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Lesson I: 
Higher order networks structure

Background on networks and growing network models 

Higher-order networks 

1. Definitions 

2. Introduction to network geometry



describe 

 the interactions between the elements  

of large complex systems.
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Universalities

• Small-world: 
  [Watts & Strogatz 1998] 

• Scale-free: 
[Barabasi & Albert 1999] 

• Modularity: Local communities of nodes 
[Fortunato 2010] 

€ 

€ 

dH = ∞

P(k) ∼ k−γ for k ≫ 1
with γ ∈ (2,3]

⟨k⟩ → const ⟨k2⟩ → ∞
for N → ∞



Models

• Non-equilibrium growing network models: 
 Explanatory of emergent properties of complex networks 
 -BA model, BB model  

• Deterministic models: 
Hierarchical models 

 -Apollonian network, Pseudo-fractal network 
• Maximum entropy ensembles: 
 Maximum random graphs satisfying a set of constraints 
  -Configuration model, Exponential Random Graphs 



 GROWTH :                                                                  

 At every timestep we add a new node with m edges 
(connected to the nodes already present in the system). 

 UNIFORM ATTACHMENT :                              
The probability Πi that a new node will be connected to 
node i is uniform 

[Barabási & Albert, Physica A (1999)]

Exponential

Growth by uniform attachment of links

Πi =
1
N



Barabasi-Albert model
 GROWTH :                                                                 

 At every timestep we add a new node with m edges 
(connected to the nodes already present in the system). 

 PREFERENTIAL ATTACHMENT :                              
The probability Πi that a new node will be connected to 
node i depends on the degree ki of that node

[Barabási et al. Science (1999)]

P(k) ~k-3

Πi =
ki

∑j kj



Energies 
of the nodes 

ε5

Not all the nodes are the 
same! 

Let assign to each node i  

an energy ε from a  

g(ε) distribution 

ε1

ε2ε3

ε4

ε5

ε6



The Bianconi-Barabasi model

Growth:    
–At  each time a new node and m links are added to the network. 
–To each node i we assign a energy  εi  from a g(ε) distribution 

Preferential attachment towards  
high degree low energy nodes: 

–Each node connects to the rest  of the network by m links attached preferentially to 
well connected, low energy nodes. 

ε2 ε3

ε1

ε4
ε5

ε6

[G. Bianconi, A.-L. Barabási 2001]

Πi =
e−βϵiki

∑j e−βϵjkj



  Scale-Free       Bose-Einstein  
    Phase                  Condensate Phase

Bose-Einstein condensation  
in complex networks

[G. Bianconi, A.-L. Barabási 2001]

β < βc
β > βc



Quantum statistics  
in growing networks

Scale-free network       Complex Cayley tree 
Bianconi-Barabasi model (2001)                Bianconi (2002)

Bose Einstein statistics   Fermi statistics



The Complex Growing Cayley tree model 

Growth:    
–At  each time attach a old node with ni=0 to  m links are added to the network and 
then we set ni=1.
–To each node i we assign a energy  εi  from a g(ε) distribution

Attachment towards  low energy nodes: 
–The node i to which we attach the new “unitary cell” is chosen with probability

ε1

  

ε2
ε3

ε5

ε4

ε7

ε6

Πi =
e−βϵi (1 − ni)

∑j e−βϵj (1 − nj)



Energy distribution of the nodes at the bulk of the growing 
Cayley tree network 
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Apollonian networks

[Andrade et al. PRL 2005] 
[Soderberg PRA 1992] 

Apollonian networks are formed by linking the  
centers of an Apollonian sphere packing 

They are scale-free and are described by the Apollonian group



Microcanonical and canonical  
network ensembles

Microcanonical ensemble           Canonical ensemble  

Ensemble of network with exact       Ensemble of networks given expected  
 degree sequence         degree sequence

Configuration model       Exponential Random Graph

P(G) =
1
Z

N

∏
i=1

δ ki,
N

∑
j=1

aij
P(G) =

1
Z

e−∑N
i=1 λi ∑

N
j=1 aij

K. Anand, G. Bianconi PRE 2009



There is no equivalence of the ensembles 
as long as the number of constraints is 

extensive

K. Anand, G. Bianconi PRE 2009, PRE 2010

Σ = S − Ω

No-equivalence of the  
network ensembles



Network Ensembles and  
their non-equivalence
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THE STATISTICAL EVALUATION OF
SOCIAL NETWORK DYNAMICS

Tom A. B. Snijders*

A class of statistical models is proposed for longitudinal network
data. The dependent variable is the changing (or evolving) rela-
tion network, represented by two or more observations of a directed
graph with a fixed set of actors. The network evolution is modeled
as the consequence of the actors making new choices, or withdraw-
ing existing choices, on the basis of functions, with fixed and ran-
dom components, that the actors try to maximize. Individual and
dyadic exogenous variables can be used as covariates. The change
in the network is modeled as the stochastic result of network effects
(reciprocity, transitivity, etc.) and these covariates. The existing
network structure is a dynamic constraint for the evolution of the
structure itself. The models are continuous-time Markov chain mod-
els that can be implemented as simulation models. The model
parameters are estimated from observed data. For estimating and
testing these models, statistical procedures are proposed that are
based on the method of moments. The statistical procedures are
implemented using a stochastic approximation algorithm based on
computer simulations of the network evolution process.

1. INTRODUCTION

Social networks represent relations (e.g., friendship, esteem, collabora-
tion, etc.) between actors (e.g., individuals, companies, etc.). This paper
is concerned with network data structures in which all relationships within
a given set of n actors are considered. Such a network can be represented
by an n ! n matrix x " ~xij !, where xij represents the relation directed

*University of Groningen, The Netherlands
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Statistical mechanics of networks

Juyong Park and M. E. J. Newman
Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48109-1120, USA

(Received 2 June 2004; revised manuscript received 20 August 2004; published 7 December 2004)

We study the family of network models derived by requiring the expected properties of a graph ensemble to
match a given set of measurements of a real-world network, while maximizing the entropy of the ensemble.
Models of this type play the same role in the study of networks as is played by the Boltzmann distribution in
classical statistical mechanics; they offer the best prediction of network properties subject to the constraints
imposed by a given set of observations. We give exact solutions of models within this class that incorporate
arbitrary degree distributions and arbitrary but independent edge probabilities. We also discuss some more
complex examples with correlated edges that can be solved approximately or exactly by adapting various
familiar methods, including mean-field theory, perturbation theory, and saddle-point expansions.

DOI: 10.1103/PhysRevE.70.066117 PACS number(s): 89.75.Hc, 05.20.!y, 87.23.Ge, 89.20.Hh

I. INTRODUCTION

The last few years have seen the publication of a large
volume of work in the physics literature on networks of vari-
ous kinds, particularly computer and information networks
like the internet and world wide web, biological networks
such as food webs and metabolic networks, and social net-
works [1–4]. This work has been divided between empirical
studies of the structure of particular networks and theoretical
studies focused largely on the creation of mathematical and
computational models. The construction of network models
is the topic of this paper.

Models of networks can help us to understand the impor-
tant features of network structure and the interplay of struc-
ture with processes that take place on networks, such as the
flow of traffic on the internet or the spread of a disease over
a social network. Most network models studied in the phys-
ics community are of a practical sort. Typically one wishes to
create a network that displays some feature or features ob-
served in empirical studies. The principal approach is to list
possible mechanisms that might be responsible for creating
those features and then make a model incorporating some or
all of those mechanisms. One then either examines the net-
works produced by the model for rewarding similarity to the
real-world systems they are supposed to mimic, or uses them
as a substrate for further modeling, for example of traffic
flow or disease spread. Classic examples of models of this
kind are the small-world model [5] and the many different
preferential attachment models [6–8], which model network
transitivity and power-law degree distributions respectively.

However, there is another possible approach to the mod-
eling of networks, which has been pursued comparatively
little so far. An instructive analogy can be made here with
theories of gases. There are (at least) two different general
theories of the properties of gases. Kinetic theory explicitly
models collections of individual atoms, their motions and
collisions, and attempts to calculate overall properties of the
resulting system from basic mechanical principles. Pressure,
for instance, is calculated from the mean momentum trans-
ferred to the walls of a container by bombarding atoms. Ki-
netic theory is well motivated, easy to understand, and makes
good sense to physicists and laymen alike. However, kinetic

theory rapidly becomes complex and difficult to use if we
attempt to make it realistic by the inclusion of accurate in-
termolecular potentials and similar features. In practice, ki-
netic theory models either make only rather rough and un-
controlled predictions, or rely on large-scale computer
simulation to achieve accuracy.

If one wants a good calculational tool for studying the
properties of gases, therefore, one does not use kinetic
theory. Instead, one uses statistical mechanics. Although cer-
tainly less intuitive, statistical mechanics is based on rigor-
ous probabilistic arguments and gives accurate and reliable
answers for an enormous range of problems, including many,
such as problems concerning solids, for which kinetic theory
is inapplicable. Equilibrium statistical mechanics provides a
general framework for reasoning and a powerful calcula-
tional tool for very many problems in statistical physics.

We argue that the current commonly used models of net-
works are akin to kinetic theory. They posit plausible mecha-
nisms or dynamics, and produce results in qualitative agree-
ment with reality, at least in some respects. They are easy to
understand and give us good physical insight. However, like
kinetic theory, they do not make quantitatively accurate pre-
dictions and provide no overall framework for modeling,
each model instead concentrating on explaining one or a few
features of the system of interest.

In this paper we discuss exponential random graphs,
which are to networks as statistical mechanics is to the study
of gases—a well-founded general theory with true predictive
power. These advantages come at a price: exponential ran-
dom graphs are both mathematically and conceptually so-
phisticated, and their understanding demands some effort of
the reader. We believe this effort to be more than worthwhile,
however. Theoretical techniques based on solid statistical
foundations and capable of quantitative predictions have
been of extraordinary value in the study of fluid, solid state,
and other physical systems, and there is no reason to think
they will be any less valuable for networks.

We are by no means the first authors to study exponential
random graphs, although our approach is different from that
taken by others. Exponential random graphs were first pro-
posed in the early 1980s by Holland and Leinhardt [9], build-
ing on statistical foundations laid by Besag [10]. Substantial
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Entropies of complex networks with hierarchically constrained topologies
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The entropy of a hierarchical network topology in an ensemble of sparse random networks, with “hidden
variables” associated with its nodes, is the log-likelihood that a given network topology is present in the chosen
ensemble. We obtain a general formula for this entropy, which has a clear interpretation in some simple
limiting cases. The results provide keys with which to solve the general problem of “fitting” a given network
with an appropriate ensemble of random networks.

DOI: 10.1103/PhysRevE.78.016114 PACS number!s": 89.75.Hc, 89.75.Fb, 75.10.Nr

I. INTRODUCTION

Entropy is a key concept in information theory #1$ and in
the theory of dynamical systems #2$. In information theory,
the problem of inference of a probability distribution on the
basis of a finite number of independent observations is usu-
ally addressed using the maximum-likelihood principle or
via the minimization of the Kullback-Leibler distance be-
tween a given !empirical" distribution and an inferred one.
Recently, several studies have extended the tools of informa-
tion theory along these lines in order to measure the perfor-
mance of filtering procedures of correlation matrices in the
case of multivariate data #3,4$. In the framework of graph
theory large deviations of the ensemble of random Erdös and
Renyi graphs where derived by studying the free energies of
statistical mechanics models defined on them #5,6$. There is
now increased interest, in the community of complex net-
works #7–9$, in the definition of entropy measures that are
related to the networks’ topological structure #10$ or to dif-
fusion processes defined on them #11$. The inference prob-
lem applied to complex networks can be formulated as the
identification of the ensemble of networks which retains the
essential structural characteristics and complexity of a given
real network realization. The identification of this ensemble
is an active field of research. One aims to fit a given specific
network with a suitable network ensemble that retains some
information on its structure. Newman and Leicht have pro-
posed this approach to find the community structure in a
given network #12$. Later, this method was extended to de-
fine ensembles of networks that have other topological char-
acteristics in common with the real network, such as the
degree sequence and/or the degree correlations. As we add
further features that a desired ensemble is to have in common
with a given real network, we effectively consider ensembles
with decreasing cardinality. The cardinality of an ensemble
of networks with a given topology has attracted the attention
of the graph theory community #13–15$ and more recently
also of the statistical mechanics community #10$.

In this paper we evaluate the entropy of a given hierarchi-
cal topology in a “canonical” or “hidden variable” ensemble;
i.e., we calculate the normalized logarithm of the probability
that a given topology appears in this ensemble. By hierarchi-

cal topology we will mean the set of the generalized degrees
of the nodes, defined as the sequence ki= !ki

1 ,ki
2 , . . . ,ki

L" of
the number of nodes at distance 1 ,2 , . . . ,L from the node i.
The canonical or hidden variable #16–20$ ensembles are a
generalization of the G!N ,p" ensemble for heterogeneous
nodes. The hetereogeneity of the nodes is described in terms
of some hidden variables xi, defined on each node i of the
network, and the probability pij of a link between a node i
and a node j is not p as in G!N ,p", but it is a general func-
tion Q!xi ,xj" of the hidden variables at i and j nodes. These
ensembles correspond to networks which satisfy soft con-
straints; for example, the degree of a node is not fixed, but
only the average degree of each node is fixed, allowing for
Poissonian fluctuations.

We derive a general formula for the entropy of a given
topology in a canonical ensemble using ideas and methods
from the study of diluted combinatorial optimization prob-
lems and statistical mechanical systems on sparse networks
#21–41$. In the simple case where we study the likelihood of
a degree distribution of a network belonging to the chosen
ensemble the entropy is found to be the Kullback-Leibler
distance between the probability distribution of the degrees
and the expected probability of the typical topology of the
network.

The paper is structured as follows: in Sec. II we introduce
the definition of the problem, in Sec. III we provide the
asymptotic entropy expression of the network topology in a
given ensemble, in Sec. IV we study the form that the en-
tropy takes in special and relevant cases, and the conclusions
are presented in Sec. V.

II. FORMULATION OF THE PROBLEM
AND DEFINITIONS

To model the essential properties of a real network it is
useful to think of it as an instance of an ensemble of net-
works. The ensemble can be either “microcanonical” or “ca-
nonical” depending on whether the networks in the ensemble
are subject to hard or soft constraints. The main example of
what we call a microcanonical ensemble is G!N ,M" where
the number of links is fixed to be exactly M, and the main
example of a canonical ensemble is G!N ,p" in which only
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ABSTRACT 
We propose a random graph model which is a special 

case of sparse random graphs with given degree sequences. 
This model involves only a small number of parameters, 
called logsize and log-log growth rate. These parameters 
capture some universal characteristics of massive graphs. 
Furthermore, from these parameters, various properties of 
the graph can be derived. For example, for certain ranges 
of the parameters, we will compute the expected distribu- 
tion of the sizes of the connected components which almost 
surely occur with high probability. We will illustrate the 
consistency of our model with the behavior of some massive 
graphs derived from data in telecommunications. We will 
also discuss the threshold function, the giant component, 
and the evolution of random graphs in this model. 

1. INTRODUCTION 
Is the World Wide Web completely connected? If not, 

how big is the largest component, the second largest com- 
ponent, etc.? Anyone who has "surfed" the Web for any 
length of time will undoubtedly come away feeling that if 
there are disconnected components at all, then they must 
be small and few in number. Is the Web too large, dynamic 
and structureless to answer these questions? 

Probably yes, if the answers for the sizes of the largest 
components are required to be exact. Recently, however, 
some structure of the Web has come to light which may 
enable us to describe graph properties of the Web qualita- 
tively. Kumar et al. [11; 12] and Kleinberg et al. [10] have 
measured the degree sequences of the Web and shown that 
it is well approximated by a power law distribution. That  is, 
the number of nodes, y, of a given degree x is proportional 
to x -~ for some constant/~ > 0. This was reported indepen- 
dently by Albert, Barab£si and Jeong in [3; 5; 6]. The power 
law distribution of the degree sequence appears to be a very 
robust property of the Web despite its dynamic nature. In 
fact, the power law distribution of the degree sequence may 
be a ubiquitous characteristic, applying to many massive 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
STOC 2000 Portland Oregon USA 
Copyright ACM 2000 1-58113-184-.4/00/5...$5.00 

real world graphs. Indeed, Abello et al. [1] have shown that 
the degree sequence of so called call graphs is nicely approx- 
imated by a power law distribution. Call graphs are graphs 
of calls handled by some subset of telephony carriers for a 
specific time period. In addition, Faloutsos, et al. [9] have 
shown that the degree sequence of the Internet router graph 
also follows a power law. 

Just as many other real world processes have been ef- 
fectively modeled by appropriate random models, in this 
paper we propose a parsimonious random graph model for 
graphs with a power law degree sequence. We then derive 
connectivity results which hold with high probability in var- 
ious regimes of our parameters. And finally, we compare the 
results from the model with the exact connectivity structure 
for some call graphs computed by Abello et al. [1]. 

1.1 Power -Law R a n d o m  Graphs  
The study of random graphs dates back to the work of 

Erd6s and R~nyi whose seminal papers [7; 8] laid the foun- 
dation for the theory of random graphs. There are three 
standard models for what we will call in this paper uniform 
random graphs [4]. Each has two parameters. One param- 
eters controls the number of nodes in the graph and one 
controls the density, or number of edges. For example, the 
random graph model G(n, m) assigns uniform probability to 
all graphs with n nodes and m edges while in the random 
graph model ~(n,p)  each edge in an n node graph is chosen 
with probability p. 

Our power law random graph model also has two pa- 
rameters. The two parameters only roughly delineate the 
size and density but they are natural and convenient for 
describing a power law degree sequence. The power law 
random graph model P (a ,  fl) is described as follows. Let y 
be the number of nodes with degree x. P(a, fl) assigns uni- 
form probability to all graphs with y = e~/x ~ (where self 
loops are allowed). Note that a is the intercept and fl is the 
(negative) slope when the degree sequence is plotted on a 
log-log scale. 

We remark that there is also an alternative power law 
random graph model analogous to the uniform graph model 
~(n,p).  Instead of having a fixed degree sequence, the ran- 
dom graph has an expected degree sequence distribution. 
The two models are basically asymptotically equivalent, sub- 
ject to bounding error estimates of the variances (which will 
be further described in a subsequent paper). 

1.2 Our Results 
Just as for the uniform random graph model where 

graph properties are studied for certain regimes of the den- 
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Entropy measures for networks: Toward an information theory of complex topologies
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The quantification of the complexity of networks is, today, a fundamental problem in the physics of complex
systems. A possible roadmap to solve the problem is via extending key concepts of information theory to
networks. In this Rapid Communication we propose how to define the Shannon entropy of a network ensemble
and how it relates to the Gibbs and von Neumann entropies of network ensembles. The quantities we introduce
here will play a crucial role for the formulation of null models of networks through maximum-entropy argu-
ments and will contribute to inference problems emerging in the field of complex networks.

DOI: 10.1103/PhysRevE.80.045102 PACS number!s": 89.75.Hc, 89.75.Fb, 89.75.Da

I. INTRODUCTION

Complex networks #1–4$ are found to characterize the
underlying structure of many biological, social, and techno-
logical systems. Following ten years of active research in the
field of complex networks, the state of the art includes a deep
understanding of their evolution #1$, an unveiling of the rich
interplay between network topology and dynamics #3$, and a
description of networks through structural characteristics
#2,4$. Nevertheless, we still lack the means to quantify, how
complex is a complex network. In order to answer this ques-
tion we need a new theory of information of complex net-
works. This theory will contribute to solving many challeng-
ing inference problems in the field #4–6$. By providing an
evaluation of the information encoded in complex networks,
this will resolve one of the outstanding problems in the sta-
tistical mechanics of complex systems.

In information theory #7$ entropy measures play a key
role. In fact, it is well known that the Shannon entropy and
the von Neumann entropy are related to the information
present in classical and quantum systems, respectively.
Moreover, the aforementioned measures also have statistical
mechanics interpretations. Traditionally, in statistical me-
chanics, for configurations drawn from canonical ensembles,
the Shannon entropy corresponds to the entropy for classical
systems, while the von Neumann entropy provides the statis-
tical description of quantum systems.

In the context of complex networks a number of different
entropy measures have been introduced #5,8–13$. In Ref. #9$
the Gibbs entropy per node, in a network of N nodes, de-
noted by !, was introduced for microcanonical network en-
sembles following a statistical mechanics paradigm. Micro-
canonical network ensembles are defined as those networks
that satisfy a given set of constraints. Examples of some
popular constraints include fixed number of links per node,
given degree sequence, and community structure. The Gibbs
entropy of these ensembles is given by

! =
1
N

log N , !1"

where N indicates the cardinality of the ensemble, i.e., the
total number of networks in the ensemble. As demonstrated
further in #9$ the statistical mechanics formalism enables us
to develop canonical network ensembles where the structural

constraints under consideration are satisfied, on average. In
classical statistical mechanics the microcanonical ensemble
is formed by configurations having constant energy E, while
the canonical ensemble is formed by configurations having
constant average energy %E&. By analogy, in the theory of
random graphs the G!N ,L" graph ensemble is formed by
networks of N nodes with a constant total number of links L.
In the conjugated-canonical G!N ,p" ensemble, however, the
total number of links is Poisson distributed with average
%L&=p!N−1". This construction of microcanonical and
conjugate-canonical ensemble can be further generalized #9$
to network ensembles with more elaborate sets of con-
straints. For example, we can define microcanonical network
ensembles with the given degree sequence '"i( and canonical
network ensembles !based on hidden variables #14,15$" in
which each node i has ki links, which is Poisson distributed
with average %ki&="i.

In this Rapid Communication we show for this statistical
mechanics framework of networks, first, that the entropy of
canonical network ensembles is related to the Shannon en-
tropy and, second, that canonical network ensembles satisfy
a principle of maximal Shannon entropy. Moreover we will
study to what extent canonical and microcanonical network
ensembles are equivalent. Finally we will discuss the relation
between the Shannon entropy of a canonical network en-
semble, S, and the recent definition of von Neumann entropy
of networks, SVN, recently introduced in Ref. #12$ of interest
in the field of quantum gravity #13$.

II. GIBBS ENTROPY OF A MICROCANONICAL
NETWORK ENSEMBLE

Microcanonical network ensemble are formed by network
satisfying a given number of constraints. Following the lines
of reasoning provided in #9$, on specifying the full set of
constraints and number of nodes N in the networks, one may
introduce a partition function Z for the ensemble. This parti-
tion function counts the number of networks, defined by their
adjacency matrices 'aij(, that simultaneously satisfy all the
constraints under consideration. The adjacency matrix de-
scribes an undirected network, i.e., aij=aji, where each ele-
ment takes some positive integer values, aij!#, where
#!N that indicates the weight of a link between nodes i and
j. For simple !connectivity" networks we take aij! '0,1(
while for weighted networks aij!N.

PHYSICAL REVIEW E 80, 045102!R" !2009"
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Gibbs entropy of network ensembles by cavity methods
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The Gibbs entropy of a microcanonical network ensemble is the logarithm of the number of network
configurations compatible with a set of hard constraints. This quantity characterizes the level of order and
randomness encoded in features of a given real network. Here, we show how to relate this entropy to large
deviations of conjugated canonical ensembles. We derive exact expression for this correspondence using the
cavity methods for the configuration model, for the ensembles with constraint degree sequence and community
structure and for the ensemble with constraint degree sequence and number of links at a given distance.

DOI: 10.1103/PhysRevE.82.011116 PACS number!s": 05.90.!m, 89.75.Hc, 89.75.Fb

I. INTRODUCTION

The evolution of complex networks is usually described
by nonequilibrium stochastic dynamics #1–5$. However, a
networks’ specific topological structure may reveal relevant
organizational principles, such as a universality for the large-
scale structure or hierarchical communities #6$ that is sure to
impact dynamical processes taking place on the network
#7,8$.

Extracting relevant statistical information encoded in the
networks’ structure is a fundamental concern of community
detection algorithms #6$ and other inference problems. To
study these problems, several authors have suggested en-
tropy based methods #9–11$, which are grounded in the in-
formation theory of networks #11–16$. These methods have
proved to be very useful. In fact, in a series of recent papers
#11–19$ it has been shown that one may extend ideas and
concepts of statistical mechanics and information theory to
complex network ensembles.

In this paradigm, one generalizes the typical random
graph ensembles studied in the mathematical literature #20$
to ensembles characterized by an extensive number of con-
straints that fix, for example, the degree sequence #21$, num-
ber of links between different communities the number of
links at a given distance #12,13$, degree correlations between
linked nodes #11$, acyclic networks #17$, or even network
with a given number of triangles #18$ and generalized motifs
#19$.

It is well known that in statistical mechanics we distin-
guish between microcanonical ensembles describing all sets
of microscopic configurations compatible with a given value
of the total energy and canonical ensembles that correspond
to microscopical configurations in which the total energy
fluctuates around a given mean. A pivotal result of statistical
mechanics is the equivalence of these ensembles in the ther-
modynamic limit, i.e., in the limit where the number of par-
ticle in the system is very large. Similarly, in the theory of
random graphs we distinguish between the G!N ,L" en-
semble, which consists of all networks with N nodes and a
total of exactly L links, and the G!N ,p" ensemble, which is
formed by all networks of N nodes and the total number of
links being a Poisson distributed random variable with aver-
age %L&=p!N−1". Exploiting the parallelism between statis-

tical mechanics and theory of random graphs we can call the
random graph ensemble G!N ,L" a microcanonical network
ensemble and the G!N ,p" graph ensemble a canonical net-
work ensemble. Similarly to statistical mechanics, the ran-
dom graph ensembles G!N ,L" and G!N ,p" are, in the ther-
modynamic limit, asymptotically equivalent as long as L of
the G!N ,L" ensemble and p of the G!N ,p" ensemble are
related by the equality L=p!N−1".

It was shown in #12,13,15$ that the parallel construction
between network ensembles can be extended to much more
complex networks. In fact it is possible to define microca-
nonical network ensembles by imposing a set of hard con-
straints that must be satisfied by each network in the en-
semble and canonical network ensembles, which satisfy soft
constraints, i.e., the constraints are satisfied on average. The
set of constraints might fix, for example, the degree se-
quence, the community structure, or the spatial structure of
networks embedded in space.

A widely studied example of the microcanonical network
ensemble is the configuration model #21$ that fixes the de-
gree sequence, i.e., degrees for all nodes in the networks. On
the other hand, canonical network ensembles that impose
soft constraints on the degree sequence have been studied
under different names !“hidden variable model” and “fitness
model”" by the physics #22–24$ and statistics #25$ commu-
nities.

In a recent work #15$ it has been shown that if the number
of constraints is extensive the microcanonical ensemble and
its conjugate canonical ensemble are no longer equivalent. In
particular, using a network entropy measure, it was shown
that a microcanonical ensemble has lower entropy than the
conjugate canonical ensemble, even though the marginal
probabilities take the same expression. An example of this
difference was given by comparing the microcanonical en-
semble of regular networks with fixed degree ki=c!N for
all nodes i=1, . . . ,N and the canonical Poisson network en-
semble with average degree k̄i=c, for every i=1,2 , . . . ,N,
where the overbar refers to the ensemble average. It is easy
to check that in this paradigmatic case, the entropy of the
regular networks is smaller than the entropy of the Poisson
networks with the same average degree. The importance of
such a topological difference is also revealed by the obser-
vation that dynamical models defined on microcanonical net-

PHYSICAL REVIEW E 82, 011116 !2010"
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Critical phenomena on scale-free networks

Scale free networks: 

• Percolation: 
Percolation threshold 

Scale free networks are always percolating 

• Ising model: 
Critical temperature 

The Ising model on scale-free networks  
is always in the ferromagnetic phase

pc
⟨k(k − 1)⟩

⟨k⟩
= 1

βJ
⟨k(k − 1)⟩

⟨k⟩
= 1

Cohen-Havlin 
2001



Generalized network structures

Going beyond the framework of simple networks  
  

is of fundamental importance 

for understanding the relation between structure and 

 dynamics in complex systems  
  

ginestra bianconi

structure and function

MULTILAYER
NETWORKS

�



Higher-order networks



 Higher-order networks are 
characterising the interactions 
between two or more nodes

Simplicial complex

Higher-order networks

Network with  
triadic interactionsHypergraph



Higher-order network data
Brain data 

Protein interactions

Collaboration networks

Face-to-face interactions

Ecosystems



Higher-order networks

New book  
by Cambridge University Press!! 

Providing a general view of the interplay 
between topology and dynamics



Higher order 
networks

Network 
 Topology

Network  
Geometry

Higher order networks 
Structure

Combinatorial  
and Statistical 

properties



An m-hyperedge is set  nodes 

-it indicates the interactions between the m-nodes

   2-hyperedge          3-hyperedge      4-hyperedge   

Hyperedges

α = [i1, i2, i3, …im]



Hypergraphs

1

6

5 4

2

3

Every hyperedge 𝛼 formed  
by a subset of the nodes  
can belong or not   
to the hypergraph ℋ

ℋ = {[1,2], [3,4], [1,2,3], [1,3,4], [1,3,5], [3,5,6]}

10 Series Name

Figure 4 An example of 2-dimensional simplicial complex that is pure and an
example of 2-dimensional simplicial complex that is not pure.

can be used instead of simplicial complexes.

HYPERGRAPH

A hypergraph G = (V, EH ) is defined by a set V of N nodes and a set EH

of hyperedges, where a (m + 1)-hyperedge indicates a set of m + 1 nodes

e = [v0, v1, v2, . . . , vm],

with generic value of 1  m < N .
An hyperdge describes the many-body interaction between the nodes.

As mathematical objects simplicial complexes are distinct from hypergraphs,
the di�erence being that simplicial complexes include all the subsets of a
given simplex. From a network science perspective a given dataset including
higher order interactions can be described either as a simplicial complex or
as an hypergraph. However it might be argued that in a simplicial complex
description of higher-order network dataset we can loose some information. For
example a collaboration network is a good example of an hypergraph where
hyperedges correspond to the fact that the considered set of authors (nodes)
have published at least a paper together. In this context having a hyperdge
connecting three authors indicates that the three authors have co-authored at
least a paper together. However the existence of this three-body interaction
does not imply that each scientist has also co-authored a two-authors paper with
each other scientist in the triple. Therefore by using simplicial complexes to
model a collaboration network, we essentially retain only information about
the facets of the collaboration while loosing detailed information about which
lower-dimensional simplex actually indicates a real collaboration. On the other
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2 Combinatorial and statistical properties of
simplicial complexes

2.1 Mathematical de�nitions

2.1.1 Basic properties of simplicial complexes and hypergraphs

A network is a graph G = (V, E) formed by a set of nodes V and a set of
links E that represent the elements of a complex system and their interactions,
respectively. Networks are ubiquitous and include systems as di�erent as the
WWW (web graphs), infrastructures (as airport networks or road networks)
and biological networks (as the brain of the protein interaction network in the
cell). Networks are pivotal to capture the architecture of complex systems,
however they have the important limitation that they cannot be used to capture
the higher-order interactions. In order to encode for the many-body interactions
between the elements of a complex system higher-order networks need to be
used. A powerful mathematical framework to describe higher-order networks is
provided by simplicial complexes. Simplicial complexes are formed by a set of
simplices. The simplices indicate the interactions existing between two or more
nodes and are defined as in the following.

SIMPLICES

A d-dimensional simplex ↵ (also indicated as a d-simplex ↵) is formed by
a set of (d + 1) interacting nodes

↵ = [v0, v1, v2 . . . , vd].

It describes a many body interaction between the nodes.
It allows for a topological and a geometrical interpretation of the simplex.

For instance a node is a 0-simplex, a link is a 1-simplex, a triangle is 2-simplex
a tetrahedron is a 3-simplex and so on (see Figure 2).

FACES

A face of a d-dimensional simplex ↵ is a simplex ↵0 formed by a proper
subset of nodes of the simplex, i.e. ↵0 ⇢ ↵.

For instance the faces of a 2-simplex [v0, v1, v2] include three nodes [v0], [v1], [v2]
and three links [v0, v1], [v0, v2], [v1, v2]. Similarly in Figure 3 we characterize
the faces of a tetrahedron.

The simplices constitute the building blocks of simplicial complexes.

Simplices

0-simplex     1-simplex          2-simplex      3-simplex   
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links E that represent the elements of a complex system and their interactions,
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however they have the important limitation that they cannot be used to capture
the higher-order interactions. In order to encode for the many-body interactions
between the elements of a complex system higher-order networks need to be
used. A powerful mathematical framework to describe higher-order networks is
provided by simplicial complexes. Simplicial complexes are formed by a set of
simplices. The simplices indicate the interactions existing between two or more
nodes and are defined as in the following.

SIMPLICES

A d-dimensional simplex ↵ (also indicated as a d-simplex ↵) is formed by
a set of (d + 1) interacting nodes

↵ = [v0, v1, v2 . . . , vd].

It describes a many body interaction between the nodes.
It allows for a topological and a geometrical interpretation of the simplex.

For instance a node is a 0-simplex, a link is a 1-simplex, a triangle is 2-simplex
a tetrahedron is a 3-simplex and so on (see Figure 2).

FACES

A face of a d-dimensional simplex ↵ is a simplex ↵0 formed by a proper
subset of nodes of the simplex, i.e. ↵0 ⇢ ↵.

For instance the faces of a 2-simplex [v0, v1, v2] include three nodes [v0], [v1], [v2]
and three links [v0, v1], [v0, v2], [v1, v2]. Similarly in Figure 3 we characterize
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Faces of a simplex

Faces

4 0-simplices           6  1-simplices                 4   2-simplices



Simplicial complex

   

8 Series Name

Figure 2 A 0-simplex is a node, a 1-simplex is a link, a 2-simplex is a triangle,
a 3-simplex is a tethrahedron and so on.

Source: Reprinted from [38] ©SISSA Medialab Srl. Reproduced by permission of IOP
Publishing. All rights reserved.

Figure 3 The faces of a 3-simplex (tetrahedron) are four 0-simplices (nodes),
six links (1-simplices) and four triangles (2-simplices).

Source: Reprinted from [38] ©SISSA Medialab Srl. Reproduced by permission of IOP
Publishing. All rights reserved.

SIMPLICIAL COMPLEX

A simplicial complex K is formed by a set of simplices that is closed
under the inclusion of the faces of each simplex.
The dimension d of a simplicial complex is the largest dimension of its
simplices.

Simplicial complexes represent higher-order networks, which include interac-
tions between two or more nodes, described by simplices. In more stringent
mathematical terms a simplicial complex K is a a set of simplices that satisfy
the following two conditions:

(a) if a simplex ↵ belongs to the simplicial complex, i.e. ↵ 2 K then any face
↵0 of the simplex ↵ is also included in the simplicial complex, i.e. if ↵0 ⇢ ↵
then ↵0 2 K;

(b) given two simplices of the simplicial complex ↵ 2 K and ↵0 2 K then either
their intersection belongs to the simplicial complex, i.e. ↵ \ ↵0 2 K or their
intersection is null, i.e. ↵ \ ↵0 = ;.

Here and in the future we will indicate with N the total number of nodes
in the simplicial complex and we will indicate with N[m] the total number

1

6

5 4

2

3

𝒦
If a simplex 𝛼 belongs  
to the simplicial complex  
then every face of  𝛼 
must also belong to  𝒦

𝒦 = {[1], [2], [3], [4], [5], [6],
[1,2], [1,3], [1,4], [1,5], [2,3],
[3,4], [3,5], [3,6], [5,6],
[1,2,3], [1,3,4], [1,3,5], [3,5,6]}



Dimension of a simplicial complex
The dimension of a simplicial complex   
is the largest dimension of its simplices  

1

6

5 4

2

3

This simplicial complex  
has dimension 2

𝒦

𝒦 = {[1], [2], [3], [4], [5], [6],
[1,2], [1,3], [1,4], [1,5], [2,3],
[3,4], [3,5], [3,6], [5,6],
[1,2,3], [1,3,4], [1,3,5], [3,5,6]}
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of m-dimensional simplices in the simplicial complex (note that N[0] = N).
Furthermore we will indicate with Qm(N) the set of all possible and distinct
m-dimensional simplices that can be present in a simplicial complexK including
N nodes. With Sm(K) we will indicate instead the set of all m-dimensional
simplices present in K.

Among the simplices of a simplicial complex, the facets play a very relevant
role.

FACET
A facet is a simplex of a simplicial complex that is not a face of any
other simplex. Therefore a simplicial complex is fully determined by the
sequence of its facets.

A very interesting class of simplicial complexes are pure simplicial com-
plexes.

PURE SIMPLICIAL COMPLEXES

A pure d-dimensional simplicial complex is formed by a set of d-
dimensional simplices and their faces.
Therefore pure d-dimensional simplicial complexes admit as facets only
d-dimensional simplices.

This implies that pure d-dimensional simplicial complexes are formed exclusively
by gluing d-dimensional simplices along their faces. In Figure 4 we show an
example of simplicial complex that is pure and an example of simplicial complex
that it is not pure.

An interesting question is whether it is possible to convert a simplicial
complex into a network and viceversa and how much information is lost/retained
in the process. Given a simplicial complex it is always possible to extract a
network known as the 1-skeleton of the simplicial complex by considering
exclusively the nodes and links belonging to the simplicial complex. Conversely,
given a network, it is possible to derive deterministically a simplicial complex
defining its clique complex obtained by taking a converting every (d + 1)-clique
of the network in a simplex of dimension d. The clique complex is a simplicial
complex. In fact, if a simplex is included in a clique complex, then all its
sub-simplices are also included. Moreover any two simplices of the clique
complex have an intersection that is either the null set or it is a simplex of the
clique complex.

Hypergraphs are an alternative representations of higher order networks that

1

6

5 4

2

3
𝒦 = {[1,2,3], [1,3,4], [1,3,5], [3,5,6]}

The facets of this  
 simplicial complex are 

Facets of a simplicial complex



Pure simplicial complex
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arsp = {1 if (r, s, p) ∈ 𝒦
0 otherwise

A pure d-dimensional simplicial complex 
is fully determined by an 
adjacency matrix tensor 

with  (d+1) indices. 
For instance this simplicial complex  

is determined by the tensor 



Example
A simplicial complex     is  pure  

if it is formed by d-dimensional simplices  
and their faces  

4

2
1

6

5

3

𝒦

1

6

5

3

PURE SIMPLICIAL COMPLEX SIMPLICIAL COMPLEX  
THAT IS NOT PURE



Cell complexes

12 Series Name

and in general open d-dimensional cells are topological spaces homeomorphic
to an open ball. Therefore 0-dimensional cells are nodes, 1-dimensional cells
are links, and therefore do not di�er from 0-dimensional and 1-dimensional
simplices. However 2-dimensional cells includes m-polygons such as triangles
(2-dimensional simplices), squares, pentagons ect. Similarly 3-dimensional
cells includes the Platonic solids, such as tethrahedra (3-dimensional simplices),
cubes, octahedra, dodecahedra, and icosahedra (see Figure 5). Interestingly in
dimension d = 4 the regular polytopes are more than in dimension d = 3 (being
6), but for any dimension d > 4 there are only three types of regular (convex)
polytopes: the simplex, the hypercube and the orthoplex.

A cell complex K̂ has the following two properties:

(a) it is formed by a set of cells that is closure-finite, meaning that every cell is
covered by a finite union of open cells;

(b) given two cells of the cell complex ↵ 2 K̂ and ↵0 2 K̂ then either their
intersection belongs to the cell complex, i.e. ↵ \ ↵0 2 K̂ or their intersection
is a null set, i.e. ↵ \ ↵0 = ;.

In this book we will discuss mostly the properties of simplicial complexes
however in a number of places we will refer to results applying to more general
cell complexes.

2.2 Generalized degrees of simplicial complexes

For networks a key local structural property is the degree of the nodes. The
degree of a node characterizes only the local structure of the network around the
node, its number of interactions. However the statistical properties associated
with the degree are instead important global properties of the network that
can significantly a�ect its global dynamics as in the case of scale-free degree
distributions [1]. It is therefore natural to desire to extend the notion of degrees
also to simplicial complexes. The generalized degrees [12, 29, 39] are the
fundamental combinatorial properties describing the structure of simplicial
complexes. Interestingly, in simplicial complex not only nodes can be associated
to a generalized degrees, but also links and higher dimensional simplices can be
associated to their generalized degrees.

GENERALIZED DEGREES AND FACET SIZES

The generalized degree [12,29,39] kd,m(↵) of a m-dimensional simplex ↵
indicates the number of d-dimensional simplices incident to the m-simplex
↵.



Simplicial complex skeleton

From a simplicial complex is possible to generate a network  
salled the simplicial complex skeleton by  

considering only the nodes and the links of the simplicial complex



Clique complex

From a network is possible to generate a simplicial complex by  
Assuming that each clique is a simplex 

Note:  
Poisson networks have a clique number that is 3 and actually on a finite 

expected number of triangles in the infinite network limit
However

Scale-free networks have a diverging clique number, therefore the clique complex 
of a scale-free network has diverging dimension. (Bianconi,Marsili 2006)



Concatenation of the operations

Attention! 
By concatenating the operations you are not guaranteed to return to the initial  

simplicial complex

Network 
Skeleton

Clique  
complex
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€ 

Number of triangles 
incident to the node 𝛼

Number of triangles 
incident to the link 𝛼 

Generalized degrees

[Bianconi & Rahmede (2016)]

k2,0(α)

k2,1(α)

The generalized degree kd,m(𝛼) of a m-face 𝛼  

in a d-dimensional simplicial complex is given by the number  

of d-dimensional simplices incident to the m-face 𝛼. 



The generalized degree kd,m(𝛼) of a m-face 𝛼  

in a d-dimensional simplicial complex is given by the number  

of d-dimensional simplices incident to the m-face 𝛼. 
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Generalized degree

i k2,0(i)
1 3
2 1
3 4
4 1
5 2
6 1

(i, j) k2,1(i, j)
(1,2) 1
(1,3) 3
(1,4) 1
(1,5) 1
(2,3) 1
(3,4) 1
(3,5) 2
(3,6) 1
(5,6) 1



Pure simplicial complex
A simplicial complex     is  pure  

if it is formed by d-dimensional simplices  
and their faces  
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𝒦

arsp = {1 if (r, s, p) ∈ 𝒦
0 otherwise

A pure d-dimensional simplicial complex 
is fully determined by an 
adjacency matrix tensor 

with  (d+1) indices. 
For instance this simplicial complex  

is determined by the tensor 



kd,m(α) =
1

( d − m
m′ − m) ∑

α′ ∈𝒬d(N)|α′ ⊇α

kd,m′ 
(α′ ) .

The generalized degrees  of a pure d-dimensional simplicial complex 

can be defined in terms of the adjacency tensor  as


 

The generalized degrees obey a nice combinatorial relation 

as they are not independent of each other. 


In fact  for  m’>m we have 

kd,m(α)
a

kd,m(α) = ∑
α′ ∈𝒬d(N)|α′ ⊇α

aα′ 

Combinatorial properties of the 
generalised degrees



m-connected components

0-connected component  

1-connected components 

2-connected component

Simplicial complexA B

C

D



Clique communities

The m-clique 
communities are the 
m-connected 
components of the 
clique complex of the 
network

Palla et al. Nature 2005



Geometrical properties  
of simplicial complexes



Incidence number
To each (d-1)-face 𝛼 we associate the  

incidence number 

 

€ 
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[Bianconi & Rahmede (2016)]

(i, j) n(i, j)

(1,2) 0
(1,3) 2
(1,4) 0
(1,5) 0
(2,3) 0
(3,4) 0
(3,5) 1
(3,6) 0
(5,6) 0

nα = kd,d−1(α) − 1



Discrete manifolds



Discrete manifolds 
If      takes only values   

each (d-1)-face is incident at most to two 
d-dimensional simplices. 
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nα ∈ {0,1}nα

NOT A MANIFOLD MANIFOLD



Regge curvature



Regge curvature and generalized degrees
If  the discrete manifold  is formed  

by a set of geometrically identical d-simplices  
the Regge curvature  

is simply related to the generalized degree of the (d-2)-faces, i.e.   

            

where  indicates the  dihedral angle of each d-simplex.

Rα = {
2π − θ0kd,d−2(α) if α ∈ ℬ,
π − θ0kd,d−2(α) otherwise,

θ0



Gromov hyperbolicity



Examples of 𝛿-hyperbolic networks



Graph Laplacian
The graph Laplacian matrix is defined as 

The graph Laplacian is a semi-positive matrix that in a 
connected network has eigenvalues 

The Laplacian is key for describing diffusion processes and 
the Kuramoto model on networks and constitutes a natural 

link between topology and dynamics 

The Fiedler eigenvalue      is also called spectral gap

Lij = δijki − aij

0 = λ1 ≤ λ2 ≤ λ3 ≤ …λN

λ2



Spectral dimension

λ2 → 0 for N → ∞
In geometrical network models 


and we say that the spectral gap “closes” 

If the density of eigenvalues 𝜌(𝜆) scales like


dS  is called the spectral dimension 


ρ(λ) ∼ λdS/2−1 for λ ≪ 1



Square d-dimensional 
lattice

The eigenvalues  of the Laplacian 


of  a  d-dimensional lattice are given by  


                                                                                                                              




where  is the wave-number characterising the eigenvectors of the Laplacian (Fourier basis) 
with





It follows that  for d-dimensional lattices.

μ

μ = ∑
i∈{1,2,3,…,d}

4 sin2(ki /2) ≃ |k |2

k

ki =
2πni

L

ds = d



Conclusions

• Simplicial complexes capture the many-body interactions 
of complex systems and reveal the hidden geometry and 
topology of data 

• The hyperbolicity of a network can be defined using 
Gromov delta-hyperbolicity 

• A finite spectral dimension is a fundamental property of 
simplicial complexes with intrinsic geometrical character



Higher-order networks 
An introduction to simplicial complexes 

Lesson II: 

Ginestra Bianconi  
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Lesson II: 
Higher-order networks growing models

Emergent community structure 

Emergent geometry and preferential attachment 

Network Geometry with Flavor (NGF) 

1. Emergent hyperbolic geometry and quantum statistics 

2. Statistical properties depending on dimension 

4. Topological phase transitions in NGF with fitness 



Simplicial complex models  
of arbitrary dimension

Emergent Hyperbolic Geometry 
Network Geometry with Flavor (NGF) 

[Bianconi Rahmede ,2016 & 2017]

Maximum entropy model 
Configuration model  

of simplicial complexes 
[Courtney Bianconi 2016]

CODES AVAILABLE AT GITHUB                    ginestrab



Emergent properties  
of simplicial complexes



Emergence of communities



• Starting from a finite connected network with n0>2 nodes 

• (1) GROWTH :   At every timestep we add a new node with 2 edges 
(connected to the nodes already present in the system). 

• (2) TRIADIC CLOSURE: The first link is attached to a random 
node, the second link with probability p closes a triangle and with 
probability 1-p is connected  randomly 

Triadic closure



G. Bianconi  et al. 
PRE (2014)

Emergence of communities



Emergent geometry



  

are expected to have impact in a variety of applications, 

ranging from  

brain research to biological transportation networks 

 Network Topology and  Geometry



Is the network geometry of complex systems 
an a priori pre-requisite  

for the network evolution 
or is an emergent phenomenon of the 

network dynamics? 



Emergent geometry

In the framework of emergent geometry  
 networks with  a geometry 

are generated 
 by non-equilibrium dynamics 
that is purely combinatorial, 

i.e. is independent of the network geometry



Discrete and combinatorial space-time
My own view is that ultimately physical laws  

should find their most natural expression 
 in terms of essentially combinatorial principles…  

Thus, in accordance with such a view,  
should emerge some form  

of  
discrete or combinatorial spacetime. 

Roger Penrose  
in 

On the Nature of Quantum Geometry 



Motivation
• Which is the basic mechanism for emergent geometry?


• What are the combinatorial/statistical properties of 
emergent geometry?


• What are the geometrical and topological properties 
that emerge?



Emergent geometry  
in 2-dimensional  

simplicial complexes



Emergent network geometry

The model describes 
the underlying structure of a simplicial complex 
constructed by gluing together triangles by a 

non-equilibrium dynamics.

Every link is incident to
at most k triangles with k>1.

Wu, Menichetti, Rahmede, Bianconi, Scientific Reports (2015)



Saturated and unsaturated links
1

4

5 Unsaturated link
         𝜌23=1

2

3

Saturated link
   𝜌13=0

k=2
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5.2 Emergent 2-dimensional simplicial network
geometry

Let us start by revealing the fundamental mechanism for emergent geometry
in dimension d = 2 by discussing the non-equilibrium simplicial complex model
proposed in Ref. [31]. The model describes the non-equilibrium evolution of a
simplicial complex constructed by gluing triangles along the links of a simpiicial
complex subsequently in time. During their evolution the simplicial complexes
need to satisfy a simple combinatorial rule: at every point in time every link
of the simplicial complex must be incident to at most to k̄ triangles with k̄ > 1.
We classify links [r, s] as unsaturated and saturated depending on the value of
the auxiliary variable ⇢rs defined as

⇢rs =

(
0 if k2,1([r, s]) < k̄,

1 if k2,1([r, s]) = k̄ .
(5.1)

Therefore for each link [r, s] there are two possibilities:

• if ⇢rs = 0 the link is unsaturated , i.e. less than k̄ triangles are incident on it;
• if ⇢rs = 1 if the link is saturated, i.e. the number of incident triangles is given

by k̄.

We define two processes characterizing the di�erent topological moves that
can result from the addition of a single triangle to the simplicial complex.
These moves, schematically represented in Figure 23, define the model for
2-dimensional emergent simplicial geometry as described in the following.

MODEL OF 2-DIMENSIONAL EMERGENT SIMPLICIAL GEOMETRY [31]

At time t = 1 the simplicial complex is formed by a single triangle. At
each time t > 1 two process can occur: process (a) and process (b).

(a) Let us indicate with A the adjacency matrix of the simplicial complex
skeleton. Process (a) is defined as follows. A link [r, s] having r < s is
chosen with probability

⇧[r,s] =
Ars(1 � ⇢rs)Õ

q<q0 Aq,q0(1 � ⇢q,q0), (5.2)

and a new triangle is glued to the link.
This process takes place at each time t > 1 with probability one.

(b) Process (b) is defined as follows. Two adjacent unsaturated links are
chosen and the link connecting the two nodes at distance 2 is added to
the simplicial complex together with all the triangles that this link closes



Process (a)

We choose a link (i,j) with probability
and glue a new triangle the link 

Π(i,j) =
ρij

∑r,s ρrs
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Figure 23 A schematic representation of the 2-dimensional topological moves
that are allowed for the model of emergent geometry proposed in Ref. [31] with
k̄ = 2. The model of emergent 2-dimensional geometry evolves in time by the
subsequent addition of 2-simplices. At each time process (a) [1-2 move] takes

place with probability one, and process (b) [2-1 move] takes place with
probability p < 1.

as long as the move is allowed, i.e. no link is incident to more than k̄

triangles.
This process takes place at each time t > 1 with probability p < 1.

For k̄ = 2 where the incidence number of links takes values n↵ 2 {0, 1} the
generated simplicial complex is a 2-dimensional manifold because the evolving
simplicial complex satisfy all the combinatorial conditions for having a discrete
2-dimensional manifold (defined in Sec. 4.1). This manifold is emerging from
purely combinatorial rules that make no use of its discrete geometry. Therefore
this is a fundamental model of emergent geometry in d = 2. These manifolds
have a Euler characteristics � = 1 and they describe a contractible topology,
however they display a very rich combinatorial and geometrical phenomenology.
Since in the case k̄ = 2 the emergent simplicial complex is a 2-dimensional
manifold (see Figure 24a), we can study the distribution of the Regge curvatures
associated to the nodes, assuming that each triangle is a equilateral triangle. In



Process (b)

We choose a two adjacent unsaturated links
and we add the link between the nodes at distance 2 

and all triangles that this link closes 
as long that this is allowed.
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Figure 23 A schematic representation of the 2-dimensional topological moves
that are allowed for the model of emergent geometry proposed in Ref. [31] with
k̄ = 2. The model of emergent 2-dimensional geometry evolves in time by the
subsequent addition of 2-simplices. At each time process (a) [1-2 move] takes

place with probability one, and process (b) [2-1 move] takes place with
probability p < 1.

as long as the move is allowed, i.e. no link is incident to more than k̄

triangles.
This process takes place at each time t > 1 with probability p < 1.

For k̄ = 2 where the incidence number of links takes values n↵ 2 {0, 1} the
generated simplicial complex is a 2-dimensional manifold because the evolving
simplicial complex satisfy all the combinatorial conditions for having a discrete
2-dimensional manifold (defined in Sec. 4.1). This manifold is emerging from
purely combinatorial rules that make no use of its discrete geometry. Therefore
this is a fundamental model of emergent geometry in d = 2. These manifolds
have a Euler characteristics � = 1 and they describe a contractible topology,
however they display a very rich combinatorial and geometrical phenomenology.
Since in the case k̄ = 2 the emergent simplicial complex is a 2-dimensional
manifold (see Figure 24a), we can study the distribution of the Regge curvatures
associated to the nodes, assuming that each triangle is a equilateral triangle. In



The model

Starting from an initial triangle,
At each time

 
•process (a) takes place 

and
 

•process (b) takes place 
with probability p<1.

•



Discrete Manifolds

    A discrete manifold of 
dimension d=2 is a 
simplicial complex 
formed by  triangles 
such that every link is 
incident to at most two 
triangles.

Therefore the emergent 
network geometry for our 
model with  m=2 is a 
discrete 2d manifold.
•



Scale-free networks

In the case   
a scale-free network
with high clustering,
significant community
structure, finite 
spectral dimension is
generated.

Planar for p=0. 

m = ∞



Properties of emergent network 
geometries

•Small world
•Finite clustering
•High modularity

•Finite spectral dimension
Which are properties of many 

real network datasets.



Properties of real datasets



Network Geometry with Flavor



Bianconi & Rahmede (2016)

1

6

5 4

2

3

Network Geometry with Flavor
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Figure 24 The network skeleton of the model of emergent 2-dimensional
geometry is shown for a realization in which k̄ = 2, p = 0.9 (panel a) and for a

realization in which k̄ = 1, p = 0 (panel b).
Source: Reprinted figure from [31].

5.3 Network Geometry with Flavor (neutral model)

5.3.1 The de�nition of the NGF model (neutral model)

From the previous model of emergent geometry in dimension d = 2 we now
move to the very general framework of emergent hyperbolic geometry called
Network Geometry with Flavor (NGF) [29] for emergent simplicial geometry in
any topological dimension d. This model is a non-equilibrium model of growing
simplicial complexes in which d-dimensional simplices are subsequently glued
to (d � 1) dimensional faces. The model depends on a parameter called flavor
s taking values s 2 {�1, 0, 1}. There are two variants of the NGF model the
neutral model and the model with fitnesses of the faces. Both variants of the
model display notable combinatorial, topological and geometrical properties
reflecting the a very rich interplay between these di�erent descriptions of the
emergent hyperbolic geometry. The neutral model can be also extended to
treat cell complexes leading to further additional considerations of the interplay
between the topology and the geometry of NGFs. Let us start to discuss the
neutral NGF simplicial complex model.

NETWORK GEOMETRY WITH FLAVOR (NEUTRAL MODEL) [29]

At time t = 1 the NGF is formed by a single d-dimensional simplex. At
each time t > 1 the model evolves according to the following principles.
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Figure 25 The NGF model in d = 3 dimension, evolves in time by the
subsequent addition of 3-simplices (tethrahedra) to a 2-dimensional faces

(triangles). For s = �1 every (d � 1)-dimensional face can be incident to at
most a two d-dimensional simplices. Here we schematically show a single

topological move for d = 3, s = �1 (panel a) and its planar projection on the
plane formed by the (d � 1)-dimensional face (triangle) (panel (b)). In this

planar projection, the attachment of the new tetrahedron to the initial triangle
induces a triangulation of the initial triangle in three distinct triangles. For this

reason this topological move is also called 1 � 3 topological move.

• GROWTH : At every timestep a new d-dimensional simplex formed
by one new node and an existing (d � 1)-face is added to the simplicial
complex.

• ATTACHMENT: The probability that the new d-simplex is glued to a
(d � 1)-dimensional face ↵ depends on the flavor s 2 {�1, 0, 1} and is
given by

⇧[s]
↵ =

(1 + sn↵)Õ
↵0(1 + sn↵0) . (5.6)

The role of the flavor parameter is to change the attachment probability. In
particular we have that the attachment probability can be expressed, depending
on the value of the flavor s, as

⇧[s]
↵ =

(1 + sn↵)Õ
↵0(1 + sn↵0) /

8>>><
>>>:

1 � n↵ if s = �1,
const if s = 0,
kd,d�1(↵) if s = 1.

(5.7)

Therefore depending on the value of the flavor the NGF implements di�erent
combinatorial rules.

• For s = �1 the attachment probability ⇧[�1]
↵ is non zero if n↵ = 0 but becomes

zero as soon as n↵ = 1. Therefore we obtain simplicial complexes that are



Π[s]
α =

(1 + snα)
∑α′ 

(1 + snα′ )
∝

1 − nα  if s = − 1
1 if s = 0
kd,d−1(α)  if s = 1

Attachment probability 

The attachment probability to (d-1)-dimensional faces  is given by 

For s=-1   we obtain discrete manifolds 

For s=0 we have uniform attachment 

For s=1 we have a generalised preferential attachment

nα = 0,1

nα = 0,1,2,3,4...
nα = 0,1,2,3,4...



Pachner move 1-d for NGF with s=-1



Emergence of preferential attachment

Πd,δ(k) =

2 − k
(d − 1)t

 for d + s − δ − 1 = − 1

(d − δ − 1 + s)k + 1 − s
(d + s)t

 for d + s − δ − 1 ≥ 0

The probability of attaching a d-dimensional simplex  
to a   -dimensional face is given by  

Therefore for                       we observe a generalised preferential attachment 
as a consequence of the geometry and dimensionality of of the NGF  

d − δ > 1 − s

δ



i
i

t=3              t=4

Node i has generalized degree 3       Node i has generalized degree 4 
Node i  is incident to 5  faces with n=0     Node i is incident to 6 faces with n=0 

Effective preferential attachment in 
d=3 s=-1



       Chain          Exponential   BA model

Dimension d=1
Manifold         Uniform             Preferential 

                attachment            attachment



Exponential     Scale-free     Scale-free

Dimension d=2
Manifold         Uniform             Preferential 

                attachment            attachment



Scale-free     Scale-free     Scale-free

Dimension d=3
Manifold         Uniform             Preferential 

                attachment            attachment



NGF are always scale-free for d>1-s 

• For s=1 NGF are always scale free  
• For s=0 and d>1 the NGF are scale-free 
• For s=-1 and d>2 the NGF are scale-free

Degree distribution 

€ 

€ 

For d+s=1 

For d+s>1

P[s]
d (k) = ( d

d + 1 )
k−d 1

d + 1

P[s]
d (k) =

d + s
2d + s

Γ[1 + (2d + s)/(d + s − 1))]
Γ[d /(d + s − 1)]

Γ[k − d + d /(d + s − 1)]
Γ[k − d + 1 + (2d + s)/(d + s − 1)]

[Bianconi & Rahmede (2016)]



Degree distribution of NGF

CODE AVAILABLE AT GITHUB PAGE                       ginestrab



€ 

Generalized degree distribution 

[Bianconi & Rahmede (2016)]

The generalized degree distribution depends  
on the flavor s and on the dimension m of the faces
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can glue a new d dimensional simplex increases, leading to a generalized
preferential attachment. Using the Eq. (5.8) it is straightforward to calculate

Table 1 Distribution of generalized degrees of faces of dimension m in a
d-dimensional NGF of flavor s at � = 0. For d � 2m + 2 � s the power-law

distributions are scale-free, i.e. the second moment of the distribution diverges.

Flavor s = �1 s = 0 s = 1
m = d � 1 Bimodal Exponential Power-law
m = d � 2 Exponential Power-law Power-law
m  d � 3 Power-law Power-law Power-law

the distribution P
[s]
d,m(k) of the generalized degrees of the m-dimensional faces

for any value of d and s. These generalized degree distribution follow a regular
pattern depending on d,m and s (see Table 1). The details of this derivation
are provided in Appendix F. In particular the generalized degree distribution is
bimodal for d � m + s = 0, exponential for d � m + s = 1 and power-law for
d � m + s > 1. Therefore if we consider a NGF with d = 3 and s = �1 the
triangles (2-dimensional faces), the links (1-dimensional faces) and the nodes
(0-dimensional faces) have a bimodal, exponential and scale-free generalized
degree distribution respectively. From these results we can draw two important
conclusions regarding the statistical properties of emergent manifolds:

• Provided the dimension d is su�cently high, i.e. d � 3, the generation of
scale-free manifolds is the natural outcome of the NGF neutral model. This
show that the complexity of these structures arise from the very simple and
therefore fundamental rules for emergent geometry captured by the NGF
model with s = �1 [39].

• Despite the very strong power-law fluctuations observed in the generalized
degree of faces of dimension m  d � 2, the NGF manifolds are characterized
by a more moderate exponential fluctuation of the generalized degree of
faces of dimension m = d � 2. This is interesting in light of the fact that
the generalized degrees of faces of dimension m = d � 2 are related to the
Regge curvature according to Eq. (4.3) in the hypothesis in which all the
simplices of the NGF are identical. Therefore, even in dimensions d � 3,
the distribution of the Regge curvature of the NGF manifolds remains always
exponential, as long as we assume that the simplices are all identical.

On the NGF, the degree of kr of a node r is related to its generalized
degree kd,0([r]) by the simple relation kr = kd,0([r]) + (d � 1). Therefore it is
straightforward to derive the degree distribution of the NGF from the generalized

Simplicial complexes can have generalised degree distribution  
following different statistics  

depending on the dimension of the faces considered



Emergent Hyperbolic geometry
The emergent hidden geometry is the hyperbolic Hd 

space  
Here all the links have equal length

d=2



d=3

Emergent hyperbolic geometry

d=3



NGF an hyperbolic network geometry

NGF for flavor s=-1 are discrete hyperbolic 
manifolds 

NGF of any flavor and any dimension are  
𝛿-hyperbolic networks  

[with 𝛿=1]



What is a “natural” random geometry?
• Random graph 


(fully connected network -trivial/no geometry- where some random 
links are selected)


• A percolation cluster in 2d 


(square lattice -known given geometry- where only few links are 
preserved )


• A growing cluster on -emergent- hyperbolic lattice



d=3

Emergent hyperbolic geometry

d=3



The pseudo-fractal geometry of  
the surface of the  

3d manifold  
(random Apollonian network)

Planar projection of the d=3 NGF with s=-1



The relation to  
Trees

Line graph of the NGF



Growing weighted simplicial complex

We considered a weighted 
network model in which we 
assume: 
•  that each new node can attach 

m simplices to the rest of 
network 

• that simplices can increase 
their weight in time 

We found deep correlations 
between the weights of the 
simplices and the network 
topology.

(b)

(a)

w+ 0

w+ 0

w+ 0
w+ 0

Courtney Bianconi (2017)



NGF cell complexes

The power-law exponent γ 
depends  on the nature of 
the regular polytope that 

constitute 
 the building block of the 

cell complex  



Modularity of NGFs

Network Geometry with Flavor  
displays emergent community 

structure
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Laplacian spectrum of NGFs
s=-1                                        s=0                                     s=1

Simplicial 
Complexes

Hypercubes

Orthoplexes



Spectral dimension of NGF
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Energies 
of the nodes 

ε5

Not all the nodes are the 
same! 

Let assign to each node i  

an energy ε from a  

g(ε) distribution 

ε1

ε2ε3

ε4

ε5

ε6



Energy of the m-faces

  Energy of a link      is  

  

    Energy of a triangle     is    

ε2ε1

ε1 ε2

ε3

ε1 + ε2

ε1 + ε2 + ε3

Elements Name 77

In this paragraph we will address the Network Geometry of Flavor (NGF)
formed by d-dimensional simplicial complexes whose faces are associated an
intrinsic property called energy which describes the non-topological features
associated to them [29]. From the energy of a face one can determine its fitness
which describes the rate at which the face increases its generalized degree. The
NGF model with fitness of the faces generalizes the Bianconi-Barabási model
by associating to each m-dimensional face an energy and a fitness.

ENERGY AND FITNESS OF THE FACES OF THE NGF SIMPLICIAL

COMPLEXES [29]

The energy "↵ of the m-dimensional face ↵ indicates its intrinsic (non-
topological) properties. The energy "[r] of a node r is a non negative
number drawn from a given distribution g("). The energy of a face ↵ of
dimension m > 0 is the sum of the energies of the nodes belonging to it,
i.e.

"↵ =
’
r⇢↵
"[r]. (5.14)

The fitness associated to a m-dimensional face ↵ describes the rate at
which the face increases its generalized degree and is given by

⌘↵ = e
��"↵ (5.15)

where � > 0 is a parameter called inverse temperature. For � = 0 all
the fitnesses are the same, and equal to one, while for � � 1 the small
di�erence in energy leads to big di�erences in the fitnesses of the faces.

Figure 37 Schematic representation indicating how the energies associated to
the links and to the triangles of an NGF are calculated starting from the node

energies.

Figure 37 describes schematically how the energies are assigned to higher-



Bianconi & Rahmede (2016)

1

6

5 4

2

3

Network Geometry with Flavor

Π[s]
α =

e−βεα (1 + snα)
∑α′ 

e−βεα′ (1 + snα′ )
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dimensional faces of the NGF simplicial complex. The NGF evolution can be
modified to take into consideration the e�ect of assigning di�erent fitness of the
NGF faces.

NETWORK GEOMETRY WITH FLAVOR (WITH FITNESS) [29]

At time t = 1 the simplicial complex is formed by a single d-dimensional
simplex. Each node r of this simplex has energy "[r] drawn from a g(")
distribution. The energies of the higher-dimensional faces are calculated
according to Eq. (5.14).

• GROWTH : At every timestep a new d-dimensional simplex formed
by one new node and an existing (d � 1)-face is added to the simplicial
complex. Each new node r has energy "[r] drawn from a g(") distribu-
tion. The energies of the new higher-dimensional faces are calculated
according to Eq. (5.14).

• ATTACHMENT: At every timestep the probability that the new d-
simplex is connected to the existing (d � 1)-dimensional face ↵ depends
on the flavor s 2 {�1, 0, 1} and on the inverse temperature � > 0 and is
given by

⇧[s]
↵ =

e
��"↵ (1 + sn↵)Õ

↵0 e��"↵0 (1 + sn↵0) . (5.16)

For � = 0 the NGF (with fitness of the m-faces) reduces to the neutral
NGF model, i.e. ⇧[s]

↵ reduces to Eq. (5.6).

The role of the inverse temperature � > 0 is to bias the evolution of the
simplicial complex, in such a way that faces with lower energy are increasing
their generalized degree faster. This model for d = 1 and s = 1 reduces to
the Bianconi-Barabási model [95, 106] which display emergent Bose-Einstein
statistics and the Bose-Einstein condensation of complex networks. The Bose-
Einstein condensation observed in this model is a topological phase transition
in which the network is dominated by a succession of super-hub nodes, i.e.
nodes with a degree growing linearly with time time with at most a logarithmic
correction. In the next paragraphs we will discuss how this scenario changes
for NGFs. We will discover notable statistical and topological properties of
NGFs with fitness of the faces and inverse temperature � > 0. In particular we
will show that not only the Bose-Einstein statistics but also the Fermi-Dirac
statistics describe the statistical properties of the NGF faces and we will reveal
that in the same NGF the statistics followed by faces of di�erent dimension
can vary. Moreover we will discuss the relation between the total energy of



The average of the generalized degree 
of the NGF over δ-faces of energy ε 

 
  

follows 
a regular pattern

€ 

⟨[kd,m(α) − 1] |εα = ε⟩
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Table 3 The average
⌦
kd,m � 1|"

↵
of the generalized degrees kd,m � 1 of

m-faces with energy " in a d-dimensional NGF of flavor s follows either the
Fermi-Dirac, the Boltzmann or the Bose-Einstein statistics depending on the

values of the dimensions d and m.

Flavor s = �1 s = 0 s = 1
m = d � 1 Fermi-Dirac Boltzmann Bose-Einstein
m = d � 2 Boltzmann Bose-Einstein Bose-Einstein
m  d � 3 Bose-Einstein Bose-Einstein Bose-Einstein

Table 4 Distribution of generalized degrees of faces of dimension m in a
d-dimensional NGF of flavor s = �1/k̄ at � = 0. Only for d � 2m � 2 + 3/k̄

the power-law distributions are scale-free, i.e. the second moment of the
distribution diverges. The average

⌦
kd,m � 1|"

↵
of the generalized degrees

kd,m of m-faces with energy " minus one in a d-dimensional NGF of flavor
s = �1/k̄ and inverse temperature � > 0 follows either the Fermi-Dirac or the
Bose-Einstein statistics depending on the values of the dimensions d and m.

Flavor Generalized degree
distribution

Statistics

m = d � 1 Bounded k  k̄ + 1 Fermi-Dirac
m  d � 2 Power-law Bose-Einstein

the Bose-Einstein distribution and therefore is given by
⌦
[k1,0([r]) � 1]|"[r] = "

↵
= nB(", µ1,0). (5.29)

The chemical potentials µd,m(s) in Eq. (5.28) and Eq. (5.29) and are self-
consistent parameters that must satisfy the condition⌧Õ

↵2Sd,m(K) kd,m(↵)
N[m]

�
=

d + 1
m + 1

. (5.30)

The value of the inverse temperature at which these conditions cannot be satisfied
any more, indicates the critical temperature �c . At �c there is a topological
phase transition characterized by the lack of a stationary state for the generalized
degree distributions which we will describe in the next paragraph.

The NGF model can be also generalized by considering fractional negative
values of the flavor s = �1/k̄ which enforce an upper bound of k̄ + 1 to
the generalized degree of the (d � 1)-dimensional faces [38]. The statistical
properties of this variant of the NGF are summarized in Table 4. Interestingly
in this case the (d � 1)-faces of the simplicial complex have

⌦
kd,m � 1|"

↵
that



Manifolds in d=3 

  

In NGF with s=-1 and d=3 
also called  

Complex Quantum Network Manifolds 
the average of the generalized degree follow  

 the Fermi-Dirac, Boltzmann and Bose-Einstein 
distribution  

respectively for 
 triangular faces, links and nodes  



Emergent geometry  
at  high temperature  

s=-1 
d=2 
β=0.01



Emergent geometry at  
low temperature

s=-1 
d=2
β=5



Emergent geometry  
at  high temperature  

s=-1 
d=3 
β=0.01



Emergent geometry at  
low temperature

s=-1 
d=3 
β=5



s=-1 

s=1



Higher-order structure and dynamics
Higher -order 

networks

Simplicial 
 Topology

Simplicial 
Geometry

Higher-order 
dynamics 

Combinatorial 
Statistical  
Properties



The role of dimensionality 
in neuronal dynamics

Uloa Severino et al. Scientific Reports (2016)



Kuramoto model on a 
network

·θi = ωi + σ
N

∑
j=1

aij sin (θj − θi)1

2
3

4
5

6

7
8

θ1

ω ∼ 𝒩(Ω,1)

Given a network of N nodes  
defined by an adjacency matrix a 

we assign to each node a phase obeying 

where the internal frequencies of the nodes  
are drawn randomly from 

and  the coupling constant is 𝜎



Order parameter for 
synchronization

We consider the global order parameter R


which indicates the 


synchronisation transition


R =
1
N

N

∑
i=1

e θi𝕚

R ≃ 0 for σ < σc

R finite for σ ≥ σc
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  D=1      D=2              D=3    

Spectral dimension 
 of geometric networks and  

synchronisation

ρc(λ) ∼ λdS /2 for λ ≪ 1

A geometric network displays a  
spectral dimension if the  

density of eigenvalues  
of the Graph Laplacian scales as  

 

We consider the cumulative density  
of eigenvalues 

ρ(λ) ∼ λdS/2−1 for λ ≪ 1

Millan et al. Sci. Rep. (2018); Millan et al. PRE (2019)

NGFs spectral density



Conclusions

• Non-equilibrium models of simplicial complex is a 
fundamental approach to address the problem of emergent 
geometry and emergent community structure 

• NGF display statistical properties depending on the 
dimension of the faces that are considered 

• NGF display a dependence of their spectral dimension with 
the nature and dimension of the building block from which 
they are formed 

• NGF provide an ideal tool to study the interplay between 
network geometry and dynamics
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Network Geometry with Flavor
Consider pure cell complexes formed by gluing identical regular 

polytopes along d-1 faces 
• Starting from a single d-dimensional regular polytope  

(1) GROWTH :                                                                  
 At every timestep we add a new   d-dimension polytope  
 glued to an existing (d-1)-face). 

(2) ATTACHMENT:                              
 The probability that the new polytope will be connected to a face  𝛼 

depends on the flavor s=-1,0,1 and is given by  

 
Π[s]

α =
(1 + snα)

∑α′ 
(1 + snα′ )



 Combinatorial properties  
of simplicial complexes



Configuration model of simplicial 
complexes

For background on Maximum Entropy Models of Networks see LTTC Course   
https://www.youtube.com/channel/UCsHAVdCU5XLaBYDXoINYZvg



Entropy of ensembles of 
simplicial complexes

To every simplicial complex we associate a probability  

The entropy of the ensemble of simplicial complexes is given by 

P(𝒦)

S = − ∑
𝒦

P(𝒦)ln P(𝒦)



Constraints

We might consider simplicial complex ensemble  
with given  

Expected generalized degrees of the nodes   
or  

Given generalized degrees of the nodes  

      Soft constraints   Hard constraints 

∑
𝒦

P(𝒦)[∑
α⊃i

aα] = k̄d,0(i) ∑
α⊃i

aα = kd,0(i)

[Courtney & Bianconi (2015)]



Maximum entropy ensembles

The maximum entropy ensembles  
of simplicial complexes  

are caracterized by a probability measure given by  

      Soft constraints   Hard constraints 

P(𝒦) =
1
Z

e−∑i λi ∑α⊃i aα P(𝒦) =
1
𝒩

δ (kd,0(i), ∑
α⊃i

aα)

[Courtney & Bianconi (2015)]



Marginal

The probability of having a simplex µ is given by 

Where the Lagrangian multipliers are fixed by the constraint 

pμ =
e−∑r⊂μ λr

1 + e−∑r⊂μ λr

k̄d,0(i) = ∑
α⊃i

pα = ∑
α⊃i

e−∑r⊂α λr

1 + e−∑r⊂α λr

[Courtney & Bianconi (2015)]



Structural cutoff

€ 

The simplified formula for pµ

is valid in presence of the structural cutoff

pμ = d!
∏r⊂μ kd,0(r)

(⟨kd,0(r)⟩N)d

kd,0(r) < K with K = (
⟨kd,0(r)⟩N

d! )
1/(d+1)

[Courtney & Bianconi (2015)]



Marginal probability

pμ =
e−∑r⊂μ λr

1 + e−∑r⊂μ λr

pμ = d!
∏r⊂μ kd,0(r)

(⟨kd,0(r)⟩N)d
K = [

(⟨kd,0(r)⟩N )d

d! ]
1/(d+1)

The marginal probability of a d-dimensional simplex 𝜇 is given by 

In presence of a maximum degree K (the structural cutoff)  
the marginal can be written as 

where

[Courtney & Bianconi (2015)]



Case d=1

pij =
e−λi−λj

1 + e−λi−λj

pij =
kd,0(i)kd,0( j)

(⟨kd,0(r)⟩N) K = [(⟨kd,0(r)⟩N )]1/2

The marginal probability of a 1-dimensional simplex 𝜇 is given by 

In presence of a maximum degree K (the structural cutoff)  
the marginal can be written as 

where

[Courtney & Bianconi (2015)]



Case d=2

pijr =
e−λi−λj−λr

1 + e−λi−λj−λr

pijr = 2
kd,0(i)kd,0( j)kd,0(r)

(⟨kd,0(r)⟩N)2 K =
(⟨kd,0(r)⟩N )2/3

21/3

The marginal probability of a 2-dimensional simplex 𝜇 is given by 

In presence of a maximum degree K (the structural cutoff)  
the marginal can be written as 

where

[Courtney & Bianconi (2015)]



Ensemble of simplicial complexes

• Given the generalized degree  
    of the nodes there are in general 
    multiple ways to realize the simplicial 
     complex. 
• The information encoded  
     in the constraints is captured by the  
     entropy of the ensemble

We consider an ensemble of  
pure simplicial complexes 

formed by d-dimensional simplicies and their faces 
where each node has given generalized degree

[Courtney & Bianconi (2015)]



Construction of a  
random simplicial complex

CODE AVAILABLE AT GITHUB                  ginestrab



Matching of the stubs



�

�

Illegal matchings



Entropy of  network ensembles

Entropy of a canonical network ensemble with expected 
generalized degree sequence 

Entropy of a microcanonical network ensemble with given 
generalized degree sequence of the nodes is given by 

Where      is the total number of simplicial complexes in the 
ensemble  

S = − ∑
μ∈Sd(N)

[pμ ln pμ + (1 − pμ)ln(1 − pμ)]

Σ = ln 𝒩 = S − Ω Ω = −
N

∑
r=1

ln
1

kd,0(r)!
(kd,0(r))kd,0(r)e−kd,0(r)

𝒩



Asymptotic expression  
for the number  

of simplicial complexes  
with given  

generalized degrees of the nodes

𝒩 ∼ [(⟨k⟩N )!]d(d+1)

∏N
r=0 kd,0(r)!

1
(d!)⟨k⟩N/(d+1)

exp −
d!

2(d + 1)(⟨k⟩N )d−1 ( ⟨k2⟩
⟨k⟩ )

d+1

[Courtney & Bianconi (2015)]



From model of pure simplicial 
complexes  

to multiplex hypergraph

[Sun & Bianconi (2021)]
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Multiplex hypergraphs can sustain 
non-trivial cooperative processes 

leading to discontinuous transitions

[Sun & Bianconi (2021)]


