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Higher-order networks

Higher-order networks are characterising the
Interactions between two ore more nodes and

are formed by nodes, links, triangles,
tetrahedra etc.

d=2 simplicial complex d=3 simplicial complex



Simplicial complex models
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> Introduction to algebraic topology

> Higher-order operators and their properties

1. Topological signals

2. The Hodge Laplacian and Hodge decomposition

3. The Dirac operator

> Simplicial synchronisation and higher-order Kumamoto model



Introduction to
Algebraic Topology
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Betti number 1

Fungi network from Sang Hoon Lee, et. al. Jour. Compl. Net. (2016)



Orientation of the simplex

A m-dimensional oriented simplex « is a set of m + 1 nodes
a=[vo,vi,..., Vinls 3.1)
associated to an orientation wuch that

[VO’ V] ----- Vm] = (_1)0'(”) [vﬂ'(O)’ vﬂ'(l)’ ooog Vﬂ(m)] (3'2)

®

where o () indicates the parity of the permutation 7.

Therefore we have
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[, 71 =—1J,i] i, ),k =),k il =[k,i,j]=—1j,i,k]l = — |k, J,i] = —[i,k,J]



m-Chains

THE m-CHAINS

Given a simplicial complex, a m-chain C,, consists of the elements of a
free abelian group with basis on the m-simplices of the simplicial complex.

Its elements can be represented as linear combinations of the of all oriented

m-simplices
a=[vo,Vi,..., V] (3.6)

with coefficients in Z.



Oriented simplicial complex
and n-chains

Example of 1-chain @

a € €,

a=[1,3]—-1[2,3]+[2,4]



Boundary operator

THE BOUNDARY MAP

The boundary map 9, is a linear operator

Om : Cn — Cr—t (3.8)
whose action is determined by the action on each m-simplex of the
simplicial complex is given by

6m[VO, V] 0009 Vm] = Z(_l)p[v07 VI, © 009 VP_I, vp+1’ © 009 vm]- (3'9)
p=0

From this definition it follows that the im(d,,) corresponds to the space of
(m — 1) boundaries and the ker(d,,) is formed by the cyclic m-chains.

Special groups "
Boundary group B,, = im(d,,. )

Cycle group Zm = ker(d,,)



Boundary operator

The boundary map o, is a linear operator
an : an - an—l

whose action is determined by the action on each n-simplex of the simplicial complex

n
Opligsy-eniy) = Y (= DPligu iy ooy pulpyys-eeniy].
p=0

Therefore we have

Q—>® O ®

0,[1,2] = [2] - [1]. 0,[1,2,3] =[2,3] - [1,3] + [1,2].



The boundary of a
boundary is null

The boundary operator has the property

n-n++

Which is usually indicated by saying that the boundary of the
boundary is null.

This property follows directly from the definition of the
boundary, as an example we have

010,[1, j, k] = 0,([j, k] = [i, k] + [i, j]) = = [j] + [K] + [i] = [k] = [i] + [j] = O.



Incidence matrices

Given a basis for the n simplices and n-1 simplices
the n-boundary operator

n
Opligsy-vniy) = Yo (= DPligy iy ooy pslpyysoeesiy].
p=0

is captured by the incidence matrix B,

(121 [1,3] [23] [3.4]
1 -1 -1 0 0

@ By=021 1 0 -1 0,
31 0 1 1 -1
4 0o o0 0 1

121 1

By =[13] -1
23] 1
341 0



Boundary of the boundary
Is null

In terms of the incidence matrices the relation

0,0,.,=0 Vn>1

n-n+

Can be expressed as




Homology groups

THE HOMOLOGY GROUPS
The homology group H,, is the quotient space
ker(0,,)
im(Op+1)’
denoting homology classes of m-cyclic chains that are in the ker(d,,) and

they do differ by cyclic chains that are not boundaries of (m + 1)-chains,
i.e. they are in im(9,+1).

Hn = (3.14)

It follows that a € ker(0,,) is in the same homology class
than a + b € ker(d,,)) withb € im(9,,, )



Betti numbers

BETTI NUMBERS

The Betti number S, indicates the number of m-dimensional cavities of a
simplicial complex and is given by the rank of the homology group H,,,,
1.e.

B = rank(H,,) = rank(ker(9,,)) — rank(im(3d,+1)). (3.15)



Euler characteristic

THE EULER CHARACTERISTIC AND THE EULER-POINCARE FORMULA

The Euler characterisic y is defined as the alternating sum of the number
of m-dimensional simplices, i.e.

X=D Sm (3.16)

where s, is the number of m-dimensional simplices in the simplicial
complex. According to the Euler-Poincaré formula, the Euler characteristic
x of a simplicial complex can be expressed in terms of the Betti numbers
as

X =D (=1)"Bn. 3.17)

m>0



Persistent homology

Filtration: distance/weights

Ghrist 2008

Persistent homology Barcode




Topological clustering

The node neighbourhood is the clique simplicial complex formed by
the set of all the neighbours of a node and their connections

v,
\

<X

W

\JX (

Properties of the node Properties of the node neighbourhood
The degree ki Number of nodes 7
The local clustering coefficient Ci Density of the links p

AP Kartun-Giles et al. (2019)
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The skeleton of a simplicial complex
and Iits cligue complex

Clique Network
complex a Skeleton

Attention!
By concatenating the operations you are not guaranteed to return to the initial
simplicial complex




Higher-order communtties Inference of higher-order
[ commintes Interactions

(@) 2 communities (b) 2 communities (c) 2 communities
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Topological signals,
Hodge Laplacian

And
Dirac operator



Topological signals

Simplicial complexes and networks can sustain dynamical variables (signals)
not only defined on nodes but also defined on higher order simplices
these signals are called




Topological signals

Citations in a collaboration network

Speed of wind at given locations

Currents at given locations in the ocean
Fluxes in biological transportation networks
Synaptic signal

Edge signals in the brain



Graph Laplacian in terms of
the incidence matrix

The graph Laplacian of elements
(Lioy) ;= S5k — @
Can be expressed in terms of the 1-incidence matrix

as

_ T
Loy = BBy




Higher-order Laplacian

The higher order Laplacians can be defined in terms of the incidence
matrices as

T T
Ly =By By + B Bpy) -

The dimension of the ker(L;,) is the n-Betti number B,
The higher order Laplacian can be decomposed as

—7d up
L[n] = L[;]W” + L[n],

with
down _ pT
Lig™ = By, By,

up __ T
L[n] - B[n+1]B

[n+1]



Higher-order Laplacian

The higher order Laplacians can be defined in terms of the incidence
matrices as

T T
Ly =By By + B Bpy) -

The dimension of the ker(L;,) is the n-Betti number B,
The higher order Laplacian can be decomposed as

—7d up
L[n] = L[;]W” + L[n],

with
down _ pT
Lig™ = By, By,

up __ T
L[n] - B[n+1]B

[n+1]



Hodge decomposition

The Hodge decomposition implies that topological signals can be decomposed

in a irrotational, harmonic and solenoidal components

RP:=im(B],) @ ker(L,,) ® im(B,, )

which in the case of topological signals of the links can be sketched as

<> A

Irrotational component Harmonic component Solenoidal component
Gradient Flow Curl Flow



Apollonian and pseudo-fractal
simplicial complexes

(a) (b)

* We start at time t=1 with a single d-simplex
* At each time t>1, we glue a d-simplex
A. to every (d-1)-face added at the previous time (Apollonian simplicial complexes)

B. to every (d-1)-face of the simplicial complex (pseudo-fractal simplicial
complexes)



Higher-order spectral dimension

NGFs, Apollonian and pseudo-fractal network
do not have just a single spectral dimension

but they display a vector of spectral dimensions
— (101 4I1] [d—-2]
dg = (@, al", ..., ald=2)

with one spectral dimension for each m-order up-Laplacian



Higher-order spectral dimension
of Apollonian and Pseudo-fractal networks

dim d—2 d—3 d—4 d—5 d—-6 d—7 d—8 d-9

m—d-3 — 373813 45742 519979 570072 6.11932 647949 67959 Apo"onian
m=d—4 —  — 739962 848212 035664 100913 107253  11.2833 i o
m=d-5 — — — 11729 129719 140179 149217 15.7178 s|mp||c|a|
m—d—6 —  — — — 165732 179293 191017  20.1346

m=d-1 — — _ — 2 218337 232741 245434

m—d-8 —  — _ _ — — 274423 280478 com plexes
m=d-9 —  — _ _ _ _ 33349

dim d—2 d—3 d—4 d—5 d—6 d—-7 d—-8 d-9

m—d—2 316993 40 46438 516993 561471 60 633985 6.64386

m=d—3 — 531562 586924 628083 660535 687191 7.0075 7.29281 Pseudo-fractal
m=d—4 — — 837610 899732 949705 991547 10276 10.5934 . - .
m=d-5 — _ — 127140 137232 144689 15057  15.5463 Sim phC'aI
m=d—6 — — — — 173048 185860 195562 203283

m=d-1 — — — — — 222618 237403 24897 com plexes
m=—d—-8 — — — — — — 275667 29.1935

m=d—9 — _ _ _ — — — 331841

[M. Reitz, G. Bianconi (2020)]

Numerical evidence shows that also NGF
have different spectral dimension of higher-order Laplacians

[J.J. Torres, G. Bianconi (2020) ]



Topological Dirac operator

How to treat the interaction between topological signals of different dimensions
coexisting in the same network topology?

G. Bianconi,
Topological Dirac equation on networks and simplicial complexes (2021)




Topological spinor

On a network we consider the topological spinor

-t

Characterising the dynamical state of the topological signals of the
network, being a vector with a block structure formed by a

0-cochain and a 1-cochain
(6151\ ()(fl\
¢2 )(fz

\QbN ) \)(fl )



Topological Dirac operator on a network

We define the Dirac operator of a network is defined as
. ( 0 bB[1]>
_ *RT
withb € C, |b| = 1.

2
We have the notable property that D° = & =
0 Lo



Energy eigenstates of the
Topological Dirac Operator on real networks




Energy eigenstates of the
Topological Dirac Operator on real networks




Topological Dirac operator on a
simplicial complex

The Topological Dirac operator can be extended to higher-dimensional
simplices. For instance on a 3-dimensional simplex it is given by

( \
T
biBry 0 bpBp 0
T
0  b5Byp 0 BBy
0 0 b[’g]Bg] 0

\ )



Topological Dirac equation on simplicial
complexes

* The topological Dirac equation
can be extended to simplicial
complexes, in the case of zero
mass the eigenstates are given
by

Ey = Dy

* [t can be shown that thanks to
the Hodge decomposition this
equation leads to a multi-band
spectrum of the energy states.

1071 10° 10?
E

Multi-band eigenspectrum of the
Topological Dirac equation on a 3-dimensional NGF



Kumamoto
Model
on a network



Synchronization is a
fundamental dynamical process
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Kuramoto model on a
network

Given a network of N nodes
defined by an adjacency matrix a
we assign to each node a phase obeying

9—w+02a s1n< )

where the internal frequencies of the nodes
are drawn randomly from

w ~ N(Q,1)

and the coupling constant is ¢




Order parameter for
synchronization

We consider the global order parameter R

1.0
1 | & . 0.8
Rey 2
N | 4 0.6
i=1
o
. . . 04r
which indicates the
0.2+
synchronisation transition
0.0
0 1

R~0 for s < o,
R finite foroc > o,




The higher-order simplicial
Kuramoto model

612

How to define
the higher-order Kuramoto model
coupling higher dimensional
topological signals?




Explosive higher-order
Kuramoto model
on simplicial complexes

A. P. Millan, J. J. Torres, and G.Bianconi,
Physical Review Letters, 124, 218301 (2020)



Topological signals

Simplicial complexes can sustain dynamical variables (signals)
not only defined on nodes but also defined on higher order simplices
these signals are called topological signals




Standard Kuramoto model in
terms of incidence matrices

The standard Kuramoto model, can be expressed in terms

of the incidence matrix Byijas

. _ . T

where we have defined the vectors

0 - (91,02, ...,Qi...)T

w = (0, w,, ...,a)i...)T

and we use the notation SiIl X

to indicates the column vector where the sine function is taken element wise



Topological signals

We associate to each

n-dimensional simplex « a phase ¢ _

For instance for n=1 we might associate to each link a oscillating flux

The vector of phases is indicated by




Simplicial synchronisation

We propose to study the higher-order Kuramoto model

defined as

b A . RT T o
¢ =0 —o0B,,sinB  p—oB,;sinB,p,

where is the vector of phases associated to n-simplices

and the topological signals ad their internal frequencies are indicated by
d=0(.,0,.)7

d=(.,0,.)"

with the internal frequencies

&, ~ N(Q,1)



Topologically induced

many-body interactions
@

®

® ®

45[12] = @1y — 0 SIN(Pp3) — Pz + Ppiny) — 0 [sin(¢[12] — ¢z + sin(@y 3 + ¢[12])],
45[13] = py3)+ o 8in(P3) — Pz + droy) — 0 [sin(¢[13] + ¢pop) + sin(Pyy3) + Pz — ¢[34])],
€b[23] = 03[23] — o sin(@pp3) — Pz + Ppz) — 0 [sin(d)[23] — ¢z +sin(@py3) + Pz — ¢[34])],
Praa) = Dp3q — 0 [sin(Paq)) — sin(py3) + Ppaz) — Py



If we define a higher-order Kuramoto model on
n-simplices,
(let us say links, n=1) a key question is:
What is the dynamics induced
on (n-1) faces and (n+1) faces?

i.e. what is the dynamics induced on nodes and triangles?

Edge dynamics Upward projection Downward projection



Projected dynamics on
n-1 and n+1 faces

A natural way to project the dynamics is to use the
incidence matrices obtaining

¢[+] — BE;l+1]¢ Discrete curl

¢ =l = B[n]¢ Discrete divergence



Projected dynamics on
n-1 and n+1 faces

Thanks to Hodge decomposition,
the projected dynamics
on the (n-1) and (n+1) faces

decouple

i+] — pT A [down] o; [+]
¢ =B, @ aL[n+1] sin(gp'™)

$1) = By — oLl sin(p!)




Simplicial Synchronization
transition
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Order parameters using the
n-dimensional phases

L |
Rzﬁn ;e"a
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Order parameters using the
n-dimensional phases
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Only if we perform
the correct topological filtering
of the topological signal

we can reveal higher-order synchronisation



Explosive simplicial
synchronisation

We propose the Explosive Higher-order Kuramoto model

defined as

i A _ - T +IpT o
P=w-— oR! ]B[n+1] sin B[nH]qb — oR! ]B[n] sin B[n](/)




Projected dynamics

The projected dynamics on
(n+1) and (n-1) are now coupled

by their order parameters

plt] — BT 5 — ARy [down] s [+]
¢ =B ;@ —oR L[n+1] sin(gh'™)

pl—1 — N [+1y [wp] [—]
¢ =B, @ —oR L[n_l] sin(¢h'™)




The explosive
simplicial synchronisation transition

f |+ Simple
/ |+ Explosive




Order parameters
associlated to n-faces

——Simple

0.8 —Explosive

0.6

0.4

0.2




Higher-order synchronisation
on real Connectomes
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Coupling topological signals
of different dimer)sion

R. Ghorbanchian, J. Restrepo, J.J. Torres and G. Bianconi (2020)



Explosive synchronisation of
globally coupled topological signals
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Annealed solution on
random networks

The annealed solution Poisson network Power-law network

captures 10 , 10 ‘
the backward transition s | 08 ,/

°0.6 [ 00‘6
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04 0.2 ¢
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Dirac synchronisation

Dirac synchronization 1.0
0.8

(a)

—— Ra forward
o Ra backward

— — Theory - forward
—— Theory - backward

couples topological signals .
of different dimensions locally and topologically sl

using the Dirac operator

Dirac synchronisation is explosive
with a thermodynamically histeresis loop

The order parameter involves
a linear combination of
signals of the nodes and signals of the links
(projected on the nodes)




Dirac synchronisation

Dirac synchronisation leads
to the emergence of rhythmic phase in which
the order parameter acquires spontaneously
a dynamical phase in the rotating frame,
l.e. in the frame
in which in average the intrinsic phases
have zero average.

The rhythmic phase in the Dirac synchronisation
sheds light
on topological mechanisms
for the emergence of brain rhythms

1.0

0.5

0.0+

Im X

-0.5¢

1.0



Higher-order structure and dynamics
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Co-location and non-linear infection
Kernels in epidemic spreading processes

Co-location affects epidemic spreading
Susceptible
It can be modelled
by a temporal hypergraph

Infected

P . Threshold effects are
important factors that can lead to
non-linear infection kernels

G. St-Onge et al. Phys. Rev. Lett. (2021)




Multiplex Hypergraphs

@)

(©)

Multiplex Hypergraphs
are formed by layers each capturing
interaction of a given order

Higher-order percolation problems

including cooperative effects
are discontinuous

H. Sun and GB PRE (2021)



Triadic interactions induce

blinking and chaos

in connectivity of higher-order networks
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H. Sun, F. Radicchi, J. Kurths and G. Bianconi (2022)



Conclusions

Simplicial synchronisation
IS able to capture the synchronisation of
topological signals of higher dimension.

It can be detected by monitoring
the irrotational and the solenoidal components of
the topological signal.

Dirac synchronisation coupling locally
topologically signals of different dimensions
IS explosive
and gives rise of rhythmic phase
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