
Equidistribution results in Kähler geometry
and asymptotic study of filtrations

Siarhei Finski

Abstract. These lecture notes accompany the mini-course delivered at the Budapest Summer
School “Invitation to Complex Geometry” held at the Rényi Institute in August 2025. The primary
aim of the course is to present recent developments in the study of submultiplicative filtrations,
approached through the lens of Geometric Quantization and Pluripotential Theory. We situate these
developments within the broader context of equidistribution phenomena in complex geometry and
functional analysis, highlighting the underlying parallels between these areas.
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1 Equidistribution results and Kähler geometry
The aim of the first lecture is to present the main result of the mini-course, which concerns the
asymptotic behavior of submultiplicative filtrations. We begin in Section 1.1 with a brief overview
of the theory of Toeplitz matrices, which is the focus of the first subsection. In Section 1.2, we state
the main theorem of the mini-course concerning submultiplicative filtrations. Finally, in Sections
1.3 and 1.4, we explain the connection between the two statements.

1.1 A brief detour through Toeplitz Matrices
We fix a sequence of numbers ai ∈ C, i ∈ Z, verifying ai = a−i, and consider the following k× k
Hermitian matrix

Tk[a] :=


a0 a−1 a−2 · · · a−k+1

a1 a0 a−1 · · · a−k+2

a2 a1 a0 · · · a−k+3
...

...
... . . . ...

ak−1 ak−2 ak−3 · · · a0

 . (1.1)

These matrices were first considered by Toeplitz in [76], and then systematically studied by Szegö
[73]. To study such matrices in the regime k →∞, it is necessary to consider the function

f(θ) =
+∞∑
j=−∞

aj exp(
√
−1jθ), where θ ∈ [0, 2π[. (1.2)

We assume that f ∈ L∞(S1), and denote Tk[a] by Tk[f ].
The influential Szegö’s result from [73] relates the spectral theory of Tk[f ], as k → ∞, with

the properties of the function f , sometimes called the symbol of the Toeplitz matrices Tk[f ].
To describe this result, we denote by λmin(Tk[f ]) and λmax(Tk[f ]) the minimal and the maximal

eigenvalues of Tk[f ]. Firstly, Szegö established that, as k →∞,

λmin(Tk[f ])→ ess inf f, λmax(Tk[f ])→ ess sup f. (1.3)

Then for I := [ess inf f, ess sup f ] and any continuous function g : I → R, as k →∞,

1

k

∑
λ∈Spec(Tk[f ])

g(λ)→ 1

2π

∫ 2π

0

g(f(θ))dθ. (1.4)

One particularly famous instance of this theorem concerns the special case when f > ε for some
ε > 0, and g(x) = log(x), giving the First Szegő theorem1 stating that as k →∞, we have

1

k
log(detTk[f ])→ 1

2π

∫ 2π

0

log(f(θ))dθ. (1.5)

1We invite the reader to consult a particularly engaging historical account of the unusual origins of the Second
Szegő Theorem in Nikolski’s book [57, §1.4.3]. This theorem, which refines the asymptotic expansion in (1.5) by
capturing the next-order term, was prompted by a question from Nobel Laureate (in Chemistry) Lars Onsager in
connection with the Lenz-Ising model [74]. It appeared only 37 years after the First Szegő Theorem – by which time
Szegő himself was nearly three times as old as when he proved the first statement.
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Toeplitz matrices has had a profound impact across various fields of mathematics. These in-
clude functional analysis (orthogonal polynomials), signal processing (convolution operators), and
mathematical physics (Lenz-Ising model, Berezin quantization), among many others.

Although the primary focus of this mini-course is complex and algebraic geometry, many of
the key objects and techniques we will study already arise in the theory of Toeplitz matrices. The
author believes that for an audience just beginning to explore complex geometry, the motivations
offered by more palpable Toeplitz theory may be easier to grasp. This is the main reason for our
initial detour through the world of Toeplitz matrices.

To explain it in detail, we will assume that the symbol f is nonnegative, and such that K :=
suppf ⊂ S1 is a finite union of intervals in S1, not covering S1 completely (for example, it might
be an indicator function over a sub-interval in [0, 2π[). In this setting, although the statement (1.5)
remains formally correct, it no longer reflects the leading-order term in the asymptotic expansion –
in fact, the right-hand side equals−∞. This leads naturally to the question: what is the asymptotics
of log(detTk[f ]), as k → ∞? A related refinement of (1.3) is the question: how rapidly does
λmin(Tk[f ]) converges towards 0 = ess inf f?

Perhaps surprisingly, this problem appears to have been investigated only quite recently—despite
the fact that the spectral theory of Tk[f ] for other vanishing regimes of f have been extensively
studied in the past, often spurred by connections to physics (see, for instance, the account of
Dyson’s work in [26, p. 32]).

Drewitz–Liu–Marinescu established2 in [33, Theorem 1.23], that the minimal eigenvalue de-
cays at most exponentially in k; that is, there exists d > 0, such that

λmin(Tk[f ]) ≥ exp(−dk). (1.6)

It was later established by the author [42, Corollary 10.4] (following [33, Question 5.13]) that
for non-pathological f (in the sense that the set K ∩ f−1(0) has zero Lebesgue measure) there is
cK > 0, which depends only on the set K, so that, as k →∞, we have

log(λmin(Tk[f ]))

k
→ −cK . (1.7)

Moreover, the analogue of (1.4) remains correct if instead of all eigenvalues, one considers solely
those which tend to 0 exponentially fast, and renormalizes the sum accordingly. More specifically,
[42, Corollary 10.4] states that for any continuous function g : R→ R, as k →∞, we have

1

k

∑
λ∈Spec(Tk[f ])

g
( log(λ)

k

)
→
∫
t∈R

g(−t)dµK(t), (1.8)

where µK is a certain compactly supported probability measure on R, determined by set K.
The description of the measure µK from (1.8) is considerably less direct than in (1.4), and–

naturally–it relies on recent developments in higher-dimensional Kähler geometry. After all, what
else would one use to study the unit circle?

2Authors of [33] worked in the setting of Toeplitz operators on complex manifolds, which – strictly speaking – do
not cover the case of Toeplitz matrices, see Section 1.3. Nevertheless, their result continues to hold also for the so-
called generalized Toeplitz operators, which includes Toeplitz operators on complex manifolds and Toeplitz matrices,
see [42, Corollary 10.3].
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To give a flavor of the objects involved, we briefly mention that if one embeds S1 into a complex
projective space P1

C as a great circle, then a fairly standard envelope construction from potential
theory associates to the subsets S1 ⊂ P1

C and K ⊂ P1
C certain singular Hermitian metrics hS1 and

hK on O(1) over P1
C. Without entering too much details, we mention first that the line bundle O(1)

carries a special metric, called the Fubini-Study metric. The metrics hS1 and hK are then defined
as the minimal metrics among all metrics with subharmonic potentials, which are no smaller that
the Fubini-Study metric over the subsets S1 ⊂ P1

C and K ⊂ P1
C respectively. Although it is not

immediately evident from the definition, such minimal metrics do exist, and furthermore, they
admit bounded potentials, cf. [45, Theorem 9.17].

The key tool for defining µK is the so-called Mabuchi-Darvas distance introduced in [56] and
[20] that we shall describe in detail in Section 3.2. Roughly, it measures the distance between
different metrics with bounded psh potentials. For now, we simply note that for every p ∈ [1,+∞),
there exists a non-negative quantity dp(hS1 , hK) arising from complex geometry.

Now, as Radon measures of compact support are fully determined by their moments, the mea-
sure µK is fully prescribed by the following condition: for any p ∈ [1,+∞[, we have∫

t∈R
tpdµK(t) = dp(hS1 , hK)p. (1.9)

While the general definition of dp(hS1 , hK) is quite subtle, and its explicit computation appears
to be a challenging problem, the special case p = 1 is significantly more tractable and can be
further reformulated in the language of classical potential theory. We take inspiration below from
the exposition of Boucksom [10].

We interpret x, y ∈ C as two identical particles with the same charge that repel each other,
seeking to reduce the interaction energy − log |x − y|. The interaction of a configuration of N
particles x1, . . . , xN ∈ C is modeled by averaging the contributions of all pairs, i.e.

EN(x1, . . . , xN) =
2

N(N − 1)

∑
1≤i<j≤N

− log |x− y|. (1.10)

If these particles are confined to a compact set K ⊂ C, which can be thought of as a conductor
on which the N particles move freely, they will spread out so as to minimize the energy EN , and
the equilibrium position will then be given by a configuration P = (x1, . . . , xN) ∈ XN such that
EN(P ) = infXN EN . As defined, equilibrium configurations are generally far from unique (think
of a special case when K is a cricle). Remarkably, however, uniqueness is asymptotically restored
as N tends to infinity. More precisely, a “continuous distribution” of charges on X is described by
a probability measure µ, whose energy is given by

E(µ) =

∫
x∈K

∫
y∈K
− log |x− y| · dµ(x) · dµ(y). (1.11)

The following dichotomy holds true: either E(µ) = +∞ for every probability measure µ with
support in K, then K is said to be polar, or there is a unique probability measure µeq(K) with
support on K, called the equilibrium measure of K, so that

E(µeq(K)) = inf
µ
E(µ), (1.12)

where the infimum is taken over all probability measures with suppµ ⊂ K.
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Then the asymptotics (1.8) and (1.9) yield: as k →∞, we have

1

k2
log(detTk[f ])→ E(µeq(S1))− E(µeq(K)). (1.13)

The asymptotics (1.13) can alternatively be established from Berman-Boucksom [3, Theorem A],
cf. also [42, §9]. Remark that from this interpretation one immediately sees that the left-hand side
of (1.13) is non-positive which is very much compatible with (1.7).

While this course will not delve into the theory of Toeplitz matrices and potential theory, the
main result will closely resemble the statements in (1.8) and (1.9). As we shall explain in Section
1.3, this resemblance is no coincidence.

1.2 Submultiplicative filtrations
In this section, we introduce the key objects of study in this mini-course and present its main result.

A submultiplicative filtration on a commutative ring A is a decreasing filtration F , indexed by
λ ∈ R, such that the multiplication map on A factors as

FλA⊗FµA→ Fλ+µA for all λ, µ ∈ R. (1.14)

Throughout this mini-course, we impose the following assumptions: all filtrations will be decreas-
ing, the ring A will be graded, i.e. A = ⊕k∈NAk, and the filtration F will respect this grading, i.e.
FλA = ⊕k∈NFλkA. The primary goal of this mini-course is to study submultiplicative filtrations
from an asymptotic perspective.

Historically, the asymptotic study of filtrations was first considered by Samuel [69]. Sub-
sequent developments by Rees [64] [65], [66] established fundamental connections between the
asymptotics of filtrations and the theory of valuations through his celebrated valuation theorems.

In these lecture notes, we focus primarily on the statistical properties of filtrations. Our main
objective is to develop a framework that can effectively answer questions of the following form:
What proportion of elements in Ak have weights lying in a given interval [ak, bk], where a, b ∈ R?

The answer to the above question will be formulated in geometric terms. To achieve this, we
will work under the natural assumption that the ring A itself has geometric origin.

We fix a complex projective manifold X , dimX = n, and an ample line bundle L over it. We
shall be concerned with submultiplicative filtrations on the ring A := R(X,L), where R(X,L) is
the section ring defined as

R(X,L) := ⊕+∞
k=0H

0(X,L⊗k). (1.15)

We say that a submultiplicative filtration F on R(X,L) is bounded if there is C > 0, such
that for any k ∈ N∗, FCkH0(X,L⊗k) = {0}. We say that F is finitely generated if it has integral
weights and the associated C[τ ]-algebra Rees(F) :=

∑
(λ,k)∈Z×N τ

−λFλH0(X,L⊗k), also called
the Rees algebra, is finitely generated. Finitely generated submultiplicative filtrations are clearly
automatically bounded. As the section ringR(X,L) is finitely generated, cf. [50, Example 2.1.30],
the set of finitely generated submultiplicative filtrations is non-empty, and for an arbitrary submul-
tiplicative filtration, there is C > 0, such that for any k ∈ N∗, F−CkH0(X,L⊗k) = H0(X,L⊗k).

The most natural example of a submultiplicative filtration is the filtration given by the order of
vanishing along a fixed divisor. The condition (1.14) then admits a natural geometric interpretation:
for any product of functions, the vanishing order along the divisor is bounded below by the sum of
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the vanishing orders of the factors. Of course, when the divisor is irreducible, this inequality even
becomes an equality.

Other examples include filtrations associated with the weight of a C∗-action on the pair (X,L),
filtrations associated with valuations or graded ideals [66], or finitely generated filtrations induced
by an arbitrary filtration on H0(X,L⊗k), for k ∈ N big enough.

To lighten the notation, we set nk := dimH0(X,L⊗k), k ∈ N. Define the jumping numbers
eF(j, k), j = 1, . . . , nk, as follows

eF(j, k) := sup
{
t ∈ R : dimF tH0(X,L⊗k) ≥ j

}
. (1.16)

To simplify further presentation, we shall assume thatF0H0(X,L⊗k) = H0(X,L⊗k), which trans-
lates in the language of jumping numbers as eF(j, k) ≥ 0.

Phong–Sturm [60] and Ross–Witt Nyström [68] showed that any submultiplicative filtration
gives rise to a geodesic ray in the space of Hermitian metrics on L. We will describe this construc-
tion in detail in Lecture 4. Concretely, this means that one can associate to each filtration a ray of
metrics hLF ,t, for t ∈ [0,+∞[, emanating from any given smooth positive metric hLF ,0 on L.

This ray of metrics constitutes the analytic realization of the filtration, while the associated
jumping numbers represent its algebraic counterpart. The main result of the mini-course asserts a
precise compatibility between these two perspectives.

Theorem 1.1. For any bounded submultiplicative filtration F on R(X,L), there is the probability
measure µF on R, so that for any continuous function g : I → R, as k →∞, we have

1

nk

nk∑
j=1

g
(eF(j, k)

k

)
→
∫
g(t)dµF(t). (1.17)

Moreover, µF is characterized by the following identity∫
t∈R

tpdµF(t) = dp(h
L
F ,0, h

L
F ,1)

p. (1.18)

Remark 1.2. a) The existence of the limit in (1.17) is due to Chen [13] and Boucksom-Chen [11].
b) For filtrations associated with a C∗-action on the pair (X,L), Theorem 1.1 was established

by Witt Nyström [77, Theorems 1.1 and 1.4]. For finitely generated filtrations, this result is due to
Hisamoto [46, Theorem 1.1], proving a conjecture [77, after Theorem 1.4]. In full, Theorem 1.1
was established by the author in [35].

c) For further developments, the reader may consult [41], for a relative version of Theorem 1.1,
cf. also Reboulet [63], and [39] for the relation with Bergman kernels.

The attentive reader will notice the similarity between (1.8) and (1.17), (1.9) and (1.18). In the
next two sections, we explore the reasons behind these similarities.

1.3 Toeplitz operators and submultiplicative filtrations
The main goal of this section is to describe a result which unifies (1.8) and (1.17), (1.9) and (1.18).
Roughly, we shall proceed as follows. We show that to any filtration one can naturally associate
a certain linear operator, and this operator turns out to be the so-called Toeplitz operator. From
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this, (1.17) can be obtained as a consequence of a statement analogous to (1.8) in the setting of a
Toeplitz operator.

Remark that any (decreasing) filtration F on a finitely dimensional Hermitian vector space
(V,H) induces the weight operator A(F , H) ∈ End(V ), defined as

A(F , H)ei = wF(ei) · ei, where wF(e) := sup{λ ∈ R : e ∈ FλV }, e ∈ V, (1.19)

and e1, . . . , er, r := dimV , is an orthonormal basis of (V,H) adapted to the filtration F in the
sense that e1 has the maximal weight, e2 has the maximal weight among vectors orthogonal to e1,
and so on.

Any Hermitian metric hL induces a natural L2-Hermitian metric on the space of holomorphic
sections H0(X,L⊗k). More specifically, for any s, t ∈ H0(X,L⊗k), we define

〈s, t〉L2 =

∫
X

〈s(x), t(x)〉
hL⊗kdvX(x), (1.20)

where dvX is the Riemannian volume form on X , associated with a fixed Kähler form ω and
normalized so that

∫
X
dvX(x) = 1, i.e. dvX = ωn/

∫
[ω]n. For any f ∈ L∞(X), we define the

Toeplitz operator

TXk [f ] ∈ End(H0(X,L⊗k)), k ∈ N, as TXk [f ] := Bk ◦Mf,k, (1.21)

where Bk : L∞(X,L⊗k) → H0(X,L⊗k) is the orthogonal (Bergman) projection to H0(X,L⊗k),
and Mf,k : H0(X,L⊗k)→ L∞(X,L⊗k) is the multiplication map by f , acting as s 7→ f · s.

It is not a coincidence that these operators are called Toeplitz operators and the matrices con-
sidered in Section 1.1 were called Toeplitz matrices. In fact, both of them can be interpreted as a
part of the general theory that we shall explain in Section 1.4.

The main result of [39] shows that the weight operator associated with a submultiplicative
filtration is, up to a negligible error, a Toeplitz operator. This is captured in the following statement.

Theorem 1.3. For any bounded submultiplicative filtration F , there is a function φ(hL,F) ∈
L∞(X), such that for any ε > 0, p ∈ [1,+∞[, there is k0 ∈ N, such that for any k ≥ k0, we have∥∥∥A(Fk,Hilbk(hL))− kTXk [φ(hL,F)]

∥∥∥
p
≤ εk, (1.22)

where ‖ · ‖p is the p-Schatten norm, defined for an operator A ∈ End(V ), of a finitely-dimensional
Hermitian vector space (V,H) as ‖A‖p = ( 1

dimV
Tr[|A|p])

1
p , |A| := (AA∗)

1
2 . Moreover, the

function φ(hL,F) corresponds to the “speed” of the geodesic ray hLF ,t from Theorem 1.1, i.e.
φ(hL,F) = −(hLF ,0)

−1 d
dt
hLF ,t|t=0.

Now, to finally describe the relation between all the above results, we first point out that for
Toeplitz operators, an analogue of (1.4) also holds, as established by Boutet de Monvel-Guillemin
in [49]. This result was subsequently extended and its proof significantly simplified through the
work on Bergman kernels by Dai-Liu-Ma [19] and Ma-Marinescu [53], [52], see the tutorial for
Lecture 2 for more details. Roughly, the statement says that3 for any f ∈ L∞(X), and continuous
g : R→ R, as k →∞, we have

1

nk
Tr
[
g
(
TXk [f ]

)]
→ n!∫

X
c1(L)n

·
∫
X

g(f(x))dvX(x). (1.23)

3The works [53], [52] demand that f is continuous. For the statement allowing f ∈ L∞(X), see [39, §5].
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Remark that immediately from the definitions, in the notations of (1.17), we obtain

Tr
[
g
(A(Fk,Hilbk(hL))

k

)]
=

nk∑
j=1

g
(eF(j, k)

k

)
. (1.24)

Now, if we combine Theorem 1.3 with (1.23), we deduce that, as k →∞, we have

1

nk
Tr
[
g
(A(Fk,Hilbk(hL))

k

)]
→
∫
X

g(φ(hL,F))dvX(x), (1.25)

where – we recall – nk was defined before (1.16). One can deduce Theorem 1.1 from Theorem 1.3
using the following (non-trivial) relationship between the speed and the distance∫

X

|φ(hL,F)|pω
n

n!
= dp(h

L
F ,0, h

L
F ,1)

p, (1.26)

see [21, Theorem 7.2], [25, Lemma 4.5], [14], [30], for a detailed account on this relationship.
We will not establish Theorem 1.3 in the present lecture notes, and instead, we focus on a direct

proof of Theorem 1.1. This not only simplifies the presentation significantly, but is also justified
by the fact that the proof of Theorem 1.3 ultimately relies on the proof of Theorem 1.1 that we
shall present. We invite the readers interested in the more refined Theorem 1.3 to consult [39].

1.4 Bernstein-Markov measures and Toeplitz theory
In this section, we clarify the relationship between Toeplitz operators and Toeplitz matrices. To
this end, we show that the general theory of Toeplitz operators can be extended to a broader setting
that encompasses both frameworks.

We fix a continuous Hermitian metric hL on L and a positive Borel measure µ supported on a
compact subset K ⊂ X . We assume that µ is non-pluripolar, i.e. it does not charge pluripolar sets
– recall that a subset is pluripolar if it is contained in the {−∞}-locus of some plurisubharmonic
(psh) function. We denote by Hilbk(hL, µ) the positive semi-definite form on H0(X,L⊗k) defined
for arbitrary s1, s2 ∈ H0(X,L⊗k) as follows

〈s1, s2〉Hilbk(hL,µ) =

∫
X

〈s1(x), s2(x)〉(hL)k · dµ(x). (1.27)

Remark that since µ is non-pluripolar, the above form is positive definite.
For a fixed f ∈ C 0(X) and k ∈ N∗, we define Tk(f) ∈ End(H0(X,L⊗k)) as Tk(f) :=

Bk ◦Mk(f), where Bk : C 0(X,L⊗k) → H0(X,L⊗k) is the orthogonal (Bergman) projection to
H0(X,L⊗k) with respect to (1.27), and Mk(f) : H0(X,L⊗k)→ C 0(X,L⊗k) is the multiplication
map by f . By considering the products 〈Tk(f)s1, s2〉Hilbk(hL,µ) for arbitrary s1, s2 ∈ H0(X,L⊗k),
we see that Tk(f) depends solely on the restriction of f to K. As by Tietze-Urysohn-Brouwer
extension theorem, any function from C 0(K) admits an extension to C 0(X), we can thus extend
the definition of Tk(f) for any f ∈ C 0(K).

The main results of [40] show that the analogues of the statements (1.4) and (1.23) hold for
arbitrary measures µ satisfying a certain condition called the Bernstein-Markov condition. The
latter condition roughly means that the L2-norm (1.27) should not be very far away from the L∞-
norm on L. Many measures do satisfy this condition. For example, any volume form on a complex
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manifold satisfies it, and the above definition of Tk(f) then coincides with the definition from
Section 1.3. The results of [40] then imply (1.23).

To clarify the relationship with Toeplitz matrices, we encourage the reader to work through
the following exercise, cf. [42, §10] and [40, §4]. We embed S1 into X := P1 as a great circle
(the image of the map θ 7→ [1 : exp(iθ)] ∈ P1, for θ ∈ [0, 2π[, where [1 : z] ∈ P1, z ∈ C,
denotes the standard affine chart). Let µ denote the Lebesgue measure on S1, viewed as a measure
on X . Now consider the line bundle L = O(1) on X . The measure µ will be non-pluripolar and
Bernstein-Markov.

The space of global sections H0(X,L⊗(k−1)) can be naturally identified with the space of
polynomials in z of degree at most k − 1. Consider f ∈ L∞(S1) as in (1.2). The reader will
verify that the matrix of the Toeplitz operator associated with f in the basis {z0, z1, . . . , zk−1} of
H0(X,L⊗(k−1)) coincides with the Toeplitz matrix (1.1). In particular, the results of [40] then
generalize (1.4).

1.5 Tutorial: introduction to Bergman kernel
The main goal of the first tutorial session will be to introduce the basic facts surrounding the
Bergman kernel.

Let X be a compact complex manifold and L be an ample line bundle. We assume H0(X,L)
has no base points, i.e. for any x ∈ X , there s ∈ H0(X,L) verifying s(x) 6= 0. Then for each
x ∈ X , the set of sections s ∈ H0(X,L) vanishing at x, forms a hyperplane Hp ⊂ H0(X,L), and
so we can define a map

ιL : X → P(H0(X,L)∗), (1.28)

by sending x ∈ X to Hp ∈ P(H0(X,L)∗).
We can describe the map ιL more explicitly as follows. For every point x ∈ X , we get the

evaluation map evx : H0(X,L)→ Lx. As Lx is one-dimensional and evx is surjective, it gives us
an element of H0(X,L)∗, defined up to a constant, which is precisely ιL(x).This map gives us the
trivializing section of the line bundle

ι∗LO(−1)⊗ L. (1.29)

Even more explicitly, choose a basis s0, . . . , sN for H0(X,L). It defines the dual basis s∗0, . . . , s
∗
N

of H0(X,L)∗. In terms of this dual basis, the evaluation map can be written as

evx = s1(x) · s∗1 + · · ·+ sN(x) · s∗N . (1.30)

Hence, upon the identification of H0(X,L)∗ and H0(X,L) using the above basis, the map ι cor-
responds to the map

ιL : X → P(H0(X,L)∗), x 7→ [s0(x), s1(x), . . . , sN(x)]. (1.31)

We see from this representation that ιL is holomorphic.
The seminal work of Kodaira implies that if L is endowed with a positive Hermitian metric

hL, then there is k0 ∈ N, so that the above maps ιL⊗k , are well-defined and give embeddings
for k ≥ k0. Familiarity with this theorem is assumed; readers who are not acquainted with it
may consult Griffith-Harris [43, §1.4]. The main goal of this section is to describe a theorem due
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to Tian, which somehow refines the theorem of Kodaira on the metric level. It shows that the
above embeddings become quasi-isometries for an arbitrary Kähler metric on X in the class c1(L),
properly rescalled.

The relation between Tian’s result and Kodaira’s theorem is somewhat analogous to the relation
between the Whitney and Nash embedding theorems, with one key distinction: the former concerns
complex manifolds, whereas the latter pertains to real manifolds. The Whitney embedding theorem
asserts that any smooth manifold can be embedded into a real Euclidean space, while Nash;s
embedding theorem goes further, stating that such an embedding can be made isometric in the
presence of a Riemannian metric.

To explain Tian’s result, we need to recall the definition of the Fubini-Study metric.
Exercise 0. Let Z0, . . . , Zn be coordinates on Cn+1 and denote by

π : Cn+1 \ {0} → Pn

the standard projection map. Let U ⊂ Pn be an open set and Z : U → Cn+1 \ {0} a lifting of U ,
i.e., a holomorphic map with π ◦ Z = id. Consider the differential form

ω =

√
−1

2π
∂∂̄ log ‖Z‖2,

where ‖Z‖2 = |Z1|2 + . . .+ |Zn+1|2 is the usual `2-norm. Show that the definition doesn’t depend
on the lifting and gives a well-defined Kähler metric on PnC.
Proof. If Z ′ : U → Cn+1 \ {0} is another lifting, then

Z ′ = f · Z

with f a nonzero holomorphic function, so that
√
−1

2π
∂∂̄ log ‖Z ′‖2 =

√
−1

2π
∂∂̄(log ‖Z‖2 + log f + log f̄).

Thus,

ω = ω +

√
−1

2π
(∂∂̄ log f − ∂∂̄ log f̄) = ω.

Therefore, ω is independent of the lifting chosen; since liftings always exist locally, ω is a globally
defined differential form in Pn. Clearly, ω is of type (1, 1).

To see that ω is positive, first note that the unitary group U(n + 1) acts transitively on Pn and
leaves the form ω invariant, so that ω is positive everywhere if it is positive at one point.

Now let {wi = Zi/Z0} be coordinates on the open set

U0 = {Z0 6= 0} ⊂ Pn

and use the lifting
Z = (1, w1, . . . , wn)

on U0. We then have

ω =

√
−1

2π
∂∂̄ log(1 +

∑
wiw̄i) =

√
−1

2π
∂

( ∑
widw̄i

1 +
∑
wiw̄i

)
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=

√
−1

2π

[∑
dwi ∧ dw̄i

1 +
∑
wiw̄i

− (
∑
w̄idwi) ∧ (

∑
widw̄i)

(1 +
∑
wiw̄i)2

]
. (1.32)

At the point [1, 0, . . . , 0],

ω =

√
−1

2π

∑
dwi ∧ dw̄i > 0.

Thus, ω defines a Hermitian metric on Pn, called the Fubini-Study metric.
Remark that a different choice of a Hermitian structure on Cn+1 would yield a different Fubini-

Study metric on Pn.
We will now define the Bergman kernel, the relevance of which will become clear later on. We

assume that k ∈ N is big enough, so that H0(X,L⊗k) is base-point-free (it is always possible to
choose such k, see Lecture 2 for a sheaf-theoretic proof of this fact).

We fix a positive Hermitian metric hL on L and consider the L2-scalar product on H0(X,L⊗k),
defined as in (1.20), where ω = c1(L, h

L) is the first Chern class, the latter is defined as
c1(L, h

L) =
√
−1
2π
RL, where RL is the curvature of the Chern connection on (L, hL) (the only

connection preserving the Hermitian and holomorphic structures). We choose an orthonormal ba-
sis {s1, s2, . . . , snk} of H0(X,L⊗k), where nk := dimH0(X,L⊗k). The Bergman kernel of the
Hermitian metric hL is the function defined as follows

Bk : X → R, x 7→
nk∑
i=1

∣∣si(x)
∣∣2
(hL)k

. (1.33)

Exercise 1: Bk is independent of the choice of the orthonormal basis.
Exercise 2: show that for any x ∈ X we have

Bk(x) = sup
{
|s(x)|2

hL⊗k
: ‖s‖L2 = 1

}
. (1.34)

Proof: As H0(X,L⊗k) is base-point-free, the subspace

Ex =
{
t ∈ H0(X,L⊗k) : t(x) = 0

}
(1.35)

has codimension 1. Let s be in the orthonormal complement of Ex with ‖s‖L2 = 1. Then it
follows from the definition that Bk(x) = |s(x)|2

hL⊗k
, since every section orthonormal to s vanishes

at x.
Exercise 3: Suppose the Kodaira embedding

ιk : X −→ P(H0(X,L⊗k)∗),

is defined on all of X . Then

1

k
ι∗kωFS − ω =

√
−1

2π

∂∂ logBk

k
,

where ωFS is the Fubini-Study metric defined by the L2-metric induced by hL.
Proof: Directly from the description of the Fubini-Study metric and the Kodaira embedding 1.31,
we see that over the set U ⊂ X , verifying s1(x) 6= 0 for x ∈ U , we have

ι∗kωFS =

√
−1

2π
∂∂ log

(
1 +

∣∣∣s1(x)

s2(x)

∣∣∣2 + · · ·+
∣∣∣ s1(x)

snk(x)

∣∣∣2).
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The result now follows directly from this, the definition of the Bergman kernel and the Lelong-
Poincare equation.

The following fundamental result was established by Tian [75], Zelditch [78], Bouche [9]. We
shall discuss a proof of a version of it in the following lecture.

Theorem 1.4. There are smooth functions ai : X → R, i ∈ N, such that a0 = 1 and for any
p, q ∈ N, there is C > 0 such that∣∣∣Bk(x)− kn ·

p∑
i=0

ai(x)k−i
∣∣∣
C q
≤ C kn−p−1. (1.36)

As an immediate corollary of Theorem 1.4 and last exercise, we deduce the following result.

Corollary 1.5. For any positive Hermitian metric hL on L, as k → ∞, we have the following
convergence 1

k
ι∗kωFS → ω in the space of smooth differential forms on X .

We also note that Theorem 1.4 immediately implies the following asymptotic version of Riemann-
Roch-Hirzerbruch formula.

Corollary 1.6. As k →∞, we have

dimH0(X,L⊗k) ∼
∫
X
c1(L)n

n!
· kn. (1.37)

Proof. Use the identity dimH0(X,L⊗k) =
∫
Bk(x) · ωn

n!
.

2 Semiclassical extension theorem
In their seminal paper [58], Ohsawa and Takegoshi established a sufficient condition under which
a holomorphic section of a vector bundle over a submanifold can be extended to a holomorphic
section over the ambient manifold, with a controlled bound on the L2-norm of the extension in
terms of the original L2-norm. The main objective of the second lecture is to present a refinement
of this result in the semiclassical setting. Here, the semiclassical setting refers to the case where
the vector bundle in question is a high tensor power of a fixed ample line bundle, and our interest
lies in understanding the asymptotic behavior as the tensor power tends to infinity.

In its simplest form, semiclassical extensions have already been studied in the paper of Tian
[75], where he introduced peak sections. In fact, peak sections can be seen as images of the optimal
extension operator, see (2.5), applied for a submanifold given by a point. In this perspective, the
main result of this lecture can be seen as a generalization of the result of Tian from points to general
submanifolds of higher dimension.

2.1 Statement of the result

In this section, we review the results from [37], [38] on asymptotics of the L2-optimal holomorphic
extensions of holomorphic sections along submanifolds associated with high tensor powers of a
positive line bundle.

Let us fix two complex manifolds X, Y of dimensions n and m respectively. For the sake of
simplicity, we assume that X and Y are compact, although our results work in a more general
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setting of manifolds and embeddings of bounded geometry. We fix also a complex embedding
ι : Y → X , a positive line bundle (L, hL) over X . In particular, we assume that for the curvature
RL of the Chern connection on (L, hL), the closed real (1, 1)-differential form

ω :=

√
−1

2π
RL, (2.1)

is positive. We denote by gTX the Riemannian metric on X so that its Kähler form coincides with
ω. We denote by gTY the induced metric on Y and by dvX , dvY the associated Riemannian volume
forms on X and Y .

Let TX , TY be the holomorphic tangent bundles of X and Y . We identify the (holomorphic)
normal bundle N = TX/TY of Y in X as orthogonal complement of TY in TX , so that we have
the (smooth) orthogonal decomposition TX|Y → TY ⊕N .

For any smooth sections f, f ′ of Lk, k ∈ N, over X , we define the L2-scalar product using the
pointwise scalar product 〈·, ·〉h, induced by hL as in (1.20).

We have the restriction operator

Resk : H0(X,Lk)→ H0(Y, ι∗Lk), f 7→ f |Y . (2.2)

A standard argument based on short exact sequences and Serre vanishing theorem implies that
there is p0 ∈ N, such that for any k ≥ k0, the operator Resk is surjective. Indeed, consider the
short exact sequence of sheaves

0→ OX(Lk)⊗ JY → OX(Lk)→ OX(Lk)⊗ OX/JY → 0, (2.3)

where JY is the ideal sheaf of holomorphic germs on X , which vanish along Y . The associated
long exact sequence in cohomology gives us

· · · → H0(X,Lk)→ H0(X,Lk ⊗ OX/JY )→ H1(X,Lk ⊗ JY )→ · · · . (2.4)

By Serre vanishing theorem, for p big enough, the cohomology H1(X,Lk ⊗ JY ) vanishes by the
ampleness of L. This finishes the proof of the surjectivity of the restriction morphism, Resk, as
the first map of the above long exact sequence corresponds to Resk under the natural isomorphism
H0(X,Lk ⊗ OX/JY ) ' H0(Y, ι∗Lk), and by (2.4) the vanishing of the first cohomology group
means exactly that the map is surjective.

By the surjectivity of Resk, we can define the optimal extension operator

Ek : H0(Y, ι∗Lk)→ H0(X,Lk), (2.5)

by putting Ekg = f , where Resk(f) = g, and f has the minimal L2-norm among those f ′ ∈
H0(X,Lk) satisfying Resk(f

′) = g. Clearly, the minimizing f exists and it is unique. Moreover,
the operator Ek is linear since the minimality of the L2-norm among different extensions is char-
acterized by a linear condition, requiring the image to be orthogonal to the space of holomorphic
sections vanishing along Y . The main goal of [37] is to find an explicit asymptotic expansion of
the operator Ek, as k →∞.

To describe the first term of the asymptotic expansion, we introduce some trivializations. For
y ∈ Y , ZN ∈ Ny, let R 3 t 7→ expXy (tZN) ∈ X be the geodesic in X in direction ZN . For
r⊥ > 0 small enough, this map induces a diffeomorphism of r⊥-neighborhood of the zero section
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in N with a tubular neighborhood U of Y in X . We use this identification, called geodesic normal
coordinates, implicitly. We denote by π : U → Y the natural projection (y, ZN) 7→ y. Over U , we
identify L, F to π∗(L|Y ) by the parallel transport with respect to the Chern connections along the
geodesic [0, 1] 3 t 7→ (y, tZN) ∈ X , |ZN | < r⊥.

We fix a smooth function ρ : R+ → [0, 1], satisfying

ρ(x) =

{
1, for x < 1

4
,

0, for x > 1
2
.

(2.6)

We define the trivial extension operator E0
k : H0(Y, ι∗Lk) → L2(X,Lk) as follows. For

g ∈ H0(Y, ι∗Lk), we let (E0
kg)(x) = 0 for x /∈ U , and in U , we define E0

kg using the geodesic
normal coordinates as follows

(E0
kg)(y, ZN) = g(y) · ρ

( |ZN |
r⊥

)
· exp

(
− kπ

2
|ZN |2

)
. (2.7)

The Gaussian integral calculation gives us for any f ∈ H0(Y, ι∗Lk), as k →∞, the following
asymptotics ∥∥E0

kf
∥∥
L2(X)

∼ 1

k
n−m

2

·
∥∥f∥∥

L2(Y )
. (2.8)

In particular, as k →∞, we see that ∥∥E0
k

∥∥ ∼ 1

k
n−m

2

, (2.9)

where ‖ · ‖ is the operator norm, calculated with respect to the L2-norms.
Now, the section E0

kg satisfies (E0
kg)|Y = g, but it is not holomorphic over X (unless g is null).

Nevertheless, as our main result of [37] says, E0
kg approximates very well the holomorphic section

Ekg. More precisely, we have the following result.

Theorem 2.1. There are C > 0, k1 ∈ N∗, such that for any k ≥ k1, we have∥∥Ek − E0
k

∥∥ ≤ C

k
n−m+1

2

. (2.10)

Remark 2.2. a) By (2.9), Theorem 2.1 tells us that the principal asymptotic term of the optimal
extension operator is given by the trivial extension operator.

b) Theorem 2.1 refines previous works of Zhang [79, Theorem 2.2], Bost [8, Theorem A.1] and
Randriambololona [62, Théorème 3.1.10], stating that for any ε > 0, there is k1 ∈ N∗, such that∥∥Ek

∥∥ ≤ exp(εk) for k ≥ k1.
Clearly, Theorem 2.1 and (2.9) imply that for any ε > 0, there is k1 ∈ N, such that for any

k ≥ k1, we have

‖Ek‖ ≤
1 + ε

k
n−m

2

. (2.11)

This statement can be rephrased in the usual language of extension theorem as follows. For any
ε > 0 there is k1 ∈ N, such that for any k ≥ k1, f ∈ H0(Y, ι∗Lk), there is f̃ ∈ H0(X,Lk),
verifying Resk(f̃) = f , and such that

‖f̃‖L2(X) ≤
1 + ε

k
n−m

2

· ‖f‖L2(Y ). (2.12)
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Remark, however, that Theorem 2.1 and (2.8) say even more. For any f̃ ∈ H0(X,Lk), verifying
Resk(f̃) = f , we have

‖f̃‖L2(X) ≥ ‖Ek(Reskf̃)‖L2(X) ≥
1− ε
k
n−m

2

· ‖f‖L2(Y ). (2.13)

The above two statements will play a crucial role later on, and to illustrate this better, we shall
develop a special notation. We denote the L2-norm on H0(X,L⊗k) by HilbXk (hL), and the L∞-
norm by BanXk (hL). To ease the notation, we denote the corresponding norms on H0(Y, ι∗L⊗k) by
HilbYk (hL) and BanYk (hL) respectively. Here Ban stands for “Banach” and Hilb is for “Hilbert”.

Recall that a norm NV = ‖ · ‖V on a finitely dimensional vector space V naturally induces the
norm ‖ · ‖Q on any quotient Q, π : V → Q of V through the following identity

‖f‖Q := inf
{
‖g‖V ; g ∈ V, π(g) = f}, f ∈ Q. (2.14)

By a slight abuse of notations, we sometimes denote the quotient norm by [NV ], i.e. without the
reference to the quotient space. Of course, the norm [NV ] is Hermitian whenever NV is Hermitian.

In particular, by the surjectivity of the map (2.2), any norm on H0(X,Lk) induces a norm
on H0(Y, ι∗Lk). The bounds (2.12) and (2.13) then translate into this language in the following
manner.

Corollary 2.3. For any ε > 0 and a positive Hermitian metric hL on L, there is k ∈ N∗, so that for
any k ≥ k0, we have

(1− ε) · k
n−m

2 · HilbYk (hL) ≤ [HilbXk (hL)] ≤ (1 + ε) · k
n−m

2 · HilbYk (hL). (2.15)

A slightly more refined analysis would show the following statement.

Proposition 2.4. For any ε > 0 and a positive Hermitian metric hL on L, there is k ∈ N∗, so that
for any k ≥ k0, we have

BanYk (hL) ≤ [BanXk (hL)] ≤ (1 + ε) · BanYk (hL). (2.16)

In this mini-course, however, the following statement due to Zhang [79, Theorem 2.2], Bost [8,
Theorem A.1] and Randriambololona [62, Théorème 3.1.10] will always be sufficient.

Proposition 2.5. For any ε > 0 and a continuous Hermitian metric hL on L with psh potential,
there is k ∈ N∗, so that for any k ≥ k0, we have

BanYk (hL) ≤ [BanXk (hL)] ≤ exp(εk) · BanYk (hL). (2.17)

Proof. The lower bound is immediate: it basically says that the sup-norm of a restriction of a sec-
tion is not bigger than the sup-norm of the section. To establish the upper bound, recall that accord-
ing to Demailly’s regularization theorem, see [27], [28], on ample line bundle, any continuous met-
ric with psh potential is regularizable from below, meaning that there is an increasing sequence of
smooth positive metrics hLi , i ∈ N, converging uniformly to hL, cf. [44, Theorem 8.1]. We choose
i ∈ N so that hL ≤ exp(ε/2)hLi . Then we clearly have [BanXk (hL)] ≤ exp(εk/2)[BanXk (hLi )]. The
result then follows immediately from Proposition 2.4, applied for hLi .
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2.2 Schwartz kernel of the extension theorem
Theorem 2.1 was established in [37, Theorem 1.1] as an almost direct consequence of more precise
results about the asymptotics of the Schwartz kernel Ek(x, y) ∈ Lkx ⊗ Lp∗y , x ∈ X , y ∈ Y , of Ek.
To describe these results, recall first that the Schwartz kernel Ek(x, y) is defined so that for any
g ∈ L2(Y, ι∗Lk), x ∈ X , we have

(Ekg)(x) =

∫
Y

Ek(x, y) · g(y)dvY (y), (2.18)

where we extended the domain of Ek from H0(Y, ι∗Lk) to L2(Y, ι∗Lk) by precomposing it with
the orthogonal projection onto H0(Y, ι∗Lk).

Then the first result needed for the proof of Theorem 2.1 shows that Ek(x, y) has exponential
decay with respect to the distance between the parameters.

Theorem 2.6 ( [37, Theorem 1.5]). There are c > 0, k1 ∈ N∗, such that for any k ≥ k1, x ∈ X ,
y ∈ Y , the following estimate holds∣∣Ek(x, y)

∣∣ ≤ Ckm exp
(
− c
√
k · dist(x, y)

)
. (2.19)

From Theorem 2.6, we see that to understand fully the asymptotics of Ek(x, y), it suffices to do
so for x, y in a neighborhood of a fixed point (y0, y0) ∈ Y ×Y in X×Y . In [37, Theorem 1.6], we
show that after a reparametrization, given by a homothety with factor

√
k in the so-called Fermi

coordinates around (y0, y0), the Schwartz kernel Ek(x, y) admits a complete asymptotic expansion
in integer powers of

√
k, as k →∞. The first two terms of this expansion can be easily calculated

explicitly, and the first term corresponds to the Schwartz kernel of the optimal extension operator
of the so-called Fock-Bargmann space.

More precisely, we fix a point y0 ∈ Y and an orthonormal frame (e1, . . . , e2m) (resp.
(e2m+1, . . . , e2n)) in (Ty0Y, g

TY
y0

) (resp. in (Ny0 , g
N
y0

)), such that for i = 1, . . . , n, Je2i−1 = e2i,
where J is the complex structure of X . For Z ∈ R2n, we denote by zi, i = 1, . . . , n, the induced
complex coordinates zi = Z2i−1 +

√
−1Z2i. We frequently use the decomposition Z = (ZY , ZN),

where ZY = (Z1, . . . , Z2m) and ZN = (Z2m+1, . . . , Z2n) and implicitly identify Z (resp. ZY , ZN )
to an element in TyX (resp. TyY , Ny) by

Z =
2n∑
i=1

Ziei, ZY =
2m∑
i=1

Ziei, ZN =
2n∑

i=2m+1

Ziei. (2.20)

We fix rY , r⊥ > 0 small enough. We define the coordinate system ψy0 : BR2m

0 (rY ) ×
BR2(n−m)

0 (r⊥) → X , for Z = (ZY , ZN), ZY ∈ R2m, ZN ∈ R2(n−m), ZY = (Z1, . . . , Z2m),
ZN = (Z2m+1, . . . , Z2n), |ZY | < rY , |ZN | < r⊥, by

ψy0(ZY , ZN) := expXexpYy0 (ZY )(ZN(ZY )), (2.21)

where ZN(ZY ) ∈ NexpYy0 (ZY ) is the parallel transport of ZN along the geodesic expYy0(tZY ), t =

[0, 1], with respect to the connection∇N onN given by the projection of the Levi-Civita connection
on N , and BRn

0 (ε), ε > 0 means the euclidean ball of radius ε around 0 ∈ Rn. The coordinates ψy0
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are called the Fermi coordinates at y0. Fermi coordinates, in particular, provide a trivialization of
the normal bundle, N , in a neighborhood of y0.

We will now introduce a trivialization of the line bundle L using Fermi coordinates. We fix
an orthonormal frame l ∈ Ly0 , and define the orthonormal frame l̃ by taking the parallel transport
of l with respect to the Chern connection ∇L of (L, hL), done first along the path ψy0(tZY , 0),
t ∈ [0, 1], and then along the path ψy0(ZY , tZN), t ∈ [0, 1], ZY ∈ R2m, ZN ∈ R2(n−m), |ZY | < rY ,
|ZN | < r⊥. This frame and the induced frame of the dual line bundle allows us to view Ek(x, y)
as a complex-valued function of x ∈ X , y ∈ Y in a min(r⊥, rY )-neighborhood of y0.

Using the identifications similar to the ones before (2.20), we view the space Cn−m as a holo-
morphic normal bundle of Cm in Cn with basis ∂

∂zi
, i = m + 1, . . . , n. We define the function

En,m : R2n × R2m → C for Z ∈ R2n, Z ′Y ∈ R2m as follows

En,m(Z,Z ′Y ) = exp
(
− π

2

m∑
i=1

(
|zi|2 + |z′i|2 − 2ziz

′
i

)
− π

2

n∑
i=m+1

|zi|2
)
, (2.22)

where Z = (Z1, . . . , Z2n), Z ′Y = (Z ′1, . . . , Z
′
2m) and zi := Z2i−1 +

√
−1Z2i and z′i := Z ′2i−1 +√

−1Z ′2i. The rationale behind the function (2.22) is that it corresponds precisely to the Schwartz
kernel, written in Fermi coordinates, of the optimal extension operator from an m-dimensional
linear subspace of the n-dimensional Fock-Bargmann space to the entire Fock-Bargmann space,
see [37, §3.2] for a justification. The result [37, Theorem 1.6] says that the general embedding of
a submanifold in a manifold is not too far from this model one.

Theorem 2.7. There are ε, c, C,Q > 0, k1 ∈ N∗, such that for any y0 ∈ Y , k ≥ k1, Z = (ZY , ZN),
ZY , Z

′
Y ∈ R2m, ZN ∈ R2(n−m), |Z|, |Z ′Y | ≤ ε, we have∣∣∣ 1

km
Ek

(
ψy0(Z), ψy0(Z

′
Y )
)
− En,m(

√
kZ,
√
kZ ′Y )

∣∣∣
≤ C

k
1
2

·
(

1 +
√
k|Z|+

√
k|Z ′Y |

)Q
exp

(
− c
√
k
(
|ZY − Z ′Y |+ |ZN |

))
. (2.23)

Proof of Theorem 2.1. Let us now explain how (2.19) and (2.36) imply Theorem 2.1. As we
explain in [37, (5.124) and (5.125)], directly from the off-diagonal asymptotic expansion of the
Bergman kernel due to Dai-Liu-Ma [19], we deduce that the Schwartz kernel of the trivial exten-
sion operator, E0

k(x, y), x ∈ X , y ∈ Y has an asymptotic expansion as in (2.36) (in particular, with
the higher order term). From this, (2.19), (2.36) and the exponential decay of the Bergman kernel
proved by Ma-Marinescu [54], we deduce that the Schwartz kernel K0

k(x, y), x ∈ X , y ∈ Y , of
Kk := Ek − E0

k satisfies the following bound, see [37, (5.127)]: there are c, C > 0, k1 ∈ N∗, such
that for any k ≥ k1, x ∈ X , y ∈ Y , the following estimate holds∣∣∣Kk(x, y)

∣∣∣ ≤ Ckm−
1
2 exp

(
− c
√
kdist(x, y)

)
. (2.24)

From (2.24), we conclude that for any k ∈ N, there are c, C > 0, k1 ∈ N∗, such that for any
k ≥ k1, y0, y1 ∈ Y , the Schwartz kernel Gk(y0, y1) of the operator Gk := K∗k ◦ Kk satisfies the
following estimate∫

Y

∣∣Gk(y0, y)
∣∣dvY (y) ≤ C

kn−m+1
,

∫
Y

∣∣Gk(y, y0)
∣∣dvY (y) ≤ C

kn−m+1
. (2.25)
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Directly from (2.25) and Young’s inequality for integral operators, cf. [71, Theorem 0.3.1] applied
for p, q = 2, r = 1 in the notations of [71], we obtain that ‖Gk‖ ≤ C

kn−m+1 , which implies that

‖Kk‖ ≤
( C

kn−m+1

) 1
2
. (2.26)

But the latter statement is a restatement of Theorem 2.1 by the very definition of Kk.

The proof of (2.19) and (2.36) lies beyond the scope of these lecture notes. We invite the
reader to consult the articles [37] and [38] for two (different) proofs of these results and [36] for
an overview of them.

Proof of Proposition 2.4. As in the proof of Proposition 2.5, the lower bound is immediate: it
basically says that the sup-norm of a restriction of a section is not bigger than the sup-norm of the
section. For the upper bound, it suffices to show that for any f ∈ H0(Y, ι∗Lk),∥∥Epf

∥∥
L∞(X)

≤
(

1 +
C√
k

)
·
∥∥f∥∥

L∞(Y )
. (2.27)

From (2.24) and the usual Gaussian integral calculation, there are C > 0, k1 ∈ N∗, such that for
any k ≥ k1, f ∈ H0(Y, ι∗Lk), we have ‖Kkf‖L∞(X) ≤ C√

k
· ‖f‖L∞(Y ). Remark also that by

construction, we have ‖E0
kf‖L∞(X) = ‖f‖L∞(Y ). These estimates clearly imply (2.27).

2.3 Explicit kernels in Fock-Bargmann space
In this section, we consider the model situation of the complex vector space, for which an explicit
formula for the Schwartz kernels of Bergman projectors and the extension operator can be given.

Endow X := Cn with the standard metric and consider a trivialized complex line bundle L0 on
Cn. We endow L0 with the Hermitian metric hL0 , given by

‖1‖hL0 (Z) = exp
(
− π

2
|Z|2

)
, (2.28)

where Z is the natural real coordinate on Cn, and 1 is the trivializing section of L0. An easy
verification shows that (2.28) implies that (2.1) holds in our setting. Recall that [52, §4.1.6] shows
that the Kodaira Laplacian L on C∞(X,L0), multiplied by 2, and viewed as an operator on
C∞(X) using the orthonormal trivialization, given by 1 · exp(π

2
|Z|2), is given by

L =
n∑
i=1

bib
+
i , (2.29)

where bi, b+i are creation and annihilation operators, defined as

bi = −2
∂

∂zi
+ πzi, b+i = 2

∂

∂zi
+ πzi. (2.30)

A classical calculation, cf. [52, Theorem 4.1.20], shows that the orthonormal basis with respect
to the induced L2-norm of ker L is given in the orthonormal trivialization above by(π|β|

β!

)1/2
zβ exp

(
− π

2
|Z|2

)
, β ∈ Nn. (2.31)
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In particular, [52, (4.1.84)], the Bergman kernel Pn of Cn is given for Z,Z ′ ∈ Cn by

Pn(Z,Z ′) = exp
(
− π

2

n∑
i=1

(
|zi|2 + |z′i|2 − 2ziz

′
i

))
. (2.32)

Let us calculate the L2-extension operator En,m, extending each element from (ker L )|Y to an
element from ker L with the minimal L2-norm. From (2.31), we easily see that for ZY ∈ Cm,
ZN ∈ Cn−m and g ∈ (ker L )|Y , we have

(En,mg)(ZY , ZN) = g(ZY ) exp
(
− π

2
|ZN |2

)
. (2.33)

We extend En,m to the whole L2-space by g 7→ (En,m ◦Pm)g. From (2.32) and (2.33), we see that
the kernel of En,m corresponds precisely to the quantity, defined in (2.22).

2.4 Bergman kernel: study away from the diagonal
In this section, we undertake a more detailed examination of the Bergman kernel and its rela-
tionship with the extension operator. More precisely, we study the off-diagonal expansion of the
Bergman kernel due to Dai-Liu-Ma [19] and show that it can be seen as a special case of the asymp-
totic expansion of the extension operator stated in Theorem 2.7. It is important to stress, however,
that the result of Dai-Liu-Ma [19] plays a foundational role in both known proofs of Theorem 2.7,
namely those in [37] and [38], and should therefore not be viewed as a consequence of it.

We continue to use the notations introduced in Section 1.5. We fix a positive Hermitian metric
hL on L and consider the L2-scalar product on H0(X,L⊗k), defined as in (1.20), where ω =

c1(L, h
L) is the first Chern class, the latter is defined as c1(L, hL) =

√
−1
2π
RL, where RL is the

curvature of the Chern connection on (L, hL). We choose an orthonormal basis {s1, s1, . . . , snk}
of H0(X,L⊗k), where nk := dimH0(X,L⊗k). The Bergman kernel, Bk(x, y) ∈ Lkx ⊗ (Lky)

∗ for
any x, y ∈ X is defined as

Bk(x, y) :=

nk∑
i=1

si(x) · si(y)∗. (2.34)

Remark that by (1.33), we have the following relation Bk(x, x) = Bk(x).
The word kernel in “Bergman kernel” refers to the fact that this section can be viewed as the

Schwartz kernel of the orthogonal projection Bk : L2(X,L⊗k)→ H0(X,L⊗k), i.e. we have

(Bkf)(x) =

∫
y∈X

Bk(x, y) · f(y) · dvX(y), (2.35)

for any f ∈ L2(X,L⊗k).
The result of Dai-Liu-Ma [19] says that the Bergman kernel of a general complex manifold is

not too far from the model one of the Fock-Bargmann space, denoted by Pn in (2.32). To state
their result precisely, we introduce a trivialization of the line bundle L using geodesic coordinates
around x0 ∈ X . For Z ∈ R2n, identified with Tx0X by means of a fixed orthonormal frame, we let
φx0(Z) := expXx0(Z). We fix an orthonormal frame l ∈ Lx0 , and define the orthonormal frame l̃ by
taking the parallel transport of l with respect to the Chern connection ∇L of (L, hL), done along
the path φx0(t ·Z), t ∈ [0, 1], t ∈ [0, 1], Z ∈ R2n, |Z| < rX , where rX is small enough. This frame
and the induced frame of the dual line bundle allows us to view Bk(x, y) as a complex-valued
function of x ∈ X , y ∈ Y in a rX-neighborhood of x0.
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Theorem 2.8 (Dai-Liu-Ma [19]). There are ε, c, C,Q > 0, k1 ∈ N∗, such that for any x0 ∈ X ,
k ≥ k1, Z,Z ′ ∈ R2n, |Z|, |Z ′| ≤ ε, we have∣∣∣ 1

kn
Bk

(
φx0(Z), φx0(Z

′)
)
−Pn(

√
kZ,
√
kZ ′)

∣∣∣
≤ C√

k
·
(

1 +
√
k|Z|+

√
k|Z ′|

)Q
exp

(
− c
√
k
(
|Z − Z ′|

))
. (2.36)

The above result is often used in conjunction with the following rough estimate on the Bergman
kernel away from the diagonal.

Theorem 2.9 (Christ [17], Ma-Marinescu [54] ). There are c > 0, k0 ∈ N∗, such that for any
k ≥ k0, x, x′ ∈ X , the following estimate holds∣∣Bk(x, x

′)
∣∣ ≤ Ckn exp

(
− c
√
k · dist(x, x′)

)
. (2.37)

Let us point out one particularly significant corollary of Theorem 2.8 and Theorem 2.9. We
assume that k is large enough so that nk > 0, where nk := dimH0(X,L⊗k). We define a sequence
of measures on X ×X as follows

µBerg
k :=

1

nk
|Bk(x, y)|2(hL)k · dvX(x) · dvX(y). (2.38)

We shall explain later on, cf. (2.51), that µBerg
k are probability measures for any k ∈ N.

Corollary 2.10. The measures µBerg
k converge weakly, as k → ∞, to the measure ∆∗dvX , where

∆ : X → X ×X is the diagonal embedding and vX = c · vX where c > 0 is so that
∫
X
dvX = 1.

Proof. Immediately from Theorem 2.9, we see that for any compact subsetsK1, K2 ⊂ X verifying
K1 ∩K2 = ∅, we have

lim
k→∞

∫
K1×K2

µBerg
k = 0. (2.39)

Let us moreover explain that for any f ∈ C 0(X), we have

lim
k→∞

∫
x∈X

∫
x′∈X

f(x) · dµBerg
k (x, y) =

∫
x∈X

f(x) · dvX(x). (2.40)

Indeed, as we shall see later in (2.51), we have∫
x′∈X
|Bk(x, y)|2(hL)k · dvX(y) = Bk(x, x). (2.41)

Hence, we see that∫
x∈X

∫
x′∈X

f(x) · dµBerg
k (x, y) =

1

nk

∫
x∈X

f(x) ·Bk(x, x) · dvX(x). (2.42)

The proof of (2.40) is then finished in the same way as in Exercise 3 from Section 2.5.
Let us now show that Corollary 2.10 is a formal consequence of the above two statements. Let

us fix f ∈ C 0(X ×X). We would like to verify that
∫
f(x, y) · dµBerg

k (x, y)→
∫
f(x, x) · dvX),
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as k →∞. We define g ∈ C 0(X×X) as g(x, y) := f(x, x). Then directly from (2.40), we obtain∫
g(x, y) ·dµBerg

k (x, y)→
∫
f(x, x) ·dvX , as k →∞. By considering the difference f − g, we see

that it suffices to show that
∫
h(x, y) · dµBerg

k (x, y)→ 0, as k →∞, for continuous h vanishing on
the diagonal.

According to (2.39), the above holds for h lying in the space of the functions V spanned by
a(x) ·b(y) where a, b ∈ C 0(X) have non-intersecting support. Hence it also holds for the functions
from the uniform closure V of V . The proof of Corollary 2.10 will be complete once we establish
that V coincides with the space of functions vanishing on the diagonal.

To establish this, note first that it is immediate that every function from V vanishes on the diag-
onal. Also any function vanishing along the diagonal can be uniformly approximated by functions
vanishing in a neighborhood of the diagonal. It is hence enough to show that a continuous function
h vanishing in a neighborhood of the diagonal lies in V . To see this, consider a partition of unity
ρi, i ∈ I , subordinate to a sufficiently small mesh. Then from the uniform continuity of h, one
sees that the functions

∑
i,j∈I h(xi,j)ρi(x)ρj(y), where xi,j ∈ supp(ρi) × supp(ρj) are chosen in

an arbitrary way, approximate uniformly the function h if the size of the mesh is small enough,
and – again if the mesh is small enough – these approximations lie in V by our assumption on the
vanishing of h in a neighborhood of the diagonal.

2.5 Tutorial: spectral theory of Toeplitz operators
In this tutorial we shall explain that Theorem 2.7 refines Theorem 2.8 and Theorem 2.6 refines
Theorem 2.9. Then we discuss the applications of Theorem 2.8 towards the study of Toeplitz
operators.
Exercise 1. We shall fix a point x ∈ X and consider the trivial embedding {x} ↪→ X . We denote
by Ex

k : Lkx → H0(X,L⊗k) the optimal extension operator associated with this embedding. The
main goal of the exercise is to prove the following formula relating the Bergman kernel and the
extension operator

Bk(x, y) = Bk(y, y) · Ey
k(x, y). (2.43)

Proof. We assume k0 ∈ N is big enough so that nk > 0 for any k ≥ k0 and the base loci of Lk

are empty for any k ≥ k0. Hence, for any x ∈ X and k ≥ k0, there is s ∈ H0(X,L⊗k) so that
s(x) 6= 0.

Now, for any x ∈ X , we denote by sk,x ∈ H0(X,L⊗k) the peak section at x with respect to the
scalar product Hilbk(hL). Recall that this means that sk,x is of unit norm with respect to Hilbk(hL)
and orthogonal to the subspace H0(X,L⊗k ⊗ Jx) of holomorphic sections of L⊗k vanishing at x.

Directly from the definition of the Bergman kernel and the fact that it doesn’t depend on the
choice of an orthonormal basis, we deduce that the Bergman kernels Bk(x, y), x ∈ X, y ∈ X , and
the Schwartz kernel Ey

k(x, y) verify

Bk(x, y) = sk,y(x) · sk,y(y)∗, Ey
k(x, y) =

sk,y(x) · sk,y(y)∗

|sk,y(y)|2
(hL)k

. (2.44)

The result then follows immediately from this.
Let us now establish the following weak version of Theorem 1.4.

Exercise 2: Derive that there are C > 0, k0 ∈ N, so that for any k ≥ k0, x ∈ X , we have
|Bk(x)− kn| ≤ Ckn−

1
2 , as k →∞.
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Proof: Remark first that by (2.44), we have∫
x∈X

∣∣Ey
k(x, y)

∣∣2
(hL)k

dVX(x) =
1

Bk(y, y)
. (2.45)

By using notations from Theorem 2.7, we see that for any x ∈ X , there are ε, c, C,Q > 0, k0 ∈ N,
so that for any k ≥ k0, Z ∈ R2n, |Z| ≤ ε, we have∣∣∣Ey

k(φy(Z), y)− exp
(
− π

2

n∑
i=1

|zi|2
)∣∣∣ ≤ C√

k
·
(

1 +
√
k|Z|

)Q
exp(−c

√
k · |Z|). (2.46)

The result then follows from this, Theorem 2.6 and the Gaussian integral calculation.
The above exercise implies that Theorem 2.7 refines Theorem 2.8 and Theorem 2.6 refines

Theorem 2.9. We leave the details to the interested reader and proceed instead with the proof of
(1.23).
Exercise 3: For any continuous f : X → R, the associated Toeplitz operator Tk[f ] ∈
End(H0(X,L⊗k)) verifies

lim
k→∞

1

nk
Tr[Tk(f)] =

∫
x∈X

f(x) · dvX(x) (2.47)

Proof: Remark first that the operator Tk(f) admits a Schwartz kernel Tk(f)(x, y) ∈ Lkx ⊗ (Lky)
∗,

defined as
Tk(f)(x, y) :=

∫
z∈X

Bk(x, z)f(z)Bk(z, y)dvX(z). (2.48)

It means that for any s ∈ H0(X,L⊗k), we have

(Tk(f)s)(x) =

∫
y∈X

Tk(f)(x, y) · s(y)dvX(x). (2.49)

Immediately from the fact that trace can be calculated through the integral of the Schwartz kernel,
we deduce

Tr[Tk(f)] =

∫
X×X

f(x) · |Bk(x, y)|2(hL)k · dµ(x) · dµ(y). (2.50)

Remark, however, that immediately from (2.44), we have∫
y∈X
|Bk(x, y)|2(hL)k · dµ(y) = Bk(x, x). (2.51)

The result now follows from Exercise 2.
Exercise 4: The minimal and the maximal eigenvalues λmin(Tk[f ]), λmax(Tk[f ]) of Tk[f ] satisfy
λmin(Tk[f ]) ≥ infx∈X f(x) and λmax(Tk[f ]) ≤ supx∈X f(x).
Proof: Replacing f with −f , the problem reduces to analyzing λmax(Tk(f)). The bound
then follows immediately from the min-max characterization of the eigenvalues and the bound
〈Tk(f)s, s〉Hilbk(hL) ≤ supx∈K f(x) · 〈s, s〉Hilbk(hL) for any s ∈ H0(X,L⊗k), which follows imme-
diately from the definition of the L2-norm.
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For the following exercise, recall that the p-Schatten norm ‖ · ‖p is defined for an operator
A ∈ End(V ), of a finitely-dimensional Hermitian vector space (V,H) as ‖A‖p = ( 1

dimV
Tr[|A|p])

1
p ,

|A| := (AA∗)
1
2 . Classical properties of Schatten norms yield that for any T, S ∈ End(V ), we have

‖T‖p ≤ ‖T‖
1
p

2 · ‖T‖
p−1
p , ‖S ◦ T‖p ≤ ‖S‖ · ‖T‖p. (2.52)

Exercise 5: For any f, g ∈ C 0(X), we have

lim
k→∞
‖Tk(f) ◦ Tk(g)− Tk(f · g)‖2 = 0. (2.53)

Proof: It is immediate to see using the reproducing property Bk ◦Bk = Bk that we can write

Tk(f) ◦ Tk(g)− Tk(f · g) = Bk ◦ Sk ◦Bk, (2.54)

where Sk ∈ End(H0(X,L⊗k)), is defined as

(Sks)(x) :=

∫
y∈X

Sk(x, y) · s(y) · dvX(y), for any s ∈ H0(X,L⊗k), (2.55)

for Sk(x, y) ∈ L⊗kx ⊗ (L⊗ky )∗ given by

Sk(x, y) = (f(x)g(x)− f(x)g(y))Bk(x, y). (2.56)

From (2.52), we obtain
‖Bk ◦ Sk ◦Bk‖2 ≤ ‖Sk‖2. (2.57)

We now rely on the fact that the 2-Schatten norm is the rescaled Hilbert-Schmidt norm, and the
latter can be calculated using the L2-norm of Schwartz kernel of the operator, which gives us

‖Sk‖22 =
1

nk

∫
X×X

|Sk(x, y)|2(hL)k · dvX(x) · dvX(y). (2.58)

But from Corollary 2.10 and (2.56), we deduce that

lim
k→∞

1

nk

∫
X×X

|Sk(x, y)|2(hL)k · dvX(x) · dvX(y) = 0, (2.59)

which along with (2.54), (2.56), (2.57) and (2.58) finishes the proof of (2.53).
Exercise 6. Show that for any h ∈ C 0([min f,max f ]) and f ∈ C 0(X), we have

lim
k→∞
‖h(Tk[f ])− Tk[h(f)]‖2 = 0. (2.60)

Proof. Since Tk has a spectrum in a compact interval I := [min f,max f ], the operator h(Tk(f))
is well-defined. By Weierstrass approximation theorem, applied over I , we see that it suffices
to establish the result for h given by monomials. However, remark that from Exercises 4, 5 and
(2.52), we see by induction that for any l ∈ N, we have

lim
k→∞
‖Tk[f ]l − Tk[f l]‖2 = 0, (2.61)

which finishes the proof.
Exercise 7: Derive (1.23).
Proof: It follows immediately from Exercises 3, 6 and (2.52).
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3 Metric structures on the space of norms and Kähler potentials
The main objective of this section is to present one of the key technical results of the minicourse,
which establishes a comparison between two types of metrics: those defined on spaces of Her-
mitian structures on finite-dimensional vector spaces, and those defined on the space of Kähler
potentials. In Section 3.1, we introduce and study various metrics on spaces of Hermitian struc-
tures. Section 3.2 is devoted to metrics on the space of Kähler potentials. In Section 3.3, we state
the main comparison result linking these two settings. Finally, Section 3.4 provides some elements
of the proof.

3.1 Metrics on the space of Hermitian structures
In this section, we introduce some metric structures on the space of Hermitian structures of a
finite-dimensional vector space.

Let V be a complex vector space, dimV = n. We denote byHV the space of Hermitian norms
H on V , viewed as an open subset of the Hermitian operators Herm(V ). Let λ1, . . . , λn be the
ordered spectrum of h ∈ Herm(V ) with respect to a norm H ∈ HV . For p ∈ [1,+∞[, we define

‖h‖Hp :=
p

√∑dimV
i=1 |λi|p
dimV

. (3.1)

By Ky Fan inequality, one can establish that ‖ · ‖Hp , p ∈ [1,+∞[, is a Finsler norm for any H , i.e.
it satisfies the triangle inequality, cf. [25, Theorem 2.7].

We then define the length metric dp(H0, H1), H0, H1 ∈ HV , as

dp(H0, H1) = inf
γ
lp(γ), (3.2)

where the infimum is taken over all piecewise smooth path γ : [0, 1] → HV , joining H0, H1, and
the length lp(γ) is defined as

lp(γ) :=

∫ 1

0

‖γ′(t)‖γ(t)p dt. (3.3)

One can verify, cf. [25, Theorem 2.7], that this metric admits the following explicit description.
Let T ∈ Herm(V ), be the transfer map between Hermitian normsH0, H1 ∈ HV , i.e. the Hermitian
products 〈·, ·〉H0 , 〈·, ·〉H1 induced by H0 and H1, are related as 〈·, ·〉H1 = 〈T ·, ·〉H0 , then

dp(H0, H1) =
p

√
Tr[| log T |p]

dimV
. (3.4)

Moreover, the Hermitian norms Ht, t ∈ [0, 1], corresponding to the scalar products

〈·, ·〉Ht := 〈T t·, ·〉H0 , (3.5)

are geodesics in (HV , dp), p ∈ [1,+∞]. Later on, we call them the distinguished geodesics. For
p ∈]1,+∞[, it is possible to verify that (HV , dp) is a uniquely geodesic space, cf. [7, Theorem
6.1.6], and hence these are the only geodesic segments between H0 and H1.

It is possible to prove that (HV , d2), is isometric to the space SL(V )/SU(V ), endowed with the
distance coming from the standard SL(V )-invariant metric, cf. [25, Theorem 1.1]. The later space
is known to be of non-positive sectional curvature, see [48, Theorem XI.8.6], and contractible (by
Cartan decomposition). In particular, by Cartan-Hadamard theorem, it is uniquely geodesic.
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3.2 Mabuchi-Darvas geometry on the space of Kähler metrics
In this section, we introduce the metric structures on the space of Kähler potentials of a compact
Kähler manifold.

Let us fix a Kähler form ω on X and consider the spaceHω of Kähler potentials, consisting of
u ∈ C∞(X,R), such that ωu := ω +

√
−1∂∂u is strictly positive. We denote by PSH(X,ω) the

set of ω-psh potentials; these are upper semi-continuous functions u ∈ L1(X,R ∪ {−∞}), such
that ωu is positive as a (1, 1)-current.

One can introduce on the space of Kähler potentialsHω a collection of Lp-type Finsler metrics,
p ∈ [1,+∞[, defined as follows. If u ∈ Hω and ξ ∈ TuHω ' C∞(X,R), then the Lp-length of ξ
is given by the following expression

‖ξ‖up := p

√
1∫
ωn

∫
X

|ξ(x)|p · ωnu(x). (3.6)

For p = 2, this was introduced by Mabuchi [56], and for p ∈ [1,+∞[ by Darvas [20]. For brevity,
we omit ω from our further notations.

We then define the length metric dp(u0, u1), u0, u1 ∈ Hω, as

dp(u0, u1) = inf
γ
lp(γ), (3.7)

where the infimum is taken over all piecewise smooth path γ : [0, 1]→ Hω, joining u0, u1, and the
length lp(γ) is defined as

lp(γ) :=

∫ 1

0

‖γ′(t)‖γ(t)p dt. (3.8)

Darvas in [20] studied the completion (Ep, dp) of (H, dp) and proved that these completions
are geodesic metric spaces (in other words, any two points inHω can be joined by a geodesic).

Certain geodesic segments of (Ep, dp) can be constructed as upper envelopes of quasi-psh func-
tions. More precisely, we identify paths ut ∈ Ep, t ∈ [0, 1], with rotationally-invariant functions û
over X × D(e−1, 1) through the following formula

û(x, τ) = ut(x), where x ∈ X and t = − log |τ |. (3.9)

We say that a curve [0, 1] 3 t → vt ∈ Ep is a weak subgeodesic connecting u0, u1 ∈ Ep if
dp(vt, ui) → 0, as t → 0 for i = 0 and t → 1 for i = 1, and û is π∗ω-psh on X × D(e−1, 1). As
shown in [20, Theorem 2], the following envelope

ut := sup
{
vt : t→ vt is a weak subgeodesic connecting v0 ≤ u0 and v1 ≤ u1

}
, (3.10)

is a dp-geodesic connecting u0, u1. It will be later called the distinguished geodesic segment.
One can establish, cf. Guedj-Zeriahi [45, Exercise 10.2], that

∩
p∈[1,+∞[

Ep = PSH(X,ω) ∩ L∞(X). (3.11)

When u0, u1 ∈ PSH(X,ω)∩L∞(X), Berndtsson in [5, §2.2] proved that ut, t ∈ [0, 1], defined
by (3.10), verifies ut ∈ L∞(X) and it can be described as the only path connecting u0 to u1, so
that û is the solution of the following Monge-Ampère equation

(π∗ω +
√
−1∂∂û)n+1 = 0, (3.12)
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where the wedge power is interpreted in Bedford-Taylor sense [1]. For smooth geodesic segments
in (H, d2), Semmes [70] and Donaldson [32] have made similar observations before. The unique-
ness of the solution of (3.12) is assured by [45, Lemma 5.25]. Remark, in particular, that for any
u0, u1 ∈ PSH(X,ω) ∩ L∞(X), the distinguished weak geodesic connecting them is the same if
we view u0, u1 as elements in any of Ep, p ∈ [1,+∞[.

Theorem 3.1 (Darvas-Lu [24, Theorem 2] ). For any p ∈]1,+∞[, (Epω, dp) is uniquely geodesic,
i.e. any two points are joined by a unique geodesic.

Theorem 3.1 allows us to verify identity (3.12) using methods from metric geometry: it suffices
to check that a given path of metrics is a geodesic with respect to some distance dp, for p ∈]1,+∞[.
We shall see this method in action in Section 4.

The distance on E1ω can be alternatively described in terms of the Monge-Ampère energy func-
tional E. Recall that E is explicitly given for u, v ∈ Hω by

E(u)− E(v) =
1

(n+ 1)V

n∑
j=0

∫
X

(u− v)wju ∧ wn−jv . (3.13)

By [45, Proposition 10.14], E is monotonic, i.e. for any u ≤ v, we have E(u) ≤ E(v). From this,
it is reasonable to extend the domain of the definition of E to PSH(X,ω) as

E(u) := inf
{
E(v) : v ∈ Hω, u ≤ v

}
. (3.14)

Darvas proved in [20] that E1ω coincides with the set of u ∈ PSH(X,ω), verifying E(u) > −∞.
Moreover, for any u, v ∈ E1ω, verifying u ≤ v, according to [20, Corollary 4.14], we have

d1(u, v) = E(v)− E(u). (3.15)

In particular, (E1ω, d1) is not a uniquely geodesic space – a fact originally observed by Darvas [22,
comment after Theorem 4.17].

Let us now discuss the relation between the speed of Mabuchi geodesic and the distance be-
tween its endpoints. We fix u0, u1 ∈ PSH(X,ω) ∩ L∞(X) and consider ut, t ∈ [0, 1] as in
(3.10). From Berndtsson [5, §2.2], the limits limt→0 ut = u0, limt→1 ut = u1 hold in the uni-
form sense. Also, the psh-condition from the definition of the weak geodesics implies that for a
fixed x ∈ X , the function ut(x) is convex in t ∈ [0, 1], see [29, Theorem I.5.13]. Hence, one-
sided derivatives u̇−t , u̇+t of ut are well-defined for t ∈]0, 1[ and they increase in t. We denote
u̇0 := limt→0 u̇

−
t = limt→0 u̇

+
t . From [5, §2.2], we know that u̇0 is bounded and by Darvas [22,

Theorem 1], we, moreover, have

sup |u̇0| ≤ sup |u1 − u0|. (3.16)

Then according to Berndtsson [6], Darvas-Lu-Rubinstein [25, Lemma 4.5], for any u0 ∈ Hω,
u1 ∈ PSH(X,ω) ∩ L∞(X), we have

dp(u0, ut) = t · p

√∫
X

|u̇0|p ·MA(u0). (3.17)

See also Di Nezza-Lu [30, Theorem 3.2] for a related statement in this direction.
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3.3 Comparison of the two metric structures

When the De Rham cohomology class [ω] of ω satisfies [ω] ∈ 2πH2(X,Z), there is a Hermitian
line bundle (L, hL0 ), such that ω = 2πc1(L, h

L
0 ). Hence, upon fixing hL0 (which is uniquely de-

fined up to a multiplication by a locally constant function), the set Hω (resp. PSH(X,ω)) can be
identified with the set of smooth positive (resp. psh) metrics on L through the correspondence

u 7→ hL := e−u · hL0 . (3.18)

Remark that we then have ωu = 2πc1(L, h
L). This identification will be implicit later on, and all

the constructions (of distances, geodesics, etc.) for elements from Hω and PSH(X,ω) ∩ L∞(X)
will be implicitly extended to the corresponding sets of metrics on the line bundle L.

The following result says that the metrics dp on the space of Hermitian norms on H0(X,L⊗k)
are quantisations of Mabuchi-Darvas metrics dp on the space of bounded psh metrics on L.

Theorem 3.2 (Chen-Sun [15], Berndtsson [6], Darvas-Lu-Rubinstein [25, Theorem 1.2]). For any
bounded psh metrics hL0 , h

L
1 on an ample line bundle L and any p ∈ [1,+∞[, we have

lim
k→∞

1

k
dp

(
Hilbk(h

L
0 ),Hilbk(h

L
1 )
)

= dp(h
L
0 , h

L
1 ). (3.19)

Remark 3.3. These results go in line with the general philosophy that the geometry of the space of
psh metrics on L can be approximated by the geometry of the space of norms on H0(X,L⊗k), as
k →∞, see Donaldson [32] and Phong-Sturm [59].

3.4 Curvature of the L2-metrics and a proof of Theorem 3.2
The main objective of this section is to prove Theorem 3.2. We will do so under additional assump-
tions: the endpoints hL0 and hL1 are smooth metrics with strictly positive curvature, and the Mabuchi
geodesic hLt , for t ∈ [0, 1], is a smooth path of smooth metrics with strictly positive curvature.

It was shown by Lempert and Vivas [51], as well as Darvas and Lempert [23], that for general
endpoints, such a smooth Mabuchi geodesic does not exist.

The proof can be extended to the general case by considering smooth approximations of
Mabuchi geodesics, known as ε-geodesics [14]. However, this leads to more technical arguments,
which we prefer to avoid here for the sake of clarity. We refer to [39] for details.

We follow closely [39], which is itself inspired by a method due to Berndtsson [6]. The
idea is to compare the geodesic Hk,t, defined for k ∈ N and t ∈ [0, 1], between the L2-metrics
associated with Hilbk(h

L
0 ) and Hilbk(h

L
1 ), with the L2-metric Hilbk(h

L
t ) corresponding to the

Mabuchi geodesic hLt between hL0 and hL1 . This comparison is based on the curvature properties of
Hilbk(h

L
t ).

To explain the relation between the comparison of the norms and their curvatures, similarly to
(3.9), we identify a smooth path Ht ∈ HV , t ∈ [0, 1], with the rotationally-invariant Hermitian
metric Ĥ on the (trivial) vector bundle V × D(e−1, 1) over D(e−1, 1), through the formula

Ĥ(τ) = Ht, where t = − log |τ |, (3.20)

that we suggest to compare with (3.9). We also introduce the speed of the path, defined as follows
Ḣt := H−1t

d
dt
Ht ∈ End(V ).
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Below, we use the Loewner’s order on End(V ). More specifically, it means that for two Her-
mitian operators A,B ∈ End(V ), we say A ≥ B if A−B is positive semi-definite.

Recall that we say that a Hermitian vector bundle (E, hE) over a Riemann surface S has a
positive curvature, cf. [29, §VII.6], if the curvature RE of the Chern connection of (E, hE), for
any s ∈ S, can be written as RE

s = dz ∧ dz ·A(s), for a positively definite A(s) ∈ End(Es) and a
local holomorphic coordinate z on S, centered at s.

Theorem 3.4 ( [67, Theorem 4.2], [18, Theorem 4.1, §15] ). Assume that a smooth pathH0
t ∈ HV ,

t ∈ [0, 1], is such that the associated Hermitian metric Ĥ0 on V × D(e−1, 1) has a positive (resp.
negative) curvature. Then for the geodesic Ht between H0

t and H1
t , we have H0

t ≥ Ht (resp.
H0
t ≤ Ht). In particular, the following inequality is satisfied Ḣ0

0 ≥ Ḣ0 (resp. Ḣ0
0 ≤ Ḣ0). The path

H0
t is then called a superinterpolating (resp. subinterpolating) family.

Now, according to Theorem 3.4, it suffices to compute effectively the curvature of the associ-
ated Hermitian structure associated with Hilbk(h

L
t ) as in (3.20).

To do so, Berndtsson in his proof proof [6] relies on his positivity result from [4], which asserts
that the curvature of the metric associated with Hilbk(h

L
t ) becomes Nakano positive when k is

sufficiently large. This yields a lower bound Hilbk(h
L
t ) ≥ Hk,t. However, as it provides no control

on the upper bound of the curvature, not so much can be said about the inverse inequality. As a
result, it becomes necessary to compare the derivatives of Hilbk(h

L
t ) and Hk,t at both endpoints of

the interval [0, 1]. To get Theorem 3.2, one has to use the fact that along a Mabuchi geodesic, the
norm of its velocity, defined in (3.6), remains constant along the entire segment. While this prop-
erty is straightforward for geodesics on (finitely-dimensional) manifolds, its analogue in Mabuchi
geometry requires some work, as detailed in [6] and [30]. Moreover, the result holds only when
both endpoints of the geodesics are regular enough.

The approach from [39] that we outline here uses the curvature computations for L2-metrics de-
veloped by Ma-Zhang [55]. In this way, we show that L2-metrics can be used not only to construct
superinterpolating families along the geodesic between two L2-metrics, but also subinterpolating
ones. This allows for a significantly more refined analysis of the transfer operator, leading to
stronger results. Moreover, we ultimately do not rely on the constancy of the speed norm along the
entire geodesic segment. What matters for our purposes is simply that the distance can be com-
puted as the norm of the speed evaluated at the initial point of the geodesic. This latter property is
significantly more robust with respect to the regularity of the geodesic endpoints as discussed, for
example, in [25, Lemma 4.5].

We shall now explain the result of Ma-Zhang from [55], which we present below in a special
case that we shall need later on. We fix a smooth family of (strictly) positive Hermitian metrics hLτ ,
τ ∈ D(e−1, 1) on L and a smooth family of Kähler forms χτ , τ ∈ D(e−1, 1), on X . We denote by
ω := c1(L×D(e−1, 1), hLτ ) the curvature of hLτ , viewed as a metric on the line bundle L×D(e−1, 1)
over X × D(e−1, 1).

For τ ∈ D(e−1, 1), we define ωH(τ) ∈ C∞(X) as

ωH(τ)(x) :=
1

n+ 1

ωn+1

ωn ∧
√
−1dz ∧ dz

(x, τ). (3.21)

The denominator above is nonzero, as ω is positive along the fibers.
We denote byRk the curvature of the Chern connection on the trivial vector bundleH0(X,L⊗k)×

D(e−1, 1) associated with the fiberwise L2-metric Hilbk(hLτ ), τ ∈ D(e−1, 1), induced by hLτ . We
define Dk(τ) ∈ End(H0(X,L⊗k)) so that

√
−1
2π
Rk,τ :=

√
−1dz ∧ dz ·Dk(τ).
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Theorem 3.5 ( Ma-Zhang [55, Theorem 0.4] ). There areC > 0, k0 ∈ N, such that in the notations
from (1.21), for any k ≥ k0, τ ∈ D(e−1, 1), we have∥∥∥Dk(τ)− kTk(ωH(τ))

∥∥∥ ≤ C, (3.22)

where ‖·‖ is the operator norm subordinate with Hilbk(hLτ , χτ ). In particular, { 1
k
Dk(τ)}+∞k=1 forms

a Toeplitz operator with symbol ωH(τ).

We denote by Tk(h
L
0 , h

L
1 ) ∈ End(H0(X,L⊗k)) the transfer map between Hilbk(hL0 ) and

Hilbk(hL1 ), i.e. it is a map so that 〈Tk(hL0 , hL1 )·, ·〉Hilbk(hL0 )
= 〈·, ·〉Hilbk(hL1 )

. We denote by φ(hL0 , h
L
1 )

the speed at time 0 of the Mabuchi geodesic connecting hL0 and hL1 , defined as (hL0 )−1 · d
dt
|t=0h

L
t .

Theorem 3.6. Under the described above assumptions, there are C > 0, k0 ∈ N, such that for any
k ≥ k0, we have ∥∥ log Tk(h

L
0 , h

L
1 )− k · Tk(φ(hL0 , h

L
1 ))
∥∥ ≤ C, (3.23)

where Tk(φ(hL0 , h
L
1 )) is the Toeplitz operator associated with the symbol φ(hL0 , h

L
1 ), defined as in

Section 1.3.

Proof. We consider the rotationally-invariant Hermitian metric Ĥ0
k on the (trivial) vector bundle

H0(X,L⊗k) × D(e−1, 1) over D(e−1, 1), constructed from Hilbk(hLt ), t ∈ [0, 1], as in (3.20).
Directly from the fact that smooth Mabuchi geodesics solve the homogeneous Monge-Ampère
equation (3.12), by Theorem 3.5, we deduce that there are C0 > 0, k0 ∈ N, such that the curvature
Rk of Ĥ0

k satisfies ‖Rk‖ ≤ C0 for any k ≥ k0. We denote

g : D(e−1, 1)→ R, τ 7→ g(τ) := (2 log |τ |2 − 1)2 − 1. (3.24)

Remark that g is strictly subharmonic and verifies g(e−1+iθ) = g(eiθ) = 0, for any θ ∈ [0, 2π].
Directly from the bound ‖Rk‖ ≤ C0, and strict subharmonicity of g, there is C1 > 0, such that the
curvature of Hermitian metrics Ĥ1

k = Ĥ0
k ·exp(−C1g) (resp. Ĥ2

k = Ĥ0
k ·exp(C1g)) is positive (resp.

negative). We denote by H1
k,t, H

2
k,t, t ∈ [0, 1], the paths of metrics on H0(X,L⊗k) induced through

(3.20) by Ĥ1
k and Ĥ2

k respectively. Our boundary condition on g implies that H1
k,0 = Hilbk(hL0 ) =

H2
k,0 and H1

k,1 = Hilbk(hL1 ) = H2
k,1. From this and the above curvature calculation, we deduce by

Theorem 3.4 that for any t ∈ [0, 1], we have

H1
k,t ≥ Hk,t ≥ H2

k,t, (3.25)

where Hk,t is the geodesic between Hilbk(hL0 ) and Hilbk(hL1 ). By taking derivatives at t = 0 from
the above inequality, we deduce that

Ḣ1
k,0 ≥ Tk(h

L
0 , h

L
1 ) ≥ Ḣ2

k,0. (3.26)

Directly from the definition of H1
k,t, H

2
k,t, we deduce that

Ḣ1
k,0 = (Hilbk(hL0 ))−1

d

dt
Hilbk(hLt )|t=0 + C1g

′(1)Id,

Ḣ2
k,0 = (Hilbk(hL0 ))−1

d

dt
Hilbk(hLt )|t=0 − C1g

′(1)Id.

(3.27)
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From the definition of the L2-norm, it is direct (see the Exercise session to this Section) to see that

(Hilbk(hL0 ))−1
d

dt
Hilbk(hLt )|t=0 = kTφ(hL0 ,hL1 ),k + Tv̇X,0,k, (3.28)

where v̇X,0 := v−1X,0
d
dt
|t=0dvX,t. From (3.26), (3.27) and (3.28), the result follows directly.

Proof of Theorem 3.2. Directly from (3.4), we see

dp

(
Hilbk(h

L
0 ),Hilbk(h

L
1 )
)

= p

√
Tr[| log Tk(hL0 , h

L
1 )|p]

dimH0(X,L⊗k)
(3.29)

Remark that there is C > 0, so that ‖ log Tk(h
L
0 , h

L
1 )‖ ≤ Ck, where ‖ · ‖ is the operator norm.

From this and Theorem 3.6, we deduce that for any ε > 0, there is k0 ∈ N so that for any k ≥ k0,
we have∣∣∣Tr[| log Tk(h

L
0 , h

L
1 )|p]− kp · Tr[|Tk(φ(hL0 , h

L
1 ))|p]

∣∣∣ ≤ ε · kp · dimH0(X,L⊗k). (3.30)

However, by the Exercise session from Lecture 2, for any ε > 0, there is k0 ∈ N so that for any
k ≥ k0, we have∣∣∣Tr[|Tk(φ(hL0 , h

L
1 ))|p]− Tr[Tk(|φ(hL0 , h

L
1 )|p)]

∣∣∣ ≤ ε · dimH0(X,L⊗k). (3.31)

From (1.23), however, we have

lim
k→∞

Tr[Tk(|φ(hL0 , h
L
1 )|p)]

dimH0(X,L⊗k)
=

∫
X
|φ(hL0 , h

L
1 )|p · dvX∫

X
dvX

. (3.32)

Which implies the result by (3.17).

4 Graded normed algebras and submultiplicative filtrations
The primary goal of this section is to complete the proof of Theorem 1.1. We present the proof
in Section 4.1, subject to several intermediate results that will be developed later in the lecture.
We begin by defining the geodesic rays that appear in the statement of Theorem 1.1, and provide
some examples of their calculation in Section 4.2. Section 4.3 introduces one of the main technical
results of the section, concerning the asymptotic behavior of graded norms. In Section 4.4, we
explain how this result is applied in the proof of Theorem 1.1. The key ideas underlying the
technical statements from Section 4.3 are discussed in Sections 4.5 and 4.6.

4.1 The general strategy of the proof of Theorem 1.1
The primary objective of this section is to establish Theorem 1.1, subject to several intermediate
results that will be addressed later in the lecture.

Our proof relies on comparing two constructions of geodesic rays: one in the space of Hermi-
tian structures on finite-dimensional vector spaces, and the other in the space of Kähler potentials.
We begin by describing the construction in the space of Hermitian structures, as the corresponding
construction in the space of Kähler potentials builds upon it.
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We fix a Hermitian norm H0 := ‖ · ‖H on V and a filtration F on V . Consider an orthonormal
basis s1, . . . , sr, r := dimV , of V , adapted to the filtration F , i.e. verifying si ∈ F eF (i)V , where
eF(i) are the jumping numbers of the filtration F , defined as

eF(i) := sup
{
t ∈ R : dimF tV ≥ i

}
. (4.1)

We define the ray of Hermitian norms HFt := ‖ · ‖Ft , t ∈ [0,+∞[, on V by declaring the basis

(st1, . . . , s
t
r) :=

(
eteF (1)s1, . . . , e

teF (r)sr
)
, (4.2)

to be orthonormal with respect to HFt .
The reader should view the above construction as an interpolation betweenH0 and the filtration

F . To explain this in more detail, we recall that filtrationsF on V are in one-to-one correspondence
with functions χF : V → [0,+∞[, defined as

χF(s) := exp(−wF(s)). (4.3)

where wF(s) is the weight associated with the filtration, defined as wF(s) := sup{λ ∈ R : s ∈
F λV }. An easy verification shows that χF is a non-Archimedean norm on V with respect to the
trivial absolute value on C, i.e. it satisfies the following axioms

1. χF(f) = 0 if and only if f = 0,

2. χF(λf) = χF(f), for any λ ∈ C∗, k ∈ N∗, f ∈ V ,

3. χF(f + g) ≤ max{χF(f), χF(g)}, for any k ∈ N∗, f, g ∈ V .

To convince oneself that it is reasonable to call HFt the interpolation between H0 and the
filtration F , we suggest the reader to verify that for any f ∈ V , we have

logχF(f) = lim
t→+∞

log ‖f‖Ft
t

. (4.4)

The construction of the geodesic ray on the space of Kähler potentials is based on the above
construction. To explain this, we need to introduce a correspondence between the norms on
H0(X,L⊗k) and metrics on L.

We fix an ample line bundle L over a compact complex manifold X . For k ∈ N so that L⊗k is
very ample, Fubini-Study operator associates for any norm Nk = ‖ · ‖k on H0(X,L⊗k), a contin-
uous metric FS(Nk) on L, constructed in the following way. Consider the Kodaira embedding

Kodk : X ↪→ P(H0(X,L⊗k)∗), (4.5)

which embedsX in the space of hyperplanes inH0(X,L⊗k). The evaluation maps provide the iso-
morphism L⊗(−k) → Kod∗kO(−1), where O(−1) is the tautological bundle over P(H0(X,L⊗k)∗).
We endow H0(X,L⊗k)∗ with the dual norm N∗k and induce from it a metric FSP(Nk) on O(1)
over P(H0(X,L⊗k)∗). We define the metric FS(Nk) on L⊗k as the only metric verifying under
the dual of the above isomorphism the identity

FS(Nk) = Kod∗k(FS
P(Nk)). (4.6)

A statement below can be seen as an alternative definition of FS(Nk).
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Lemma 4.1. For any x ∈ X , l ∈ L⊗kx , the following identity takes place

|l|FS(Nk),x = inf
s∈H0(X,L⊗k)

s(x)=l

‖s‖k. (4.7)

When Nk is a Hermitian norm, FS(Nk) is the only metric on L⊗k, which for any x ∈ X , and for
an orthonormal basis s1, . . . , snk of (H0(X,L⊗k), Nk) satisfies the following equation

nk∑
i=1

∣∣si(x)
∣∣2
FS(Hk)

= 1. (4.8)

Proof. The second part follows immediately from the first, and the first part is left to the interested
reader.

When the norm Nk is Hermitian, the definition of the Fubini-Study map is standard, and ex-
plicit evaluation shows that in this case c1(O(1), FSP(Nk)) coincides up to a positive constant
with the Kähler form of the Fubini-Study metric on P(H0(X,Lk)∗) induced by Nk. In particular,
c1(O(1), FSP(Nk)) is a positive (1, 1)-form. From Kobayashi [47], for general norms Nk, the
(1, 1)-current c1(O(1), FSP(Nk)) is positive, cf. [35, §2.1] for details. In particular, the curvature
of the metric FS(Nk) on L⊗k is positive for any norm Nk on H0(X,L⊗k).

In what follows, we fix a submultiplicative filtration F on R(X,L) which we assume to be
bounded. We fix a metric hL on L with positive curvature. We denote by Hk,t the geodesic ray
emanating from Hilbk(hL) and associated with the restriction of F to H0(X,L⊗k).

We define the path of metrics hL,Ft,0 , t ∈ [0,+∞[ as

hL,Ft,0 := lim
k→∞

inf
l≥k

FS(Hl,t)
1
l , (4.9)

where for a bounded metric hL,0 on L we denote by hL,0∗ the lower semicontinuous regularization
of hL,0. Not so much can be said concerning the regularity of hL,Ft,0 (in general it is not even
continuous as we shall describe in Section 4.2), but an easy verification shows that boundness of
the filtration implies that there is C > 0, so that hL · exp(−Ct) ≤ hL,Ft,0 ≤ hL · exp(Ct). Also, the
limit from (4.9) exists since the metrics under the limit sign form an increasing sequence.

To increase the regularity as well as other properties of the resulting ray of metric, we will apply
the lower semi-continuous regularization to this path. Recall that for a given function f on a topo-
logical space, we denote by f ∗ (resp. f∗) the upper (resp. lower) semi-continuous regularization
of f , defined as

f ∗(x) = lim sup
y→x
y 6=x

f(y), (resp. f ∗(x) = lim inf
y→x
y 6=x

f(y)). (4.10)

The same notations are used for metrics on line bundles. We then define

hL,Ft := (hL,Ft,0 )∗. (4.11)

We shall establish the following result in Section 4.4.

Proposition 4.2. For any t ∈ [0,+∞[, hL,Ft has a bounded psh potential.

For now, we accept the preceding proposition and the following key result.
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Theorem 4.3. For any t ∈ [0,+∞[, we have

lim
k→∞

1

k
dp
(
Hilbk(h

L,F
t ), Hk,t

)
= 0. (4.12)

The first important corollary of the above two statements will concern the metric properties of
hL,Ft . It was first established by Phong-Sturm in [60] for filtrations arising from test configurations
and later by Ross-Witt Nyström [68] in the general case. The proof we present below is from [35].

Corollary 4.4. The ray of metrics hL,Ft , t ∈ [0,+∞[ is a geodesic ray with respect to the distances
dp, for any p ∈ [1,+∞[. As a consequence, it resolves the analogue of the equation (3.12).

Proof. First of all, by Proposition 4.2 and Theorem 3.2, for any s, t ∈ [0,+∞[, the following limit
exists, and can be expressed using Darvas-Mabuchi distances as follows

lim
k→∞

1

k
dp
(
Hilbk(h

L,F
t ),Hilbk(hL,Fs )

)
= dp(h

L,F
t , hL,Fs ). (4.13)

By Theorem 4.3 and the fact that on the space of Hermitian structures, the function dp forms a
distance (and hence verifies the triangle inequality), we see that for any s, t ∈ [0,+∞[,

lim
k→∞

1

k
dp
(
Hilbk(h

L,F
t ),Hilbk(hL,Fs )

)
= lim

k→∞

1

k
dp
(
Hk,t, Hk,s

)
. (4.14)

Note, however, that by the construction of Hk,t, it forms a geodesic ray with respect to the distance
dp on the space of Hermitian structures. In particular, for any k ∈ N, t, s ∈ [0,+∞[, we have

dp
(
Hk,t, Hk,s

)
= |t− s| · dp

(
Hk,0, Hk,1

)
. (4.15)

If we now combine all of the above statements, we establish

dp(h
L,F
t , hL,Fs ) = |t− s| · dp(hL,F0 , hL,F1 ), (4.16)

which finishes the proof.

Proof of Theorem 1.1. Immediately from the definition of dp-distances and our assumption
F0R(X,L) = {0}, we conclude

dp
(
Hk,0, Hk,1

)p
=

1

nk

nk∑
j=1

(eF(j, k)

k

)p
. (4.17)

Directly from (4.13) and (4.14), we deduce the following

lim
k→∞

1

nk

nk∑
j=1

(eF(j, k)

k

)p
= dp(h

L,F
0 , hL,F1 )p. (4.18)

In particular, we get the convergence from Theorem 1.1 for monomials g, and (4.18) establishes the
characterization of the limiting measure (1.18). Since polynomials form a uniformly dense subset
in the space of continuous functions on an arbitrary interval, we see that the limit from Theorem
1.1 exists for an arbitrary continuous function, which then finishes the proof.
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4.2 Examples of geodesic rays
The main goal of this section is to help the reader to familiarize with the construction of the
geodesic ray on a number of examples.

Example 1. We consider the projective space (X,L) := (P1,O(1)), and the filtration F asso-
ciated the weight function wFk(s) := kmin{ord0(s), 1}, where ord0(s) is the order of vanishing
of s ∈ H0(P1,O(k)) at the point 0 := [1, 0] ∈ P1. A straightforward verification reveals that the
filtration F is submultiplicative and bounded.

We identify P1 to P(V ∗), where V is a vector space generated by two elements: x and y. Let
us consider a metric H on V , which makes x and y an orthonormal basis, and denote by hFS the
induced Fubini-Study metric on O(1). For any k ∈ N∗, i, j ∈ N, i+ j = k, under the isomorphism
Symk(V )→ H0(P(V ∗),O(k)), an easy calculation shows that we have∥∥xi · yj∥∥2

Hilbk(hFS)
=

i!j!

(k + 1)!
. (4.19)

We then denote by HFt,k the geodesic ray departing from Hilbk(h
FS) and associated with Fk.

For any a, b ∈ C, not simultaneously equal to zero, we have

FS(Hilbk(h
FS))

FS(HFt,k)

(
[ax∗ + by∗]

)
=
etk(|a|2 + |b|2)k + (1− etk)|a|2k

(|a|2 + |b|2)k
. (4.20)

In particular, for any t ∈ [0,+∞[, we conclude that

lim
k→∞

(
FS(Hilbk(h

FS))

FS(HFt,k)

) 1
k(

[ax∗ + by∗]
)

=

{
et, if b 6= 0,

1, otherwise.
(4.21)

In the notations of (4.9), we then see that hL,Ft,0 is not continuous for t > 0, but its lower semicon-
tinuous regularization corresponds to hFt = e−thFS .

Example 2. We consider the projective space (X,L) := (P1,O(2)), and the filtration F asso-
ciated the weight function wFk(s) := min{ord0(s), k} in the notations of the previous example.
Similar calculation to the ones behind (4.20) will reveal that for any a, b ∈ C, not simultaneously
equal to zero, we have

FS(Hilb2k(h
FS))

FS(HFt,k)

(
[ax∗ + by∗]

)
=

1

(|a|2 + |b|2)2k
( k∑
i=0

eti|a|2i|b|2(2k−i) (2k)!

i!(2k − i)!

+ etk ·
2k∑

i=k+1

|a|2i|b|2(2k−i) (2k)!

i!(2k − i)!

)
. (4.22)

Cramér’s theorem from large deviations theory applied for the binomial distribution yields that
for any x < 1, we have

lim
k→∞

1

2k
log
( 2k∑
i=k+1

xi
(2k)!

i!(2k − i)!

)
=

1

2
log(4x). (4.23)
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From (4.23) and binomial formula, it is immediate to recover that for any t ∈ [0,+∞[, we have

(hFS)2

hFt

(
[ax∗ + by∗]

)
=


( et|a|2+|b|2
|a|2+|b|2

)2
, et/2|a| < |b|,(

2et/2|a||b|
|a|2+|b|2

)2
, e−t/2|b| < |a| < |b|,

et, |b| < |a|.
(4.24)

We see in particular that the above geodesic ray is C 1,1, but not smooth. Our example here is of
course related to the well-known phenomena that one can expect at most C 1,1-regularity for the
envelopes, cf. [2], [16], [72].

Example 3. Let (X,L) be a polarized projective manifold with a C∗-action. It induces the filtra-
tion on R(X,L), defined as

FλH0(X,L⊗k) =
{
s ∈ H0(X,L⊗k)| lim

τ→0
τ−dλe · τ∗s exists

}
. (4.25)

The reader will easily check that the resulting filtration is submultiplicative. It is also bounded, as
it can be seen from the fact that the ring R(X,L) is finitely generated, cf. [50, Example 1.2.22].
Now, let hL0 be a smooth metric on L with positive curvature, which is invariant under the induced
S1-action (such hL0 exists by the compactness of S1 and the usual averaging procedure). We claim
that in the notations of (4.9), we then have hL,Ft,0 = hL,Ft = τ(t)∗h

L
0 , where τ(t) := exp(−t), and

τ∗ : (X,L)→ (X,L) is the automorphism induced by the C∗-action by τ ∈ C∗.
To see this, remark that by considering an equivariant orthonormal basis of Hilbk(hL0 ) (which

exists by our assumption of S1-invariance), we observe Hk,t := τ(t)∗Hilbk(hL0 ). However, imme-
diately from the definition of the L2-norm, we see that τ(t)∗Hilbk(hL0 ) = Hilbk(hLt ). The result
then follows from (4.9) and the fact that for any smooth metric hL with positive curvature, we have

FS(Hilb(hL)) = hL, (4.26)

which follows immediately from (4.8) and Tian’s theorem on Bergman kernel expansion.

4.3 Submultiplicative norms and their asymptotic study
The main goal of this section is to introduce the principal tool used in the proof of Theorem 4.3,
which involves the asymptotic analysis of submultiplicative norms. Since this result has applica-
tions that extend beyond the context of filtrations, we present it in full generality before explaining
how it can be specialized to the study of filtrations.

A graded norm N =
∑
Nk, Nk := ‖ · ‖k, over R(X,L) := ⊕∞k=0H

0(X,L⊗k). is called
submultiplicative if for any k, l ∈ N∗, f ∈ H0(X,L⊗k), g ∈ H0(X,L⊗l), we have

‖f · g‖k+l ≤ ‖f‖k · ‖g‖l. (4.27)

As a basic example, any bounded metric hL on L induces the sequence of sup-norms
BanXk (hL) := ‖ · ‖L∞k (X,hL) over H0(X,L⊗k), defined for f ∈ H0(X,L⊗k) as follows

‖f‖L∞k (X,hL) = sup
x∈X
|f(x)|hL . (4.28)
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The associated graded norm BanX(hL) =
∑

BanXk (hL) is clearly submultiplicative (Ban here
stands for “Banach”). The main goal of this section is to prove that under some mild assumptions
on L and N , asymptotically, these are the only possible examples.

More precisely, we say that two graded norms N =
∑
Nk, N ′ =

∑
N ′k over R(X,L) are

equivalent (N ∼ N ′) if the multiplicative gap between the graded pieces, Nk and N ′k, is subexpo-
nential. This means that for any ε > 0, there is k0 ∈ N∗, such that for any k ≥ k0, we have

exp(−εk) ·Nk ≤ N ′k ≤ exp(εk) ·Nk. (4.29)

We say N is bounded if N ≥ BanX(hL) for a certain smooth metric hL on L.
For any k ∈ N∗, such that L⊗k is very ample, any norm Nk on H0(X,L⊗k) induces the Fubini-

Study metric FS(Nk) on L⊗k through the associated Kodaira embedding, see (4.6). The following
basic construction plays a fundamental role in what follows.

Lemma 4.5. The sequence of Fubini-Study metrics FS(Nk), k ∈ N∗, is submultiplicative for any
submultiplicative graded norm N =

∑
Nk. In particular, by Fekete’s lemma, the sequence of

metrics FS(Nk)
1
k on L converges, as k → ∞, to a (possibly only bounded from above and even

null) upper semi-continuous metric, which we denote by FS(N). We, moreover, have

FS(N) = inf FS(Nk)
1
k . (4.30)

If N is bounded, then FS(N)∗ has a bounded psh potential. If FS(N) is lower semi-continuous
and everywhere non-null, the convergence is uniform.

Proof. The first part follows easily from Lemma 4.1. The second part follows from Lemma 4.1
and some classical results, cf. [29, Proposition I.4.24]. The third part is a consequence of the well-
known subadditive analogue of Dini’s theorem and a statement asserting that a pointwise limit of
subadditive sequence of continuous functions is upper semi-continuous, cf. [34, Appendix A].

We can now state the first main theorem of this section.

Theorem 4.6. Assume that a graded norm N =
∑
Nk over the section ring R(X,L) of an ample

line bundle L is submultiplicative and FS(N) is continuous. Then

N ∼ BanX(FS(N)). (4.31)

The first example from Section 4.2 shows that in the context of filtrations, the norms with non-
continuous Fubini-Study potentials arise naturally. To be able to treat these examples, we define a
weaker equivalence relation on the set of graded norms.

Let Ni = ‖ · ‖i, i = 1, 2, be two norms on a finite dimensional vector space V . We define
the logarithmic relative spectrum of N1 with respect to N2 as a non-increasing sequence λj :=
λj(N1, N2), j = 1, · · · , dimV , defined as follows

λj := sup
W⊂V

dimW=j

inf
w∈W\{0}

log
‖w‖2
‖w‖1

. (4.32)

For p ∈ [1,+∞[, we let

dp(N1, N2) :=
p

√∑dimV
i=1 |λi|p
r

. (4.33)
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We say that graded norms N =
∑
Nk and N ′ =

∑
N ′k are p-equivalent (N ∼p N ′) if

1

k
dp(Nk, N

′
k)→ 0, as k →∞. (4.34)

We show in Proposition 4.10 that ∼p, p ∈ [1,+∞], is an equivalence relation and ∼ equals ∼+∞.

Theorem 4.7. Assume that a graded norm N =
∑
Nk over the section ring R(X,L) of an ample

line bundle L is submultiplicative and bounded. Then for any p ∈ [1,+∞[, we have

N ∼p BanX(FS(N)). (4.35)

4.4 Submultiplicative interpolations of filtrations
The main objective of this section is to establish Theorem 4.3, which will follow as a consequence
of Theorem 4.7. A central difficulty arises from the fact that it is unclear whether the ray of
norms Hk,t appearing in Theorem 4.3 satisfies any form of submultiplicativity. To address this
issue, we begin by replacing Hk,t with an alternative interpolation construction that does enjoy
submultiplicative properties. Most of the results will then follow from Theorem 4.7 and the fact
that the two interpolation constructions are sufficiently close – a fact we will establish later.

We fix a finitely-dimensional normed vector space (V,NV ), ‖ · ‖V := NV and a filtration F of
V . We construct a ray of norms N t

V,F := ‖ · ‖tV,F , t ∈ [0,+∞[, emanating from NV , as follows

‖f‖tV,F := inf
{∑

e−tµi · ‖fi‖V : f =
∑

fi, fi ∈ FµiV
}
. (4.36)

The main advantage of the above construction of the ray, compared to the previous one in (4.2),
lies in its behavior with respect to algebraic operations. To make this precise, we fix an algebra A
equipped with a submultiplicative filtration F .

Proposition 4.8. For any submultiplicative norm N on a ring A, the norm N t
F is submultiplicative

for any t ∈ [0,+∞[.

Proof. Immediate verification left to the reader.

We now compare this ray with the earlier construction in (4.2). Fix a Hermitian norm NH :=
‖ · ‖H on V . We denote by N⊥,tH,F the ray of Hermitian norms emanating from NH and associated
with the filtration F as in (4.2). The following result provides a comparison between the two
constructions. To state it precisely, for two norms N1 and N2 on V , we denote by d+∞(N1, N1) the
minimal constant C > 0 so that N1 · exp(−C) ≤ N2 ≤ N1 · exp(C).

Lemma 4.9. For any (resp. Hermitian) norm NV (resp. NH) on V and any t ∈ [0,+∞[, we have

d+∞(N⊥,tH,F , N
t
V,F) ≤ d+∞(NH , NV ) + log dimV. (4.37)

Proof. Let us denote by N t
H,F the ray of norms emanating from NH by the construction from

(4.36). Let us establish first that
dimV ·N t

H,F ≥ N⊥,tH,F . (4.38)
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By the definition of N t
H,F , we conclude that for any λ ∈ R, f ∈ V , we have

‖f‖tH,F ≥ e−tλ‖Qλ(f)‖H , (4.39)

where Qλ(f) := f − Pλ(f) and Pλ(f) is the projection of f to ∪ε>0Fλ+εV with respect to the
norm NH . We take now the decomposition f =

∑
ais

t
1, ai ∈ C of f ∈ V in basis (st1, . . . , s

t
r)

from (4.2). Then by the definition of N⊥,tH,F , we have

‖f‖⊥,tH,F :=
√∑

|ai|2. (4.40)

By taking sums of (4.39) over all jumping numbers, using (4.40) and the fact that for any i =
1, . . . , r, we have ‖QeF (i)(f)‖H ≥ eteF (i) · |ai|, we deduce (4.38).

Now, directly by the definition of N t
H,F , we obtain ‖f‖tH,F ≤

∑
|ai|. From this, (4.40) and

mean value inequality, we establish

N t
H,F ≤

√
dimV ·N⊥,tH,F . (4.41)

From (4.38) and (4.41), we conclude that d+∞(N⊥,tH,F , N
t
H,F) ≤ log dimV . To finish the proof,

it is only left to use the following trivial bound d+∞(N t
V,F , N

t
H,F) ≤ d+∞(NH , NV ).

Proof of Proposition 4.2. First of all, we denote byNk,t the ray of norms departing from BanXk (hL0 )
constructed as in (4.36) associated with the restriction of F to H0(X,L⊗k).

Immediately from Tian’s theorem on the Bergman kernel expansion, there is C > 0 so that for
any k ∈ N∗, we have

C−1k−n · BanXk (hL0 ) ≤ Hilbk(h
L
0 ) ≤ BanXk (hL0 ). (4.42)

From this and Lemma 4.9, we conclude that there is C > 0 such that for any t ≥ 0, k ∈ N∗,

C−1k−2n ·Nk,t ≤ Hk,t ≤ Ck2n ·Nk,t. (4.43)

From this, (4.9), and the fact that limk→∞ k
1
k = 1, we conclude that

hL,Ft,0 = lim
k→∞

inf
l≥k

FS(Nl,t)
1
l . (4.44)

However, since for any t > 0, the norm Nt :=
∑
Nk,t on R(X,L) is submultiplicative, we

conclude by Lemma 4.5 that
hL,Ft,0 = FS(Nt). (4.45)

Moreover, by the submultiplicativity, we have FS(Nl,t)
2 ≥ FS(N2l,t) for any l ∈ N, and so

FS(Nt) is a decreasing limit of metrics with psh potentials, which are uniformly bounded from
below. By the standard results from complex analysis, cf. [29, Proposition I.4.24], we conclude
that hL,Ft has a bounded psh potential, which finishes the proof.

Next, we shall use the following basic result.

Proposition 4.10. For any p ∈ [1,+∞[, ∼p is an equivalence relation.
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Proof. Directly from (4.32), for any norms N1, N2, N3, j = 1, · · · , dimV , we have

λj(N1, N2) + λdimV (N2, N3) ≤ λj(N1, N3) ≤ λj(N1, N2) + λ1(N2, N3), (4.46)

and whenever N1 ≤ N2 ≤ N3, we have

λj(N1, N2) ≤ λj(N1, N3). (4.47)

When both Ni, i = 1, 2, are Hermitian norms associated with the scalar products 〈·, ·〉i, the
logarithmic relative spectrum coincides (up to a multiplication by a factor 2) with the logarithm
of the spectrum of the transfer map A ∈ End(V ) between N1 and N2, which is the Hermitian
operator, verifying 〈A·, ·〉1 = 〈·, ·〉2. In particular, we then have

dp(N1, N2) =
p

√
Tr[| logA|p]

dimV
, (4.48)

and so the normalization from (4.33) gives in this case the distance on the space of Hermitian
norms coming from the natural Finsler structure.

By [12, Theorem 3.1], the functions dp, p ∈ [1,+∞[, defined in (4.33), are such that

dp satisfies the triangle inequality over the space of Hermitian norms. (4.49)

Remark also that the John ellipsoid theorem, cf. [61, p. 27], says that for any normed vector space
(V,NV ), there is a Hermitian norm NH

V on V , verifying

NH
V ≤ NV ≤

√
dimV ·NH

V . (4.50)

From (4.46), (4.47), (4.49), (4.50) and the fact that dimH0(X,L⊗k) grow polynomially (hence,
subexponentially) in k ∈ N, we see that ∼p for p ∈ [1,+∞[ is indeed an equivalence relation.

Proof of Theorem 4.3. To simplify the presentation, we additionally assume that the filtration F is
such that

hL,Ft,0 = hL,Ft , (4.51)

for any t ∈ [0,+∞[. The above condition is equivalent to the fact that hL,Ft,0 is a continuous
metric for any t ∈ [0,+∞[. The proof provided in [35] remains valid even in the absence of this
assumption, and we refer the interested reader to that work for further details.

Immediately from (4.43), we see that the norms Ht :=
∑
Hk,t and Nt :=

∑
Nk,t on R(X,L)

are ∼p-equivalent for any p ∈ [1,+∞[. However, since Nt is submultiplicative, we conclude by
Theorem 4.7 that Nt is ∼p-equivalent to BanX(FS(Nt)). By (4.45) and our standing assumption,
we see that BanX(FS(Nt)) = BanX(hL,Ft ). From this, by Proposition 4.10, we conclude that it
would suffice to establish that Hilb(hL,Ft ) is ∼p-equivalent to BanX(hL,Ft ) for any t ∈ [0,+∞[.
But this follows from the general fact that for an arbitrary continuous metric hL with psh potential,
the norms BanX(hL) and Hilb(hL) are ∼p-equivalent, see (4.42).
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4.5 Elements of the proof of Theorems 4.6, 4.7
The main goal of this section is to describe some main ideas from the proof of Theorems 4.6, 4.7.
To simplify our presentation, we shall make the following two simplifications. First, we assume
that R(X,L) is generated in degree 1, i.e. as an algebra it is generated by H0(X,L). By a standard
result from commutative algebra, this can always be achieved upon replacing L by its sufficiently
big tensor power. Second we shall fix a norm N1 on H0(X,L), and will only establish Theorem
4.6 for the normN =

∑
Nk, which is the maximal submultiplicative norm onR(X,L), coinciding

with N1 on H0(X,L). The full proof can be derived from this special case via an approximation
argument; however, to keep the presentation concise, we will not pursue it here, and refer to [35]
for details.

In order to describe the maximal submultiplicative norm Nk explicitly, we need to recall some
basic definitions from functional analysis. Recall that there is no canonical way of inducing a
norm on the tensor product V1 ⊗ V2 of two normed vector spaces (V1, N1), (V2, N2). Instead,
several natural constructions are possible. The construction which is particularly relevant in what
follows is the one of projective tensor norm N1 ⊗π N2 = ‖·‖⊗π on V1 ⊗ V2 which is defined for
f ∈ V1 ⊗ V2 as

‖f‖⊗π = inf
{∑

‖xi‖1 · ‖yi‖2 : f =
∑

xi ⊗ yi
}
, (4.52)

where the infimum is taken over different ways of partitioning f into a sum of decomposable terms.
For the next proposition, we denote by Symk

πN1 the norm on SymkH0(X,L) induced by the
projective tensor norm on H0(X,L)⊗k induced by N1. We denote by [Symk

πN1] the induced quo-
tient norm on H0(X,L⊗k) constructed as in (2.14) under the multiplication map

Multk : SymkH0(X,L)→ H0(X,L⊗k), (4.53)

which is surjective by our assumption of generation in degree 1.

Proposition 4.11. We have Nk = [Symk
πN1].

Proof. The submultiplicativity property immediately yields the inequality Nk ≤ [Symk
πN1]. To

establish the reverse inequality, it suffices to show that the norm ‖ · ‖k := [Symk
πN1] satisfies

the submultiplicative estimate ‖f · g‖k+l ≤ ‖f‖k · ‖g‖l for any sections f ∈ H0(X,L⊗k), g ∈
H0(X,L⊗l). This inequality can be verified directly: once the definitions are unpacked, the norm
‖f · g‖k+l is defined as the infimum of a certain expression over all decompositions of f · g into
monomials, whereas ‖f‖k ·‖g‖l corresponds to the infimum of the same expression taken only over
decompositions that arise as products of decompositions of f and g. The inequality then follows
immediately.

Remark now that for an arbitrary vector space V , there is an isomorphism between SymkV and
H0(P(V ∗),O(k)). We shall now use the notations inspired by (4.6). We denote by FSP(V ∗)(NV )
the norm on O(1) over P(V ∗) induced by NV . We denote by BanP

k(NV ) the L∞-norm on
H0(P(V ∗),O(k)) induced by FSP(V ∗)(NV ). The central point in our proof lies in the following
statement, which will be established in Section 4.6.

Theorem 4.12. For any ε > 0, there is k0 ∈ N, so that for any k ≥ k0, we have

BanP
k(NV ) ≤ Symk

πN1 ≤ exp(εk) · BanP
k(NV ). (4.54)
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Proof of Theorems 4.6. As explained above, we shall only establish Theorem 4.6 for the norm
N described in the beginning of this section. We shall first establish that FS(Nk) = FS(N1)

k

for any k ∈ N∗. For this, we shall use the characterization of the Fubini-Study metric from
Lemma 4.1. Let us first show the inequality FS(Nk) ≤ FS(N1)

k. For this, let s1 ∈ H0(X,L),
s1(x) ≤ 0, be such that |s1(x)|FS(N1),x = ‖s‖1. By considering s := sk1 in (4.7), we then obtain
|sk1(x)|FS(Nk),x ≤ ‖s‖k1, which finishes the proof of FS(Nk) ≤ FS(N1)

k.
Let us now show the opposite bound FS(Nk) ≥ FS(N1)

k. By the above reasoning, it is
sufficient to establish that in the formula (4.7) for FS(Nk), it is sufficient to restrict only to de-
composable sections, i.e. those which can be written as a product of sections from H0(X,L).

For this, remark that by definition, for any s ∈ H0(X,L⊗k), ε > 0, there is a decomposition
sk =

∑
α sα,1 · . . . · sα,k, where sα,1, . . . , sα,k ∈ H0(X,L) are such that

‖s‖k ≥
∑
α

‖sα,1‖1 · . . . · ‖sα,k‖1 − ε. (4.55)

Also, by the triangle inequality, we obviously have

|sk(x)|FS(Nk),x ≤
∑
α

|sα,1(x)|
FS(Nk)

1
k ,x
· . . . · |sα,k|

FS(Nk)
1
k ,x
. (4.56)

Remark now that if s1, s2 ∈ H0(X,L⊗k) are such that ‖s1‖k
|s1(x)|(hL)k

≥ ‖s2‖k
|s2(x)|(hL)k

, then in the formula

(4.7) for FS(Nk), the quantity corresponding to s from the complex line induced by s2 shall be
smaller than the complex line induced by s1. This implies that in the formula (4.7) for FS(Nk), it is
sufficient to restrict only to decomposable sections by (4.55), (4.56) and the following elementary
inequality: for any a, b, c, d > 0, we have a+b

c+d
≥ min(a

c
, b
d
).

From above, to finish the proof of Theorems 4.6, it is then sufficient to establish the following
statement: for any ε > 0, there is k0 ∈ N, so that for any k ≥ k0, we have

BanXk (FS(N1)) ≤ Nk ≤ exp(εk) · BanXk (FS(N1)). (4.57)

Let us first show that the lower bound is immediate. Indeed, for any norm N ′k on H0(X,L⊗k),
immediately from (4.7), we see that for any s ∈ H0(X,L⊗k), x ∈ X , we have

‖s‖N ′k ≥ |s(x)|FS(N ′k), (4.58)

which translates after taking supremum into the inequality

BanXk (FS(N ′k)) ≤ N ′k. (4.59)

Taken into account that FS(Nk) = FS(N1)
k, the above inequality implies the lower bound of

(4.57).
Let us establish now the upper bound by relying on Theorem 4.12 and the semiclassical exten-

sion theorem – more specifically – Proposition 2.5. Immediately from Theorem 4.12, we see that
for any ε > 0, there is k0 ∈ N, so that for any k ≥ k0, we have

Nk ≤ exp(εk) · [BanP
k(N1)], (4.60)
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where the brackets above are for the quotient norm associated with the multiplication operator
Multk from (4.53). We shall establish that for any ε > 0, there is k0 ∈ N, so that for any k ≥ k0,
we have

[BanP
k(N1)] ≤ exp(εk) · BanXk (FS(N1)), (4.61)

which would clearly finish the proof.
Let us consider the Kodaira embedding Kod1 from (4.5). We denote by Resk :

H0(P(H0(X,L)∗),O(k)) → H0(X,L⊗k) the associated restriction operator, and by Resk, k ∈
N∗, the restriction operators on the associated graded pieces. The multiplication operator Multk
from (4.53) factorizes through symmetrization and restriction as

H0(X,L)⊗k Symk(H0(X,L))

H0(P(H0(X,L)∗),O(k))

H0(X,L⊗k).

Multk

Sym

Resk

(4.62)

The bound (4.61) is then a direct application of (4.62) and Proposition 2.5.

4.6 Projective tensor norms and holomorphic extension theorem
The main goal of this section is to establish Theorem 4.12. We first establish this result by the
classical Fourier analysis in the special case V = Cr, r ∈ N∗, and NV := ‖ · ‖V := l1, and
then prove it in its full generality by relying on some tools from functional analysis and – quite
surprisingly – the tools from complex geometry; more specifically, the semiclassical extension
theorem in the form of Proposition 2.5.

To establish Theorem 4.12 for V = Cr, r ∈ N∗, andNV := ‖·‖V := l1, consider a vector space
Vr,k of homogeneous complex polynomials of degree k in r variables. We represent an element
P ∈ Vr,k as

P (x1, · · · , xr) =
∑
|α|=k

aαx
α. (4.63)

Since dimVr,k =
(
r+k
r

)
< +∞, any two norms on Vr,k are equivalent. In particular, there is a

constant Br,k > 0, such that for any P ∈ Vr,k, we have∑
|α|=k

|aα| ≤ Br,k · ‖P‖, (4.64)

where the sup-norm ‖P‖ is defined as follows

‖P‖ := sup
xi∈C
|xi|≤1

∣∣P (x1, · · · , xr)
∣∣. (4.65)

We assume that the constants Br,k for r, k ∈ N∗, are the minimal constants verifying the inequality
(4.64). Let us establish the following statement.
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Proposition 4.13. For any fixed r ∈ N∗, the sequence Br,k, k ∈ N, grows at most polynomially in
k.

Proof. Remark first that by the maximum principle, we have

‖P‖ = sup
xi∈C
|xi|=1

∣∣P (x1, · · · , xr)
∣∣. (4.66)

Parseval’s identity shows us ∫
xi∈C
|xi|=1

∣∣P (x1, · · · , xr)
∣∣2dν =

∑
|α|=k

|aα|2, (4.67)

where dν is the Lebesgue measure on {(x1, . . . , xn) ∈ Cn||xi| = 1, i = 1, . . . , n}. The
result then follows by the Generalized mean inequality and the fact that dimVr,k =

(
r+k
r

)
grows

polynomially in k for a fixed r.

Proof of Theorem 4.12 in the special case when V = Cr and NV := ‖ · ‖V := l1. From (4.59), it is
sufficient to show that Symπ(NV ), considered up to a subexponential constant, is bounded from
above by BanP

k(NV ).
Let us denote by x1, . . . , xr the coordinate vectors in Cr. We use the notation (4.63) for P ∈

Symk(V ), k ∈ N∗. Since the dual of the l1-norm is given by the l∞-norm on Cr, we have

‖P‖BanPk(NV ) = ‖P‖. (4.68)

On another hand, immediately from the definitions, we have

‖P‖Symπ(NV ) ≤
∑
|α|=k

|aα|. (4.69)

We conclude by Proposition 4.13 and (4.68), (4.69) that Symπ(NV ), considered up to a subexpo-
nential constant, is bounded from above by BanP

k(NV ).

Let us now establish Theorem 4.12 in its full generality. Surprisingly, our main technical tool
in the proof of this purely functional-analytic statement comes from complex geometry. We also
use the following classical result.

Lemma 4.14 (cf. [31, Lemma 2.2]). For any finite dimensional complex normed vector space
(V, ‖ · ‖V ), and any ε > 0, there is l ∈ N∗ and a surjective map π : Cl → V , such that ‖ · ‖V is
related to the quotient norm associated with the l1-norm on Cl as follows

exp(−ε) · [l1] ≤ ‖ · ‖V ≤ [l1]. (4.70)

Proof of Theorem 4.12. Since Theorem 4.12 holds for l1-norms by the above considerations, we
deduce by Lemma 4.14 that it is enough to show that the validity of Theorem 4.12 is stable under
taking quotients, i.e. if Theorem 4.12 holds for a normed vector space (U,NU), then it holds for
any normed quotient (V,NV ), π : U → V . As we shall see below, this is a consequence of the
semiclassical version of Ohsawa-Takegoshi extension theorem. We consider the embedding

Imπ : P(V ∗)→ P(U∗). (4.71)
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Clearly, under this embedding, the associated restriction operator, which we denote by Resπ,k, and
the projection map to the symmetric tensors induced by π, which we denote by Symkπ, can be put
into the following commutative diagram

H0(P(U∗),O(k))
Resπ,k−−−→ H0(P(V ∗),O(k))∥∥∥ ∥∥∥

Symk(U)
Symkπ−−−−→ Symk(V ).

(4.72)

Since (V,NV ) is a quotient of (U,NU), we also have

FS(NV ) = FS(NU)|P(V ∗). (4.73)

From Proposition 2.5, (4.72) and (4.73), we conclude that for any ε > 0, there is k0 ∈ N∗, such
that for any k ≥ k0, f ∈ Symk(V ), there is g ∈ Symk(U), such that Symkπ(g) = f , and

‖f‖BanPk(NV ) ≥ exp(−εk) · ‖g‖BanPk(NU )
(4.74)

Now, since Theorem 4.12 holds for (U,NU), we deduce that there is k1 ∈ N∗, such that for any
k ≥ k1, g ∈ Symk(U), we have

‖g‖BanPk(NU )
≥ exp(−εk) · ‖g‖Symπ(NU ). (4.75)

Since (V,NV ) is a quotient of (U,NU), for any x ∈ U , we have

‖x‖U ≥ ‖π(x)‖V . (4.76)

From this, the definition of the projective tensor norm, we deduce that for any k ∈ N∗, f ∈
Symk(V ) and g ∈ Symk(U), verifying Symkπ(g) = f , we have

‖g‖Symπ(NU ) ≥ ‖f‖Symπ(NV ). (4.77)

From (4.74), (4.75) and (4.77), we see that for any k ≥ max{k0, k1}, f ∈ Symk(V ), we have

‖f‖BanPk(NV ) ≥ exp(−2εk) · ‖f‖Symπ(NV ). (4.78)

As ε > 0 is arbitrary, from (4.59) and (4.78), we conclude that BanP
k(NV ) and Symπ(NV ) are

asymptotically equivalent. This finishes the proof.
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[9] T. Bouche. Sur les inégalités de Morse holomorphes lorsque la courbure du fibré en droites
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