Combinatorial Nullstellensatz. Let $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and $S_{i} \subseteq \mathbb{F}$ (for $1 \leq i \leq n$). Let $g_{i}\left(x_{i}\right)=$ $\prod_{s \in S_{i}}\left(x_{i}-s\right)$. If $f\left(s_{1}, \ldots, s_{n}\right)=0$ for every $s_{i} \in S_{i}(1 \leq i \leq n)$, then there exist some $h_{i} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ with $\operatorname{deg} h_{i} \leq \operatorname{deg} f-\operatorname{deg} g_{i}$ such that $f=\sum h_{i} g_{i}$.
Nonvanishing Criterion. Let $f=c x_{1}^{d_{1}} \ldots x_{n}^{d_{n}}+\cdots \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial of degree $d=$ $d_{1}+\cdots+d_{n}$ such that $c \neq 0$. Let $S_{i} \subseteq \mathbb{F}$ (for $1 \leq i \leq n$) with size $\left|S_{i}\right|>d_{i}$. Then there exist some $s_{1} \in S_{1}, \ldots, s_{n} \in S_{n}$ such that $f\left(s_{1}, \ldots, s_{n}\right) \neq 0$.

1. Show that the Combinatorial Nullstellensatz implies the Nonvanishing Criterion.
2. Let n be a positive integer. Consider

$$
S=\{(x, y, z): x, y, z \in\{0,1, \ldots, n\}, x+y+z>0\}
$$

as a set of $(n+1)^{3}-1$ points in three-dimensional space. Determine the smallest possible number of planes, the union of which contains S but does not include ($0,0,0$).
3. (Schwartz-Zippel lemma) Let $A_{i} \subseteq \mathbb{F}$ be finite subsets with $\left|A_{i}\right|=k$ for each $i=1, \ldots, n$. Let P be a non-zero polynomial over \mathbb{F} on n variables and total degree at most d. Show that the number of zeros of P in $A_{1} \times \cdots \times A_{n}$ is at most $d k^{n-1}$.
In particular, a nonzero polynomial of degree d vanishes on at most $d /|\mathbb{F}|$ fraction of points of \mathbb{F}^{n}.
4. Let $0<d<|\mathbb{F}|$ and $P=\sum_{j=0}^{d} P_{j}$, where $P_{j} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is a homogeneous polynomial of degree j and $\operatorname{deg} P=d$. Let $v \in \mathbb{F}^{n} \backslash\{0\}$ and $x \in \mathbb{F}^{n}$. Let $Q(t)=P(x+t v)$. Show that the coefficient of t^{d} in Q is $P_{d}(v)$.
Show that $P_{d}(v) \neq 0$ for some $v \in \mathbb{F}^{n}$.
5. Show a polynomial $P \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$ of degree d and a set $A \subseteq \mathbb{F}_{2}^{n}$ of size $|A|=\sum_{0 \leq i \leq d / 2}\binom{n}{i}$ such that P vanishes on $A \hat{+} A$ but $P(0) \neq 0$.
6. Let us assume that a system of subsets $A(x) \subseteq \mathbb{F}_{2}^{n}\left(x \in \mathbb{F}_{2}^{n}\right)$ satisfies the following property:

$$
\begin{equation*}
\forall x \in \mathbb{F}_{2}^{n}(y \in x+A(x) \hat{+} A(x) \Longrightarrow A(y)=\emptyset) \tag{*}
\end{equation*}
$$

(For $A(x)=\emptyset$ we define $x+A(x) \hat{+} A(x):=\emptyset$.) Prove that the maximal possible size of $\sum_{x \in \mathbb{F}_{2}^{n}}|A(x)|$ is $r_{3}\left(\mathbb{Z}_{4}^{n}\right)$. (Hint: Write each element in the form $a=f+r$, where $f \in\{0,2\}^{n}$ and $r \in\{0,1\}^{n}$.)
7. Let us assume that for the vectors $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n} \in \mathbb{F}^{r}$ we have

$$
\left\langle u_{i}, v_{j}\right\rangle\left\langle u_{j}, v_{k}\right\rangle\left\langle u_{k}, v_{i}\right\rangle \neq 0 \Longleftrightarrow i=j=k .
$$

Prove that $n \leq r^{2}$.

* Is it true that that $n \leq r^{1.5}$?
(Here $\langle x, y\rangle=\sum x_{i} y_{i}$ is the dot product of x and y.)

