Liouville quantum gravity and its spectral geometry nathanael.berestycki@univie.ac.at

School on Disordered Media Budapest, January 2025.

Exercise sheet

1. (*Green function asymptotics.*)

Assuming the conformal invariance of the Green function G_D , and assuming given its expression in the unit disc (so that $G_{\mathbb{D}}(0, w) = -(2\pi) \log |w|$), show that if D is simply connected we have

$$G_D(x,y) = -(2\pi)^{-1} \log |x-y| + \rho(x) + o(1)$$

as $y \to x$. Here $\rho(x) = \log R(x, D)$ is the logarithm of the "conformal radius" of x in D (which is defined as $R(x, D) = |\psi'(0)|$, where $\psi : \mathbb{D} \to D$ is a conformal isomorphism sending \mathbb{D} to D and 0 to x – by the way, why is this conformal radius well defined?)

2. (*The circle average of the GFF around a point is a BM.*)

Let D be a proper, regular domain of \mathbb{R}^2 (so the Green function is finite). Let h be a Gaussian free field on it with Dirichlet boundary conditions. Fix $z \in D$ and $\varepsilon_0 > 0$ so that $B(z, \varepsilon_0) \subset D$. For $0 < \varepsilon \leq \varepsilon_0$ let $\rho_{z,\varepsilon}$ denote the uniform distribution on the circle of radius ε around z.

(i) Check that $\rho_{z,\varepsilon} \in \mathfrak{M}$ (the space of measures which integrate the Green function).

(ii) Let $h_{\varepsilon}(z) = \sqrt{2\pi}(h, \rho_{z,\varepsilon})$, which is the circle average of h at distance ε from z. For $t \geq t_0 = \log(1/\varepsilon_0)$ let $B_t = h_{e^{-t}}(z)$. Check using the Markov property and conformal invariance that $(B_t)_{t\geq t_0}$ has independent and stationary increments.

(iii) Deduce that $(B_{t_0+t} - B_{t_0})_{t \ge 0}$ has the law of a multiple (say κ) of Brownian motion. Finally check that $\kappa = 1$.

(iv) Would this remain true if we were to consider the average of h over a general shape scaled by ε (the "potato-average process") of the field? (Formally we take a smooth contour γ in \mathbb{R}^2 containing the origin, and define $\rho_{\varepsilon,z}$ to the uniform measure (with respect to arclength) on $z + \varepsilon \gamma$.) If not, do you see a way to change the definition of $\rho_{z,\varepsilon}$ so that $(h, \rho_{z,\varepsilon})$ becomes a Brownian motion when viewed as a function of $t = \log(1/\varepsilon)$?

Let $\alpha > 0$. An α -thick point of the GFF is a point $z \in D$ such that $\lim_{\varepsilon \to 0} h_{\varepsilon}(z)/\log(1/\varepsilon) = \alpha$. Let \mathcal{T}_{α} be the set of thick points. Show that $\mathbb{E}(\operatorname{Leb}(\mathcal{T}_{\alpha})) = 0$ and thus $\operatorname{Leb}(\mathcal{T}_{\alpha}) = 0$, a.s. Nevertheless, \mathcal{T}_{α} is not necessarily empty. In fact, let $\mathcal{D}_{\varepsilon} = D \cap (\varepsilon \mathbb{Z})^2$ denote the vertices of a regular square lattice of mesh size ε which lie in D. Let $N_{\varepsilon} = \sum_{z \in \mathcal{D}_{\varepsilon}} \mathbb{1}_{\{h_{\varepsilon}(z) \ge \alpha \log(1/\varepsilon)\}}$. Show that $\mathbb{E}(N_{\varepsilon}) = \varepsilon^{-(2-\alpha^2/2)+o(1)}$. Can you guess for which values of α is \mathcal{T}_{α} non-empty? And can you guess what the Hausdorff dimension of \mathcal{T}_{α} is?

4. (Moments of order 1 and 2 of GMC and proof of convergence in the L^2 regime.)

³. (*Thick points.*)

(i) Let D be a regular, proper domain. Let $\gamma > 0$. Let $M_{\varepsilon}(dx) = \varepsilon^{\gamma^2/2} e^{\gamma h_{\varepsilon}(x)} dx$. Show that if $A \subset D$ is a Borel set such that $A_{\varepsilon} = \bigcup_{x \in A} B(x, \varepsilon) \subset D$, then

$$\mathbb{E}(M_{\varepsilon}(A)) = \int_{A} R(x, D)^{\gamma^{2}/2} \,\mathrm{d}x.$$

(ii) Show that if $\gamma < \sqrt{2}$ then $\mathbb{E}(M_{\varepsilon}(A)^2)$ is uniformly bounded in $\varepsilon > 0$.

(iii) Try to prove that (still in the case $\gamma < \sqrt{2}$), $M_{\varepsilon}(A)$ is a Cauchy sequence in $L^2(\mathbb{P})$.

5. (Expected exit time for Liouville Brownian motion.)

Let D be a domain and $0 < \gamma < 2$. Let \mathcal{M} denote the associated GMC measure and let $(Z_t, t \leq \tau_D)$ denote the associated Liouville Brownian motion, starting from some point $z \in D$ run until the time τ_D where it leaves D. We call E_z the expectation over the Liouville Brownian motion trajectory, conditional on the realisation of the GFF.

Show that

$$E_z(\tau_D) = \int_D G_D(z, x) \mathcal{M}(\mathrm{d}x).$$

Deduce that $\mathbb{E}(\mathbb{E}_z(\tau_D)) = \int_D G_D(z, x) R(x, D)^{\gamma^2/2} dx < \infty.$

6. (Non-atomicity of GMC and spectral theorem for the Green function of Liouville BM.)

Let *D* be a domain and $z \in D$ such that $B(z,1) \subset D$. Let *h* be a GFF on *D*. Let $\mathcal{M}_{\varepsilon}(\mathrm{d}x) = \varepsilon^2 \gamma^2 / 2e^{\gamma h_{\varepsilon}(x)} \mathrm{d}x$. We admit the following formula for the multifractal spectrum of \mathcal{M} (see Exercise 7 below for a sketch of proof):

$$\mathbb{E}[\mathcal{M}(B'_r)^q] \asymp r^{\xi(q)}; \quad \xi(q) = (2 + \frac{\gamma^2}{2})q - \frac{q^2\gamma^2}{2},$$

for all $0 < q < 4/\gamma^2$.

(i) Show that for $0 < \gamma < 2$ the measure \mathcal{M} is atomless. In fact, show that there exists C > 0 (random but finite) and a fixed nonrandom $\eta > 0$ such that, almost surely, if $\gamma < 2$,

$$\sup_{z \in D'} \mathcal{M}(B(z, r)) \le Cr^{\eta}$$

(ii) Show that $\iint_{D^2} \log^2(|x-y|) \mathcal{M}(\mathrm{d}x) \mathcal{M}(\mathrm{d}y) < \infty$. Deduce that the Green operator

$$f \in L^2(\mathcal{M}) \mapsto \mathbf{G}f(x) = \int_D G_D(x, y) \mathcal{M}(\mathrm{d}y)$$

is Hilbert–Schmidt and thus has a sequence of eigenvalues $\mu_n \to 0$.

Probably the next exercise is too long to do in class, but I encourage you to think about it.

7. The goal here is to compute the multifractal spectrum of GMC (admitting one concentration result). Let D be a domain and $z \in D$ such that $B(z, 1) \subset D$, and h a GFF on D. For 0 < r < 1 let $B_r = B(z, 2r)$ and write

$$h = h^r + u^r,$$

where u^r is harmonic in B_r and h^r is an independent Dirichlet GFF in B_r . Let $B'_r = B(z, r)$. Let $\mathcal{M}_{\varepsilon}(\mathrm{d}x) = \varepsilon^2 \gamma^2 / 2e^{\gamma h_{\varepsilon}(x)} \mathrm{d}x$. We will admit that for $q < 4/\gamma^2$, $\mathbb{E}[\mathcal{M}_{\varepsilon}(B'_1)^q] \leq C = C(D,q)$ is uniformly bounded as a function of ε . We will also admit that $X_r = \sup_{x \in B'_r} u_r(x)$ is approximately a centered Gaussian random variable, with variance $\log(1/r)$, in the sense that for each $\lambda > 0$

$$\mathbb{E}[e^{\lambda X_r}] \asymp e^{\lambda^2 \log(1/r)/2}$$

where the implicit constants may depend on λ but are otherwise uniform on r > 0.

(i) Show that

$$\mathcal{M}_{\varepsilon}(B'_r) \leq e^{\gamma X_r} r^{2+\frac{\gamma^2}{2}} \tilde{\mathcal{M}}_{\varepsilon/r}(B'_1),$$

where $\tilde{\mathcal{M}}_{\varepsilon}$ is independent from X_r and is the approximation of a certain GMC measure on B_1 .

(ii) Deduce that

$$\mathbb{E}[\mathcal{M}(B'_r)^q] \asymp r^{\xi(q)}; \quad \xi(q) = (2 + \frac{\gamma^2}{2})q - \frac{q^2\gamma^2}{2}.$$