## Polynomial method – Exercises Péter Pál Pach

**Combinatorial Nullstellensatz.** Let  $f \in \mathbb{F}[x_1, \ldots, x_n]$  and  $S_i \subseteq \mathbb{F}$  (for  $1 \leq i \leq n$ ). Let  $g_i(x_i) = \prod_{s \in S_i} (x_i - s)$ . If  $f(s_1, \ldots, s_n) = 0$  for every  $s_i \in S_i$   $(1 \leq i \leq n)$ , then there exist some  $h_i \in \mathbb{F}[x_1, \ldots, x_n]$  with  $\deg h_i \leq \deg f - \deg g_i$  such that  $f = \sum h_i g_i$ .

**Nonvanishing Criterion.** Let  $f = cx_1^{d_1} \dots x_n^{d_n} + \dots \in \mathbb{F}[x_1, \dots, x_n]$  be a polynomial of degree  $d = d_1 + \dots + d_n$  such that  $c \neq 0$ . Let  $S_i \subseteq \mathbb{F}$  (for  $1 \leq i \leq n$ ) with size  $|S_i| > d_i$ . Then there exist some  $s_1 \in S_1, \dots, s_n \in S_n$  such that  $f(s_1, \dots, s_n) \neq 0$ .

- 1. Show that the Combinatorial Nullstellensatz implies the Nonvanishing Criterion.
- 2. Let n be a positive integer. Consider

$$S = \{(x, y, z) : x, y, z \in \{0, 1, \dots, n\}, x + y + z > 0\}$$

as a set of  $(n+1)^3 - 1$  points in three-dimensional space. Determine the smallest possible number of planes, the union of which contains S but does not include (0,0,0).

3. (Schwartz-Zippel lemma) Let  $A_i \subseteq \mathbb{F}$  be finite subsets with  $|A_i| = k$  for each i = 1, ..., n. Let P be a non-zero polynomial over  $\mathbb{F}$  on n variables and total degree at most d. Show that the number of zeros of P in  $A_1 \times \cdots \times A_n$  is at most  $dk^{n-1}$ .

In particular, a nonzero polynomial of degree d vanishes on at most  $d/|\mathbb{F}|$  fraction of points of  $\mathbb{F}^n$ .

4. Let  $0 < d < |\mathbb{F}|$  and  $P = \sum_{j=0}^{d} P_j$ , where  $P_j \in \mathbb{F}[x_1, \dots, x_n]$  is a homogeneous polynomial of degree j and deg P = d. Let  $v \in \mathbb{F}^n \setminus \{0\}$  and  $x \in \mathbb{F}^n$ . Let Q(t) = P(x + tv). Show that the coefficient of  $t^d$  in Q is  $P_d(v)$ .

Show that  $P_d(v) \neq 0$  for some  $v \in \mathbb{F}^n$ .

- 5. Show a polynomial  $P \in \mathbb{F}_2[x_1, \dots, x_n]$  of degree d and a set  $A \subseteq \mathbb{F}_2^n$  of size  $|A| = \sum_{0 \le i \le d/2} \binom{n}{i}$  such that P vanishes on A + A but  $P(0) \ne 0$ .
- 6. Let us assume that a system of subsets  $A(x) \subseteq \mathbb{F}_2^n$  ( $x \in \mathbb{F}_2^n$ ) satisfies the following property:

$$\forall x \in \mathbb{F}_2^n \ (y \in x + A(x) \hat{+} A(x) \implies A(y) = \emptyset). \tag{*}$$

(For  $A(x) = \emptyset$  we define  $x + A(x) + A(x) := \emptyset$ .) Prove that the maximal possible size of  $\sum_{x \in \mathbb{F}_2^n} |A(x)|$  is  $r_3(\mathbb{Z}_4^n)$ . (Hint: Write each element in the form a = f + r, where  $f \in \{0, 2\}^n$  and  $r \in \{0, 1\}^n$ .)

7. Let us assume that for the vectors  $u_1, \ldots, u_n, v_1, \ldots, v_n \in \mathbb{F}^r$  we have

$$\langle u_i, v_j \rangle \langle u_j, v_k \rangle \langle u_k, v_i \rangle \neq 0 \iff i = j = k.$$

Prove that  $n \leq r^2$ .

\* Is it true that that  $n \leq r^{1.5}$ ?

(Here  $\langle x, y \rangle = \sum x_i y_i$  is the dot product of x and y.)