use Weyl's inequality* to show
that there is still a spectral gap between the first C eigenvalues and the next N-C values.

*Weyl's inequalities state that the ordered eigenvalues of the perturbed matrix are close to the
eigenvalues of the unperturbed matrix
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-10.0
10~? 10!
Time (t}

; 1 2 3 4 5

10° Time (1)

Figure 5 Consensus dynamics on a structured network. A Visualisation of a network with three groups and an adjacency matrix of the
form (4.4). B When observing a consensus dynamics on this network, there is a clear timescale separation: after  ~ 1/A4 = 0.2,

approximate consensus is reached within each group (indicated by color). Eventually global consensus is reached across the network.
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Cheeger inequality
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Figure 6 Conductance of a graph. The conductance of the sets of nodes S;
and S, defined by Eq. (4.8), are equal to 1 and 1/7 respectively. Both sets
have the same cut size but different volumes. The conductance of S5 is
smaller because it provides a more balanced division of the graph.

b = { Zies,j¢8 Ajj } (4.8)
S 7 ) min{vol(S), vol(V — S)} { ‘

where vol(S): = ) ;g ki is the total connectivity of the set, called the volume
of §. The conductance of a graph is then defined as the minimal conductance for
all possible node sets: ¢g = ming ¢s. Note that the graph conductance is small
if there exist two sets of nodes that are of similar size and have few connections
between them. We can now state the Cheeger inequality, which relates the graph
conductance to the second smallest eigenvalue of the normalised Laplacian as

follows: 2
2
%g s s D (4.9)

The Cheeger inequality shows that @SmallValue ofthe graph'conductance is associated
to a SmalliSpectraligap and hence a comparably SloWielaxation of the diffusion dynamics

to its stationary state. This means that if the network can be divided into two well-
separated node sets with a small cut between them, this GoitleREEk will slow down
diffusion and can thus lead to a separation of timescales.
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Organisation

H1: Community detection and modularity

H2: Time scale separation and modularity

H3: Diffusive dynamics to uncover communities in
networks




Multi-level modularity

—Resolution limit

-What about sub (or hyper)-communities in a hierarchical network?




Multi-level modularity

Add aresolution parameter!

Reichardt & Bornholdt Arenas et al.

Qy = ﬁ 2 [@—/ﬂ 6(cir ¢5) Q(:r@Iij)
| /

Tuning parameters allow to uncover communities of different sizes
Reichardt & Bornholdt different of Arenas, except in the case of a regular graph

)=1+r/{k)

J. Reichardt and S. Bornholdt, Phys. Rev. E 74, 016110 (2006). Statistical mechanics of
community detection

A Arenas, A Fernandez, S Gomez, New J. Phys. 10, 053039 (2008). Analysis of the structure
of complex networks at different resolution levels




Multi-level modularity

Add aresolution parameter!

Reichardt & Bornholdt Corrected Arenas
1 )
= — > | Ay — Py |8(ci ¢ y s,
0= g |t Rl | QA +Bsy)
- i 1 <k>

Preserves the gigenvectors of
Laplacian (no A) and has a nice
dynamical interpretation

Reichardt & Bornholdt = corrected Arenas for any graph

A)=1+m/(k)

R. Lambiotte, Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt),
2010 Proceedings of the 8th International Symposium on, 546-553 (2010)



Dynamics as way to uncover communities




Say that the system exhibits E'SIOW €IgEAVECEOIS, our previous

discussion implies that the linear system of N equations for the

dynamical process can be {educedto/adescriptioninaicdimensiona

§Pace, spanned by these eigenvectors, in the long time limit.
This classical result from linear dynamical systems theory is

particularly helpful to éducetherdimensionality and thus to construct a

coarse-graining of a dynamical system.

However, from a GetWOrK'perspective, this solution is not entirely
satisfying as the new(SetSioficoordinatesiarernotinecessarily
concentrated'on'groups'offnodes, and the nodes are the interpretable

objects of networks. For this reason, alternative methods have been
proposed in order to uncover communities, composed by a definite
SUBSENeMRodes, that collectively affect dynamics
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Markov stability

— —

Figure 10 Markov stability and random walks. Given a partition of a
graph, here illustrated by two colours, Markov stability is defined by the
sequence of communities visited by the random-walk process. Intuitively, for
a good partition as in A, the random walker will persist for long times inside a
community before escaping it. Markov stability captures the persistence of a
random walker at a timescale ¢ via its clustered covariance matrix.



Markov stability

Xo. We now consider the|sequence of values X (t)l elicited by a random-walk
process on the network, assuming that the random walk has been initialised in

its|stationary state|at time ¢ = 0. The autocovariance of this process evaluated

over a period of time ¢ is:

cov [X(0)X(?)] = E[X(0)X()] —E[X(0O)]E[X ()],

(6.3)

where E[X (¢)] is the expectation of the random variable X (¢). For a discrete-

time random walk, this autocovariance is given by

cov[X(0)X()] = X"R(t, H)X,

(6.4)

where X is the 1 x C column vector of labels assigned to the C communities

and where

Rt,H)=H'[OT'—=x'|H

(6.5)

is by definition the C x C clustered covariance matrix. In this last expression,
Il = diag(m) is a diagonal matrix encoding the stationary distribution of the

random walk (x ' = & ' T).
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Markov stability

Observe that the clustered autocovariance matrix R (¢, H) does not depend

on the arbitrary values X, used to encode the communities. By construction
‘(l’[ T');; measures the flow of probability from node i to node j in ¢ steps,\

starting from the stationary distribution of the random walk. Due to the mul-

tiplication by the indicator matrices, the term [H 'IIT 'H ]op thus measures

the flow of probability between any two communities A, and Ag over time

t. Moreover, as we have assumed that the dynamics is ergodic, the probability
to arrive on node j becomes independent of its initial state in the long time
limit:

lim (UT*) = nnx . | (6.6)

[—>00

Hence, the second term 1n the clustered covariance, H TunTH , describes the
flow of probability between two communities as ¢ — oo. Note that this also
implies that all the elements of R(¢z, H) will converge to zero as t — o0,
irrespectively of the partition considered.
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Markov stability

In general, the (o, 8) entry of the C x C matrix R(¢, H) describes the
probability that a random walker will be at community .4, at time zero and
community Ag at time #, minus the probability of these events happening by

hance at the stationary state. Intuitively, there is a strong assortative commu-
ity structure over a timescale ¢, if the probability flows are contained within
he communities, hence concentrating high values on the diagonal of R(z, H).

Accordingly, the Markov stability for discrete-time random walks is defined via
the trace of the clustered autocovariance matrix (Delvenne et al., 2013, 2010):

Markov Stability at time t: Tr [R (t, H)]
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Markov stability versus Modularity

Let us consider a random walk on an undlrected network

/pmﬂ—zﬁ@

B = ki/Qmﬂ [

unimrium

}5(@-,@-)

Probability that a
walker is in the

Same probability
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Markov stability versus Modularity

Let us consider a random walk on an directed netw@
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Counting versus flows

'dir,1 = = (.42 dir,1 = 0.33
N A~

Fig. 4. Directed/ Markov Stability versus extensions of
modularity. In this toy network [16], the weight of the bold
links is twice the weight of the other links. The partition on
the left (indicated by different colors) optimizes directed Markov
Stability (34), which intrinsically contains the pagerank as a null
model. The partition on the right instead optimizes an extension

of modularity based on in- and out-degrees

64],

65].

Hence

directed Markov Stability produces flow communltles whereas
the extension of modularity ignores the effect of flows.



Counting versus flows
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Markov stability versus Modularity

Let us consider a random walk on an directed network:
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Time as aresolution parameter

Let us consider a continuous-time random walk with Poisson waiting times
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Time as a resolution parameter S divds
Kot 1k,

Let us consider a continuous-time random walk with Poisson waiting times
ik
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Asymptotically, two-way partition given by the Fiedler vector
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Time as aresolution parameter

Time Is a “resolution parameter”: larger and larger communities when time is
Increased
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Time as aresolution parameter

Time Is a “resolution parameter”: larger and larger communities when time is
Increased
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Time as aresolution parameter

Time Is a “resolution parameter”: larger and larger communities when time is
Increased
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Time as aresolution parameter

Time Is a “resolution parameter”: larger and larger communities when time is
Increased
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Time as aresolution parameter

Time Is a “resolution parameter”: larger and larger communities when time is
Increased
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In practice: optimization?

The stabilitof the partition of a graph with adjacency matrix A is equivalent
to the modularlty@ of a time-dependent graph with adjacency matrix X(t)

LX) = (e@w;{)) 5 K Xa() = X,u(t)

[
which is thﬁu; of p/obability between/z nodes at equilibrium and whose

generalised degree /s

v

Z X::(0) :
R(t) ZXij(t)/Qm = kik;/(2m)* 6(ci, ¢;) :

( .

For very large networks:(R(t) > (1 — t)R(O) +tQc = Q(t)J




In practice: selection of the significant scales?

The optimization of R(t) over a period of time leads to a sequence of partitions
that are optimal at different time scales.

How to select the most relevant scales of description?
The significance of a particular scale is usually associated to a certain notion of

robustness|of the optimal partition. Here, robustness indicates that a small

modification of the optimization algorithm, of the network, or of the quality
function does not alter this partition.

We look for regions of time where the optimal partitions are very similar. The
similarity between two partition is measured by the normalised variation of
information.

Intuition: at a bad scale, several competing maxima make the lanscape more
rugged, leading to a sensitivity in the outcome of the algorithm



Renaud Lambiotte


In practice: selection of the significant scales?

football
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Compatible notions of robustness:

Lack of robustness -> high degeneracy in the landscape:
uncovered partitions are not to be trusted; wrong resolution




Time as resolution parameter
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Number of communities

Time as resolution parameter
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Time as resolution parameter
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Fig. 8. Flow communities at multiple scales in an airport network. The airport network contains N = 2905 nodes
(airports) and 30442 weighted directed edges. The weights record the number of flights between airports (i.e., the network does not
take into account passenger numbers, just the number of connections). Representative partitions at different levels of resolution
with (b) 44, (c) 18 and (d) 5 communities are presented. The partitions correspond to dips in the normalized variation of information
in (a) and show persistence across time (see Suppl. Info.).
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(1) How does the modular structure of a network affect dynamics?
(2)How can dynamics help us characterise and uncover the modular
structure of a network?



Some reading

Discussion on different principles behind community detection methods:
The many facets of community detection in complex networks, Michael T.
Schaub, Jean-Charles Delvenne, Martin Rosvall, Renaud Lambiotte, Appl Netw
Sci (2017) 2: 4

Excellent overview of the literature on community detection:
Doreian, P., Batagelj, V., & Ferligoj, A. (2020). Advances in Network Clustering
and Blockmodeling. John Wiley & Hoboken, NJ.

The Map Equation:
Rosvall, M., & Bergstrom, C. T. (2008). Maps of random walks on complex

networks reveal community structure. Proceedings of the National Academy of
Sciences, 105(4), 1118-1123.

This talk is based on:
Lambiotte, R., Schaub, M.

(2022) Modularity and Dynamics on Complex Networks, Cambridge University
Press



Beyond assortative communities

A Adjacency matrix B T (f = 1) Pt =8) ¥(i = 16)
Node N

Node
123456789011 123456 78910H

2]
1234567808101

123456788101
L] 3 2 :
| 3 3 3
L <o 4 4 4
§5 g 5 o5
) 6 6
: * s
|_[ a k<] 8
P 10 10 10
|:‘ 1" " 1
N Weight Similarity Similarity Similarity
p(t+1)=T p(i) _— [ —

D1 2 3 4 68 ) D.5 D 0.2 D 0.2

Figure 12 Dynamical similarity measures for random walks. A Visualisation of a (not strongly connected) directed network and its
adjacency matrix. There are three main types of nodes identified by their different colours (subgroups within those three groups indicated
by lighter colour). B The block structure in the similarity matrix W(¢) = T ‘[T ']T, where W was chosen to be the identity matrix,
identifies the dynamical role of the nodes at different times. Note that nodes within the cyan and violet groups are not connected to each
other (i.e., the grouping is not assortative). Figure adapted and reproduced from Schaub et al. (2019a) with permission.

Connections to embedding techniques, such as Deepwalk, the notion of
structural equivalence, of block models, etc.

Schaub, M. T., Delvenne, J.-C., Lambiotte, R., & Barahona, M. (2019a). Multiscale dynamical embeddings

of complex networks. Physical Review E, 99(6), 062308. doi: https://doi.org/10.1103/PhysReVE.99
.062308



Beyond assortative communities

— —

Figure 10 Markov stability and random walks. Given a partition of a
graph, here illustrated by two colours, Markov stability is defined by the
sequence of communities visited by the random-walk process. Intuitively, for
a good partition as in A, the random walker will persist for long times inside a
community before escaping it. Markov stability captures the persistence of a
random walker at a timescale ¢ via its clustered covariance matrix.

Instead at looking at the (linear) auto-correlation of the sequence of communities,
you can consider auto-information.

Faccin, Mauro, Michael T. Schaub, and Jean-Charles Delvenne. "State aggregations in Markov chains and
block models of networks." Physical Review Letters 127.7 (2021): 078301.



What about directed networks?

Dynamics is affected by the presence of hierarchies and communities

How directed is a directed network?

R. S. MacKay, S. Johnson, B. Sansom

A physical model for efficient ranking in networks

Caterina De Bacco, Daniel B. Larremore, Cristopher Moore

Urban spatial structures from human flow by Hodge-Kodaira decomposition

Takaaki Aoki, Shota Fujishima, Naoya Fujiwara

Even in the linear case, the spectral properties are more subtle.

Structure and dynamical behavior of non-normal
networks

MALBOR ASLLANI , RENAUD LAMBIOTTE ,AND , TIMOTEO CARLETTI Authors Info & Affiliations




Markov stability for temporal networks

Aa Temporal network D Slow forward diffusion
b
e
I isicssiaiscis .
B t Static snapshots ' E Slow backward diffusion
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Fig. 1. Schematic representation of the flow stability compared to other temporal community detection
methods.

Bovet, Alexandre, Jean-Charles Delvenne, and Renaud Lambiotte. "Flow stability for dynamic community
detection." Science Advances 2022



Dynamics and community for “higher-order”
networks

Random walk on hypergraphs, Hodge Laplacian, etc.

Understanding Complex Systems

Federico Battiston
Giovanni Petri Editors

Higher-Order

Systems

@ Springer

Lambiotte, Renaud, Martin Rosvall, and Ingo Scholtes. "From networks to optimal higher-order models of
complex systems." Nature physics 15.4 (2019): 313-320.



