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1. Higher order networks structure
2. Higher-order network models and emergent geometry

3. Interplay between higher-order topology and dynamics



Lesson |
Higher order networks structure

- Background on networks and growing network models
~ Higher-order networks
1. Definitions

2. Introduction to network geometry



Networks

describe

the Interactions between the elements

of large complex systems.
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Randomness and order
Complex networks
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Universalities

e Small-world: dy=

[Watts & Strogatz 1998]

P(k)

® SCale-free: P(k) ~ k=7 for k> 1
[Barabasi & Albert 1999]
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o Modularity: Local communities of nodes
[Fortunato 2010]




Models

e Non-equilibrium growing network models:

Explanatory of emergent properties of complex networks
-BA model, BB model

e Deterministic models:
Hierarchical models

-Apollonian network, Pseudo-fractal network

e Maximum entropy ensembles:

Maximum random graphs satisfying a set of constraints
-Configuration model, Exponential Random Graphs



Growth by uniform attachment of links
GROWTH :

At every timestep we add a new node with m edges
(connected to the nodes already present in the system).

UNIFORM ATTACHMENT :

The probability II; that a new node will be connected to

node i is uniform 1 _
M = — Exponential
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[Barabasi & Albert, Physica A (1999)]



Barabasi-Albert model
GROWTH :

At every timestep we add a new node with m edges
(connected to the nodes already present in the system).

PREFERENTIAL ATTACHMENT :
The probability II; that a new node will be connected to
node | depends on the degree k; of that node
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Energies
of the nodes

Not all the nodes are the
samel

©
Let assign to each node | "@
an energy € from a "@
C—

g(e) distribution



The Bilanconi-Barabasi model

Growth:

—At each time a new node and m links are added to the network.
—To each node | we assign a energy ¢; from a g(e) distribution

Preferential attachment towards
high degree low energy nodes:

—Each node connects to the rest of the network by m links attached preferentially to
well connected, low energy nodes.

[G. Bianconi, A.-L. Barabasi 2001]



Bose-Einstein condensation
In complex networks

Scale-Free Bose-Einstein
Phase Condensate Phase

p<p, p> b

[G. Bianconi, A.-L. Barabasi 2001]



Quantum statistics
In growing networks

Scale-free network Complex Cayley tree
Bianconi-Barabasi model (2001) Bianconi (2002)
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The Complex Growing Cayley tree model

Growth:

—At each time attach a old node with n=0 to m links are added to the network and
then we set n=1.

—To each node i we assign a energy ¢; from a g(e) distribution

Attachment towards low energy nodes:

—The node i to which we attach the new “unitary cell” is chosen with probability

e (1-m)
Zje_ﬁej (1 o n])




Energy distribution of the nodes at the bulk of the growing
Cayley tree network
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Apollonian networks

Apollonian networks are formed by linking the
centers of an Apollonian sphere packing
They are scale-free and are described by the Apollonian group

[Andrade et al. PRL 2005]
[Soderberg PRA 1992]



Microcanonical and canonical
network ensembles

Microcanonical ensemble Canonical ensemble
1 N Al P G — z, 1 lz
P(G)=EH5 ki,Zaij (G) =Ze

N —
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Ensemble of network with exact Ensemble of networks given expected
degree sequence degree sequence
Configuration model Exponential Random Graph

K. Anand, G. Bianconi PRE 2009



No-equivalence of the
network ensembles

There Is no equivalence of the ensembles
as long as the number of constraints is
extensive

K. Anand, G. Bianconi PRE 2009, PRE 2010



Network Ensembles and
their non-equivalence
ERG Q

Social network literature is extensive
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Interplay between network
structure and dynamics

Network
structure

Combinatorial
Statistical

Properties

¥

Network
dynamics




Critical phenomena on scale-free networks

Scale free networks:

. lon. Cohen-Havli
Percolation wa-y ohen-Havi

Percolation threshold (k)

Scale free networks are always percolating

* Tsing model: _
g gy k=1)

Critical temperature (k)

The Ising model on scale-free networks

is always in the ferromagnetic phase



Generalized network structures

GINESTRA BIANCONI
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Going beyond the framework of simple networks
Is of fundamental importance
for understanding the relation between structure and

dynamics in complex systems



Higher-order networks



Higher-order networks

Higher-order networks are
characterising the interactions
between two or more nodes
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Network with
Hypergraph Simplicial complex triadic interactions
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Higher-order networks

* Cambridge New book

Elements

by Cambridge University Press!!

Higher Order - i .
Ne%wprks | Providing a general view of the interplay

An Introduction to between topology and dynamics

Simplicial Complexes

Ginestra Bianconi




Higher order networks
Structure

Higher order

networks

Network Combinatorial
Geometry and Statistical
properties

Network
Topology



Hyperedges

2-hyperedge 3-hyperedge 4-hyperedge

An m-hyperedge is set nodes

a = [il’ iz, i3, lm]

-it indicates the interactions between the m-nodes



Hypergraphs

A hypergraph G = (V, Eg) is defined by a set V of N nodes and a set Egy
of hyperedges, where a (m + 1)-hyperedge indicates a set of m + 1 nodes

e=1[vo,vi,va, ..., Vinl,

with generic value of 1 <m < N.
An hyperdge describes the many-body interaction between the nodes.

Every hyperedge o formed

by a subset of the nodes
can belong or not
to the hypergraph o~

Z = {[1,2],[3,4],[1,2,3],[1,3,4],[1,3,5], [3,5,6]}



Simplices

O-simplex  1-simplex 2-simplex 3-simplex

SIMPLICES

A d-dimensional simplex a (also indicated as a d-simplex «) is formed by
a set of (d + 1) interacting nodes

a=[vo,vi,V2...,v4]

It describes a many body interaction between the nodes.
It allows for a topological and a geometrical interpretation of the simplex.



Faces of a simplex

FACES

A face of a d-dimensional simplex « is a simplex @’ formed by a proper
subset of nodes of the simplex, i.e. @’ C a.

3-simplex

Faces

4 0-simplices 6 1l-simplices 4 2-simplices



Simplicial complex

SIMPLICIAL COMPLEX

A simplicial complex K is formed by a set of simplices that is closed
under the inclusion of the faces of each simplex.
The dimension d of a simplicial complex is the largest dimension of its

simplices.

If a simplex a belongs

to the simplicial complex 7%
then every face of «

must also belong to %

K = {[11,121,13], [41, 5], [6],
6 [1,21, 11,31, [1,41, [1,51, [2,3],
[3,41,13,51, 13,61, [5,6],
[1,2,3],[1,3,4],[1,3,5],[3,5,6]}



Dimension of a simplicial complex

The dimension of a simplicial complex %
IS the largest dimension of its simplices

This simplicial complex
has dimension 2

K = {[11,121, 131, [41, [5], [6],
6 [1,21, 11,31, [1,41, [1,51, [2,3],
[3,41,13,51, 13,61, [5,6],
[1,2,3],[1,3,4],[1,3,5],[3,5,6]}



Facets of a simplicial complex

FACET

A facet is a simplex of a simplicial complex that is not a face of any
other simplex. Therefore a simplicial complex is fully determined by the

sequence of its facets.

The facets of this
simplicial complex are

K ={[1,2,3],[1,3,4],[1,3,5],[3,5,6]}




Pure simplicial complex

PURE SIMPLICIAL COMPLEXES

A pure d-dimensional simplicial complex is formed by a set of d-
dimensional simplices and their faces.

Therefore pure d-dimensional simplicial complexes admit as facets only
d-dimensional simplices.

A pure d-dimensional simplicial complex
is fully determined by an
adjacency matrix tensor

with (d+1) indices.
For instance this simplicial complex
iIs determined by the tensor

1if (r,s,p) € X

P 0 otherwise



Example

A simplicial complex #'is pure
If it Is formed by d-dimensional simplices
and their faces

PURE SIMPLICIAL COMPLEX SIMPLICIAL COMPLEX
THAT IS NOT PURE



Cell complexes

“ . [fx\
(a) (b) (d)

(c)

AAE A

(e)

(a) (b) () (d) (e)




Simplicial complex skeleton

-

From a simplicial complex is possible to generate a network
salled the simplicial complex skeleton by
considering only the nodes and the links of the simplicial complex



Cligue complex

—

From a network is possible to generate a simplicial complex by
Assuming that each clique is a simplex

Note:
Poisson networks have a cliqgue number that is 3 and actually on afinite
expected number of triangles in the infinite network limit
However
Scale-free networks have a diverging clique number, therefore the clique complex
of a scale-free network has diverging dimension. (Bianconi,Marsili 2006)



Concatenation of the operations

Attention!

By concatenating the operations you are not guaranteed to return to the initial
simplicial complex

Network
Skeleton

-

Clique
complex

-




Generalized degrees

The generalized degree kg (o) of a m-face «

In a d-dimensional simplicial complex is given by the number
of d-dimensional simplices incident to the m-face «.

2

1

ky o(@) Number of triangles
Incident to the node «

k2,1(@) Number of triangles
Incident to the link «

6

[Bianconi & Rahmede (2016)]



Generalized degree

The generalized degree ky (o) of a m-face «

In a d-dimensional simplicial complex is given by the number
of d-dimensional simplices incident to the m-face «.
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6 (5,6)

e e\ B e i e i e i e LY C B




Pure simplicial complex

A simplicial complex # is pure
If it is formed by d-dimensional simplices
and their faces

A pure d-dimensional simplicial complex
is fully determined by an
adjacency matrix tensor

with (d+1) indices.
For instance this simplicial complex
iIs determined by the tensor

L {1 if (r,s,p)eH
0 otherwise



Combinatorial properties of the
generalised degrees

The generalized degrees k() of a pure d-dimensional simplicial complex
can be defined in terms of the adjacency tensor a as

k@)= Y ay

a'€@ (N)|a2a

The generalized degrees obey a nice combinatorial relation
as they are not independent of each other.
In fact for m’>m we have

1
ey (@) = Y k@),

d—m a'€@(N)|aDa
m' —m




m-connected components

A Simplicial complex




Cliqgue communities

Palla et al. Nature 2005

The m-cligue
communities are the

m-connected
components of the
cligue complex of the
network



Geometrical properties
of simplicial complexes



Incidence number

To each (d-1)-face a we associate the

Incidence number

na == kd’d_l(a) - 1

2

6
[Bianconi & Rahmede (2016)]
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Discrete manifolds

COMBINATORIAL CONDITIONS FOR DISCRETE MANIFOLDS

A discrete manifold M of dimension d is a pure simplicial complex that
satisfies the following two conditions:

* itis (d — 1)-connected;

* every two d-simplices a, @’ belonging to the simplicial complex K
either overlap on a (d — 1)-face of K, i.e. a N a’ € S4_1(K) or do not
overlap, i.e. a Na’ = 0.

e allits (d — 1)-faces e have an incidence number n, € {0, 1}.



Discrete manifolds

If n,takes only values », € {0.1}
each (d-1)-face is incident at most to two
d-dimensional simplices.

NOT A MANIFOLD MANIFOLD



Regge curvature

REGGE CURVATURE

The Regge curvature (Regge (1961)) is associated to each (d — 2)-
dimensional face @ € S;_>(M) of a discrete d dimensional manifold
M. The Regge curvature R,, for a face a € S;_»(M) is defined as

R, =

{ZN—OQ if @ € B, 42)

m—6, otherwise,

where 6,, is the sum of all dihedral angles of the d-dimensional simplices
incident to the face «.



Regge curvature and generalized degrees

If the discrete manifold is formed
by a set of geometrically identical d-simplices
the Regge curvature
Is simply related to the generalized degree of the (d-2)-faces, i.e.

2 — eokd,d_z(a) If o € %,

R =
T — Hokd’d_z(a) OtherWise,

a

where (90 Indicates the dihedral angle of each d-simplex.



Gromov hyperbolici

I~

GROMOV §-HYPERBOLICITY

A network is said to be §-hyperbolic, if it obeys the §-slim property, i.e. if
there is a 6 > O such that for any triple of nodes r, s, g connected by the
shortest paths Pyg, Py, Prq the union of the §-neighbourhood of any pair
of shortest paths, say Ns(P,s) U Ns(Ps4) includes nodes belonging to the
third path, i.e.®y4.



Examples of 6-hyperbolic networks

Tree NGF



Graph Laplacian

The graph Laplacian matrix is defined as

L= 5zjki — 4

The graph Laplacian is a semi-positive matrix that in a
connected network has eigenvalues

The Laplacian is key for describing diffusion processes and
the Kuramoto model on networks and constitutes a natural
link between topology and dynamics

The Fiedler eigenvalue /12 is also called spectral gap



Spectral dimension

In geometrical network models
Ay = 0for N -

and we say that the spectral gap “closes”

If the density of eigenvalues p(4) scales like

p(A) ~ 1% for A <« 1

ds is called the spectral dimension



Square d-dimensional
lattice

The eigenvalues 4 of the Laplacian

of a d-dimensional lattice are given by
—_ ) 2
U= 4 sin“(k;/2) ~ | K|
i€{1,2,3,....d}

where k is the wave-number characterising the eigenvectors of the Laplacian (Fourier basis)
with




Conclusions

e Simplicial complexes capture the many-body interactions
of complex systems and reveal the hidden geometry and
topology of data

e The hyperbolicity of a network can be defined using

Gromov delta-hyperbolicity

e A finite spectral dimension is a fundamental property of
simplicial complexes with intrinsic geometrical character
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Emergent community structure

Emergent geometry and preferential attachment

Network Geometry with Flavor (NGF)

1. Emergent hyperbolic geometry and quantum statistics
2. Statistical properties depending on dimension

4. Topological phase transitions in NGF with fithess



Simplicial complex models
of arbitrary dimension

e e e rer T
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2 3 4 5

CODES AVAILABLE AT GITHUB O ginestrab




Emergent properties
of simplicial complexes



Emergence of communities



Triadic closure

Starting from a finite connected network with ny,>2 nodes

(1) GROWTH : At every timestep we add a new node with 2 edges
(connected to the nodes already present in the system).

(2) TRIADIC CLOSURE: The first link is attached to a random
node, the second link with probability p closes a triangle and with
probability 1-p is connected randomly

random

2
>

<---:--.
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Emergence of communities

G. Bianconi et al.
PRE (2014)



Emergent geometry



Network Topology and Geometry
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Is the network geometry of complex systems
an a priori pre-requisite
for the network evolution
or Is an emergent phenomenon of the
network dynamics?



Emergent geometry

In the framework of emergent geometry
networks with a geometry
are generated
by non-equilibrium dynamics
that 1s purely combinatorial,
I.e. IS Independent of the network geometry



Discrete and combinatorial space-time

My own view is that ultimately physical laws
should find their most natural expression
In terms of essentially combinatorial principles...
Thus, in accordance with such a view,
should emerge some form
of
discrete or combinatorial spacetime.

Roger Penrose
In
On the Nature of Quantum Geometry



Motivation

* Which is the basic mechanism for emergent geometry?

 What are the combinatorial/statistical properties of
emergent geometry?

 What are the geometrical and topological properties
that emerge?



Emergent geometry
In 2-dimensional
simplicial complexes



Emergent network geometry

The model describes
the underlying structure of a simplicial complex
constructed by gluing together triangles by a
non-equilibrium dynamics.
Every link Is incident to
at most k triangles with k>1.

Wu, Menichetti, Rahmede, Bianconi, Scientific Reports (2015)



Saturated and unsaturated links

Saturated link
p13=0




Process (a)

We choose alink (i) with probability 1, =

and glue a new triangle the link zr,sprs




Process (b)

We choose a two adjacent unsaturated links
and we add the link between the nodes at distance 2
and all triangles that this link closes
as long that this is allowed.

(b)




The model

Starting from an initial triangle,
At each time

eprocess (a) takes place
and

eprocess (b) takes place
with probability p<1.



Discrete Manifolds

P A discrete manifold of
O ANY - PYO - A dimension d=2 is a

"\ O s A simplicial complex
o I\ T ;;“}“ formed by triangles

;3- i Az’ such that every link is
f“ L <P, Incident to at most two

B |\ =sg.-aﬁ,_.;é;:_:,},‘, *  triangles.

* e e |\ N Therefore the emergent

Wi e ~'='e,\.‘_,';'-~;';'§‘_,, network geometry for our

e AN model with m=2 is a
o discrete 2d manifold.



Scale-free networks

In the case m = oo
a scale-free network
with high clustering,
significant community
structure, finite
spectral dimension is
generated.

Planar for p=0.




Properties of emergent network
geometries

Small world
Finite clustering
High modularity
eFinite spectral dimension
Which are properties of many
real network datasets.



Properties of real datasets

Datasets N B (€) C M dg
1L8W (protein) 294 1608 | 5.09 | 0.52 | 0.643 | 1.95
1PHP (protein) 219 1095 | 4.31 | 0.54 | 0.638 | 2.02
1AOP chain A (protein) 265 1363 | 4.31 | 0.53 | 0.644 | 2.01
1AOP chain B (protein) | 390 2100 | 494 | 0.54 | 0.685 | 2.03
Brain-(coactivation) 4° 638 | 18625 | 2.21 | 0.384 | 0.426 | 4.25
Internet 46 22963 | 48436 | 3.8 | 0.35 | 0.652 | 5.083
Power-grid®® 4941 6594 19 | 0.11 [ 0.933 | 2.01
Add Health (school61)*” | 1743 | 4419 6 0.22 | 0.741 | 2.97




Network Geometry with Flavor



Network Geometry with Flavor

2 NETWORK GEOMETRY WITH FLAVOR (NEUTRAL MODEL) [29]

At time ¢ = 1 the NGF is formed by a single d-dimensional simplex. At
each time ¢ > 1 the model evolves according to the following principles.

4 * GROWTH : At every timestep a new d-dimensional simplex formed
by one new node and an existing (d — 1)-face is added to the simplicial
complex.

» ATTACHMENT: The probability that the new d-simplex is glued to a
3 (d — 1)-dimensional face @ depends on the flavor s € {—1,0, 1} and is
given by

H[s] . (1 =F sna)

@ =3 A+ sna) 5.5

Bianconi & Rahmede (2016)



Attachment probability

The attachment probability to (d-1)-dimensional faces is given by

1 — if s =—1
H[S] (1 + Sna) 1 na -fS O
Yy (1 +sny,) ' L

a d,d_l(a) |f S = 1

For s=-1 we obtain discrete manifolds n,= 0,1
For s=0 we have uniform attachment , = (),1,2,3.4...

For s=1 we have a generalised preferential attachment 1, = 0,1,2,3,4...



Pachner move 1-d for NGF with s=-1




Emergence of preferential attachment

The probability of attaching a d-dimensional simplex
to a 5 -dimensional face is given by

-

2—k

(d— 1)t

d=o0o—-14+s)k+1-s5
(d+ s)t

ford+s—-6—-1=-1

ford+s—6-1>0

Therefore for d — 6 > 1 — s we observe a generalised preferential attachment
as a consequence of the geometry and dimensionality of of the NGF



Effective preferential attachment In
d=3 s=-1

Node | has generalized degree 3 Node | has generalized degree 4
Node i isincident to 5 faces with n=0 Node i is incident to 6 faces with n=0



Dimension d=1

Manifold Uniform Preferential
attachment attachment
X
w o kS
e o % A
- %‘
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Chalin Exponential BA model



Dimension d=2

Manifold Uniform Preferential
attachment attachment

Exponential Scale-free Scale-free



Dimension d=3

Manifold Uniform Preferential
attachment attachment

Scale-free Scale-free Scale-free



Degree distribution

For d+s=1
PBl(k) = <L>k_d 1
d > \d+1 d+1
For d+s>1
PUl(jk) = d+s I'll +Qd+s)/(d+s—1))] [k—d+d/I(d+s—1)]
47 2d+s  Tldid+s-D]  Tk—d+1+Qd+s)/d+s— 1)

NGF are always scale-free for d>1-s

~or s=1 NGF are always scale free

-or s=0 and d>1 the NGF are scale-free
—or s=-1 and d>2 the NGF are scale-free
[Bianconi & Rahmede (2016)]




Degree distribution of NGF
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Generalized degree distribution

Flavor s =—1 s=0 s=1

m=d-1 Bimodal Exponential Power-law
m=d-?2 Exponential Power-law Power-law
m<d-3 Power-law Power-law Power-law

The generalized degree distribution depends
on the flavor s and on the dimension m of the faces

[Bianconi & Rahmede (2016)]
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NGF an hyperbolic network geometry

NGF for flavor s=-1 are discrete hyperbolic
manifolds

NGF of any flavor and any dimension are
6-hyperbolic networks

[with 6=1]



What is a “natural” random geometry?

« Random graph

(fully connected network -trivial/no geometry- where some random
links are selected)

» A percolation cluster in 2d

(square lattice -known given geometry- where only few links are
preserved )

e A growing cluster on -emergent- hyperbolic lattice
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Planar projection of the d=3 NGF with s=-1




The relation to
Trees

Line graph of the NGF



Growing weighted simplicial complex

We considered a weighted
network model in which we
assume:

 that each new node can attach
m simplices to the rest of
network

e that simplices can increase
their weight in time

We found deep correlations
between the weights of the
simplices and the network
topology.

Courtney Bianconi (2017)



NGF cell complexes
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Modularity of NGFs

Network Geometry with Flavor
displays emergent community

Simplices Hypercubes Orthoplexes
1 1 1
0.9 0.95 {1  0.95
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0.5 0.8 0.8
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Laplacian spectrum of NGFs

s=-1
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Spectral dimension of NGF
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Energies
of the nodes

Not all the nodes are the
samel

©
Let assign to each node | "@
an energy € from a "@
C—

g(e) distribution



Energy of the m-faces

ENERGY AND FITNESS OF THE FACES OF THE NGF SIMPLICIAL
COMPLEXES [29]

The energy &, of the m-dimensional face @ indicates its intrinsic (non-
topological) properties. The energy &, of a node r is a non negative
number drawn from a given distribution g(g). The energy of a face @ of
dimension m > 0 is the sum of the energies of the nodes belonging to it,
i.e.

Ea = ) Er. (5.14)

rCa

The fitness associated to a m-dimensional face « describes the rate at
which the face increases its generalized degree and is given by

Ny = € P (5.15)

where B > 0 is a parameter called inverse temperature. For = 0 all
the fitnesses are the same, and equal to one, while for § > 1 the small
difference in energy leads to big differences in the fitnesses of the faces.

Energy of a link

Ene

)

@ &1+ &

rgy of a triangle

E1 T & T &

=)



Network Geometry with Flavor

bl =

e Pea (1 + sn)

> ePe (1+ sny)

NETWORK GEOMETRY WITH FLAVOR (WITH FITNESS) [29]

At time ¢ = 1 the simplicial complex is formed by a single d-dimensional
simplex. Each node r of this simplex has energy &[,; drawn from a g(&)
distribution. The energies of the higher-dimensional faces are calculated
according to Eq. (5.14).

* GROWTH : At every timestep a new d-dimensional simplex formed
by one new node and an existing (d — 1)-face is added to the simplicial
complex. Each new node r has energy &[] drawn from a g(¢) distribu-
tion. The energies of the new higher-dimensional faces are calculated
according to Eq. (5.14).

* ATTACHMENT: At every timestep the probability that the new d-
simplex is connected to the existing (d — 1)-dimensional face @ depends
on the flavor s € {—1,0, 1} and on the inverse temperature B > 0 and is
given by

—Béa
[s] e (1 + sng)
I," = . 5.16
C Y e P (1 + sngy) (5.16)
For g = 0 the NGF (with fitness of the m-faces) reduces to the neutral

NGF model, i.e. HE I reduces to Eq. (5.6).

Bianconi & Rahmede (2016)



The average of the generalized degree
of the NGF over o-faces of energy ¢

<[kd,m(a) —1]e, = 8>

follows
a regular pattern

Flavor s=-1 s=0 s=1

m=d-1 Fermi-Dirac Boltzmann Bose-Einstein
m=d-?2 Boltzmann Bose-Einstein Bose-Einstein
m<d-3 Bose-Einstein Bose-Einstein Bose-Einstein




Manifolds 1n d=3

In NGF with s=-1 and d=3
also called
Complex Quantum Network Manifolds
the average of the generalized degree follow
the Fermi-Dirac, Boltzmann and Bose-Einstein
distribution
respectively for
triangular faces, links and nodes
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Higher-order structure and dynamics

Higher -order
Simplicial Simplicial

Combinatorial
Statistical T |
Properties opology

Higher-order
dynamics




The role of dimensionality
In neuronal dynamics
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Kuramoto model on a
network

Given a network of N nodes
defined by an adjacency matrix a
we assign to each node a phase obeying

N
éi= a)i+0-2aijSin <9]_91>

J=1

where the internal frequencies of the nodes
are drawn randomly from

@~ N(Q,1)

and the coupling constant is ¢



Order parameter for
synchronization

We consider the global order parameter R

1.0
1 N 0.8
k= | 2
N |4 0.6
i=1
o
. 0.4
which indicates the
0.2
synchronisation transition
0.0
0 1

R~0 foro <o,
R finite forc > 0.




NGFs spectral density

0 - ' ' ‘
10% 107 102 10 1 10
A

A geometric network displays a
spectral dimension if the
density of eigenvalues
of the Graph Laplacian scales as

p(A) ~ A% for ) <« 1

We consider the cumulative density
of eigenvalues

p(A) ~ A% for A < 1

0

(e

" b

1

il
00

Spectral dimension
of geometric networks and
synchronisation

D=3

100 300 500

t

Millan et al. Sci. Rep. (2018); Millan et al. PRE (2019)



Conclusions

Non-equilibrium models of simplicial complex is a
fundamental approach to address the problem of emergent
geometry and emergent community structure

NGF display statistical properties depending on the
dimension of the faces that are considered

NGF display a dependence of their spectral dimension with
the nature and dimension of the building block from which
they are formed

NGF provide an ideal tool to study the interplay between
network geometry and dynamics
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Network Geometry with Flavor

Consider pure cell complexes formed by gluing identical regular
polytopes along d-1 faces

« Starting from a single d-dimensional regular polytope

(1)GROWTH :

At every timestep we add a new d-dimension polytope
glued to an existing (d-1)-face).

(2) ATTACHMENT :

The probability that the new polytope will be connected to a face «
depends on the flavor s=-1,0,1 and is given by

i1 (1 +sn,)
© Y (I +sny)




Combinatorial properties
of simplicial complexes



Configuration model of simplicial
complexes

For background on Maximum Entropy Models of Networks see LTTC Course
https://www.youtube.com/channel/lUCsHAVdCUSXLaBYDXoINYZvg



Entropy of ensembles of
simplicial complexes

To every simplicial complex we associate a probability
P(A#)

The entropy of the ensemble of simplicial complexes is given by

S=— Z P(F)In P(K)
V4



Constraints

We might consider simplicial complex ensemble
with given
Expected generalized degrees of the nodes
or
Given generalized degrees of the nodes

Soft constraints Hard constraints

Y P(%) [Z aa] = k(i) Z Ay = Kq0(1)
K

ai aDi

[Courtney & Bianconi (2015)]



Maximum entropy ensembles

The maximum entropy ensembles
of simplicial complexes
are caracterized by a probability measure given by

Soft constraints Hard constraints

1
P(%) = Ee_zi’liza:)iaa P(%) (kd O(Z) Z >

[Courtney & Bianconi (2015)]



Marginal

The probability of having a simplex pu is given by

e _ zrcﬂ j’l‘

l? —
Yl e Tt

Where the Lagrangian multipliers are fixed by the constraint

e_ ZrCcc ﬂ“r

I_Cd,o(i) = Zpa = Z

adi adi

A

r

1+ e Zice

[Courtney & Bianconi (2015)]



Structural cutoff

The simplified formula for p,,

Py

d!

Hrcﬂ kao(r)

(¢kgo()N)"

Is valid in presence of the structural cutoff

kd,o(r) <K With K = (

[Courtney & Bianconi (2015)]

(kg o(r))N

d!

>1/(d+1)



Marginal probabillity

The marginal probability of a d-dimensional simplex y is given by

e_ ZVC,M A’I"

p =
Yol e Tt

In presence of a maximum degree K (the structural cutoff)
the marginal can be written as

H,,Cﬂ kqo(r)
(¢kyo(rIN)

where

K= [«kd,o(r»N)d] v

Pu=d! d!

[Courtney & Bianconi (2015)]



Case d=1

The marginal probability of a 1-dimensional simplex u is given by

pl = o
S I

In presence of a maximum degree K (the structural cutoff)
the marginal can be written as

b = kg oDk 0())
! (¢kgo()N)

172

where K = |({kyo()N)|

[Courtney & Bianconi (2015)]



Case d=2

The marginal probability of a 2-dimensional simplex u is given by

In presence of a maximum degree K (the structural cutoff)
the marginal can be written as

Pir =2 kd’o(i)kd’o(j)kd’g(r) where X — ((kyo(rIN)Y
(¢kgo(r))N) 2173

[Courtney & Bianconi (2015)]



Ensemble of simplicial complexes

A 6
1. R s
e ¥
2./’ 6 \\.4
3
B 6
1. ®
@%@ - Given the generalized degree
‘ ,----..“.“ of the nodes there are in general
2 = 4 . . L
€ multiple ways to realize the simplicial
3
complex.
D E e The information encoded
6 . o
1 ® . in the constraints is captured by the
LN entropy of the ensemble
," //' \’)':\ H 1
20 e,
@
3

[Courtney & Bianconi (2015)]



Construction of a
random simplicial complex

CODE AVAILABLE AT GITHUB O ginestrab
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Entropy of network ensembles

Entropy of a canonical network ensemble with expected
generalized degree sequence

S== ¥ |pinp,+ 1 -poinct - p,)|
HES (N)

Entropy of a microcanonical network ensemble with given
generalized degree sequence of the nodes is given by

(K yo(r))ese~Raot?

N
>S=lnN/ =S-Q Q=-)In

r=1

kyo(r)!

Where ' Is the total number of simplicial complexes in the
ensemble



Asymptotic expression
for the number
of simplicial complexes
with given
generalized degrees of the nodes

N~

(N D ( d! < (k2) >d+1\

[ ot @OTED 2| 2@+ DN\ @ )

[Courtney & Bianconi (2015)]



From model of pure simplicial
complexes
to multiplex hypergraph

[Sun & Bianconi (2021)]



Multiplex hypergraphs can sustain
non-trivial cooperative processes
leading to discontinuous transitions

- <
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[Sun & Bianconi (2021)]



