
On a problem of Erdős and Graham about consecutive sums in strictly
increasing sequences

Adrian Beker
University of Zagreb

The problem

Given a finite sequence of integers a = (ai)1≤i≤k, wet let

S(a) =

{
v∑

i=u

ai

∣∣∣∣∣ 1 ≤ u ≤ v ≤ k

}
.

be the set of its consecutive sums. Erdős and Graham [3] asked the following

question, which also appears as problem #356 on Thomas Bloom’s website Erdős

problems [2].

A question of Erdős and Graham

Is there some c > 0 such that, for all sufficiently large n, there exist integers

1 ≤ a1 < . . . < ak ≤ n such that there are at least cn2 distinct integers of the

form
∑v

i=u ai with 1 ≤ u ≤ v ≤ k?

The obvious example in which k = n and ai = i for all 1 ≤ i ≤ k only just fails,

attaining

Θ
( n2

(log n)δ(log log n)3/2

)
distinct consecutive sums, where δ = 1 − 1+log log 2

log 2 ≈ 0.086 is the Erdős-Ford-

Tenenbaum constant (see [4] and [5]).

Previous work

Erdős and Graham also asked what happens in the following cases:

arbitrary sequences (without the monotonicity assumption): Hegyvári [6]

constructed a sequence of length
(1

3 + o(1)
)

n in [n] with all consecutive

sums distinct;

permutations of [n]: Konieczny [7] estalished that, if π ∈ Sn is chosen

uniformly at random, then

|S(π)| ∼
(1 + e−2

4

)
n2

with high probability.

In [1], we gave an affirmative answer to the starting question. It turns out that

there are many sequences that work:

A probabilistic construction

There exists a constant c1 > 0 such that the following holds for all positive

integers n. Let ε1, . . . , εn be independent Rademacher random variables and set

ai = 3i + εi for 1 ≤ i ≤ n. Then with positive probability, we have |S(a)| ≥ c1n
2.

One can also write down an explicit example:

A deterministic construction

There exists a constant c2 > 0 such that the following holds for all positive

integers n. Let b be a positive integer such that log n ≤ b ≤ n
(log n)2 and define

ai =

{
2i if b | i

2i − 1 otherwise

for 1 ≤ i ≤ n. Then |S(a)| ≥ c2n
2.

Verifying the constructions

The key to the verification of the constructions is the notion of additive energy and

its relation to the size of sumsets/difference sets.

Additive energy

Following Tao and Vu [8], the additive energy of a finite non-empty set P ⊆ Z is

defined to be

E(P ) = |{(x, y, z, w) ∈ P 4 | x − y = z − w}|.
Writing rP (t) for the number of representations of t ∈ Z as a difference of two

elements of P , one obtains:

E(P ) =
∑

t∈P−P

rP (t)2.

Since
∑

t∈P−P rP (t) = |P |2, the Cauchy-Schwarz inequality implies that

E(P ) ≥ |P |4

|P − P |
.

In our setting, S(a) is just the set of positive elements of P (a) − P (a), where

P (a) =

{
l∑

j=1
aj

∣∣∣∣∣ 0 ≤ l ≤ k

}
is the set of partial sums of a. Therefore, in order to establish the probabilistic

version, it suffices to prove the following:

Expected additive energy is small

Let n be a positive integer and let ε1, . . . , εn be independent Rademacher random

variables. Define ai = 3i + εi for 1 ≤ i ≤ n. Then the expected value of E(P (a))
is O(n2).

By linearity of expectation, our task amounts to showing that∑
i,j,k,l∈[0,n]

i<j, k<l

P

(
j∑

u=i+1
au =

l∑
v=k+1

av

)
= O(n2).

By taking symmetric differences, wemay assume that we are summing over disjoint

intervals, i.e. that j ≤ k in the above sum. Upon rearranging, the probability in

question becomes

g

(
|[i + 1, j]| + |[k + 1, l]|, 3

( ∑
v∈[k+1,l]

v −
∑

u∈[i+1,j]

u

))
,

where g(m, ·) is the probability mass function of the centred symmetric binomial

distribution with parameter m. This can now be analysed by grouping the terms

according to the lengths of the intervals and the difference of their sums. To ac-

complish this, one needs the following simple lemma:

Modular anticoncentration for binomial distribution

Let n, q be positive integers and let X be a symmetric binomial random variable

with parameter n. Then P(X ≡ 0 (mod q)) ≤ 1
q + 2√

n
.

The proof of the deterministic version is similar. Fixing the lengths of the intervals

to be s, t, we have to estimate the number of pairs of left endpoints (i, j) such
that

2si − 2tj = t2 − s2 +
⌊

t

b

⌋
−
⌊s

b

⌋
+ δ

for some δ ∈ {−1, 0, 1}. If q = gcd(s, t) doesn’t divide the right-hand side, there

are no such (i, j). Otherwise, there are at most

O
( n

max(s′, t′)

)
= O

( qn

max(s, t)

)
(∗)

many solutions, where s′ = s
q, t′ = t

q. The divisibility condition implies

s′ − t′ ∈
(

−2b

q
,
2b

q

)
+ bZ.

If b is moderately large, this cuts down the number of admissible pairs (s, t) by
roughly a factor of q. This cancels out the factor of q coming from (∗) and is

enough to get the required O(n2) bound.

An upper bound

In [1], we also establish the following upper bound on the size of S(a):

A non-trivial upper bound on |S(a)|

Let n be a positive integer and let 1 ≤ a1 < . . . < ak ≤ n be integers. Then

|S(a)| ≤ (c3 + o(1))n2,

where c3 = e2−1
2(e2+1) ≈ 0.381.

To prove this result, we use an idea of Konieczny [7]. Namely, we split S(a) into
the elements that are at most αn2 and those that are greater than αn2, for some

constant parameter α. The number of small sums is trivially at most αn2, whereas

the number of large sums is bounded above by the number of pairs (i, j) such that
1 ≤ i ≤ j ≤ k and

j∑
u=i

u ≥ αn2.

By a volume argument, the latter quantity can be related to the area of the region

of the unit square [0, 1]2 lying above the hyperbola y2 − x2 = α. Optimising over α
gives the desired bound.
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