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Abstract. We discuss recent advancements in dimension theory related to

tangents. Our main conclusion is that for self-affine sets, the maximal Hausdorff

dimension of a tangent is equal to the Assouad dimension.
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1. Introduction

One of the fundamental geometric objects in analysis is the notion of a tangent.

Often, tangents will exhibit substantially more regularity than the original object:

for example, manifolds or rectifiable sets appear almost linear at almost every

point and at sufficiently high resolutions. As we will see, tangents also provide

a useful focal point for for discussing and defining purely “local” properties of a

given object.

A old observation, and one which we find particularly motivating for these notes,

is that the theory of tangents is indeed still very rich even for sets without global

regularity. This is the case for many sets in fractal geometry, and we will see that a

robust theory of tangents is a useful viewpoint to understand both fractal sets with

structure (for instance, some form of dynamical invariance) and without structure.

The primary goal of this survey is to explore the relationship between tangents

and geometry, and to see how structure can arise at microscopic resolutions which

is not visible at macroscopic scales. We will see how tangents relate to the As-

souad dimension, which is a coarse measurement of scaling which arose naturally

in embedding theory, and also how tangents provide a robust language to quan-

tify inhomogeneity in sets which are otherwise relatively homogeneous (such as

overlapping self-similar sets, or self-affine sets).

In Section 2, we cover the necessary preliminaries, Section 3 then introduces the

Assouad dimension and its fundamental properties, as well as defines the notion of

a weak tangent. The main result in this section is that the Assouad dimension of

any weak tangent is bounded above by the Assouad dimension of the original set.

Moving on to Section 4, we focus our attention on self-similar and self-affine sets.

We review some results on separation conditions for self-similar sets in the real

line, with a particular focus on those separation conditions which are relevant for

Assouad dimension. We show that a self-similar set in the real line which does

not satisfy the weak separation condition has a weak tangent which is an interval.

In particular, the Assouad dimension of such a self-similar set is 1. We then use

this result to construct a planar self-similar set whose Assouad dimension increases

under an orthogonal projection.
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In Section 5, we show that the maximal Hausdorff dimension of weak tangents is

the Assouad dimension. Actually, we show that there exists a weak tangent with

Hausdorff content (at the exponent given by the Assouad dimension) at least 1.

We use this result to obtain a lower bound for the Assouad dimension of typical

orthogonal projections.

Finally, in Section 6, we define the notion of a tangent and prove that any set

for which the Assouad dimension is in a certain sense topologically stable that the

maximal Hausdorff dimension of tangents is equal to the Assouad dimension. In

particular, this result applies to self-affine sets. As an example, we also provide a

careful study of a particular family of self-affine sets: Bedford–McMullen carpets.

2. Hausdorff content and dimension

2.1. Density result for Hausdorff content. For 0 < δ ⩽ ∞, we define the

s-dimensional Hausdorff δ-content of X ⊂ Rd is

Hs
δ(X) = inf

{∑
i

diam(Ui)
s : X ⊂

⋃
i

Ui and diam(Ui) ⩽ δ

}
.

Note that the Hausdorff content can be equivalently defined by using covers

consisting only of open sets or closed balls. The Hausdorff content is an outer

measure—but we emphasize that is highly non-additive and not a Borel measure.

Since the infimum is monotone with respect to inclusion, we have Hs
η(X) ⩽ Hs

δ(X)

whenever 0 < δ ⩽ η. The s-dimensional Hausdorff measure of X ⊂ Rd is

Hs(X) = lim
δ↓0

Hs
δ(X) = sup

δ>0
Hs

δ(X).

The Hausdorff measure Hs is a Borel measure such that for every X ⊂ Rd there is

a Borel set X ′ ⊃ X such that Hs(X ′) = Hs(X). It is straightforward to see that

Hs(X) = 0 if and only if Hs
∞(X) = 0.

Let us denote the Lebesgue measure on Rd by Ld. Recall by the translation

invariance and the scaling stability of the Lebesgue measure,

Ld(B(x, r)) = rdα(d) (2.1)
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for all x ∈ Rd and r > 0, where B(x, r) is the closed ball centered at x with radius

r and α(d) = Ld(B(0, 1)) is the volume of the unit ball.

Lemma 2.1. If 0 ⩽ s ⩽ d, then Hs
∞(B(x, r)) = 2srs for all x ∈ Rd and r > 0.

Proof. By the definition of the Hausdorff content, we have Hs
∞(B(x, r)) ⩽ 2srs.

Therefore, it suffices to show the other inequality. Let {B(xi, ri)}i be a countable

cover of B(x, r). Notice that, by (2.1), we have

r = α(d)−
1
dLd(B(x, r))

1
d

for all x ∈ Rd and r > 0. Therefore, by the fact that 0 ⩽ s
d
⩽ 1, the subadditivity

and monotonicity of the Lebesgue measure imply∑
i

(2ri)
s = 2sα(d)−

s
d

∑
i

Ld(B(xi, ri))
s
d ⩾ 2sα(d)−

s
d

(∑
i

Ld(B(xi, ri))

) s
d

⩾ 2sα(d)−
s
dLd

(⋃
i

B(xi, ri)

) s
d

⩾ 2sα(d)−
s
dLd(B(x, r)

s
d = 2srs.

Since this holds for all countable covers {B(xi, ri)}i, we getHs
∞(B(x, r)) ⩾ 2srs. □

The following theorem is a density result for the Hausdorff content.

Theorem 2.2. If X ⊂ Rd and Hs(X) <∞, then

1 ⩽ lim sup
r↓0

Hs
∞(X ∩B(x, r))

rs
⩽ 2s

for Hs-almost all x ∈ X.

Proof. The upper bound follows from the monotonicity of the Hausdorff content

and Lemma 2.1. To see the lower bound, we prove that the set

A =

{
x ∈ X : lim sup

r↓0

Hs
∞(X ∩B(x, r))

rs
< 1

}
satisfies Hs(A) = 0. Notice that A ⊂

⋃
n∈NA 1

n
, 1
n
, where

Aλ,δ = {x ∈ X : Hs
∞(X ∩B(x, r)) ⩽ (1− λ)rs for all 0 < r ⩽ δ}
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defined for all 0 < λ, δ ⩽ 1 satisfies Aλ,λ ⊂ Aλ,δ whenever δ ⩽ λ. We observe that

it suffices to show that

Hs
δ(Aλ,δ) = 0 (2.2)

for all 0 < λ, δ ⩽ 1. Assuming this, monotonicity of the Hausdorff content gives

Hs
δ(A 1

n
, 1
n
) ⩽ Hs

δ(A 1
n
,δ) = 0 for all 0 < δ ⩽ 1

n
and, by letting δ ↓ 0, the subadditivity

of the Hausdorff measure implies Hs(A) ⩽
∑

n∈N Hs(A 1
n
, 1
n
) = 0 as required.

To show (2.2), fix 0 < λ, δ ⩽ 1 and let ε > 0. Let {Ui}i be a cover of Aλ,δ such

that Aλ,δ ∩ Ui ̸= ∅ with 0 < diam(Ui) ⩽ δ for all i and∑
i

diam(Ui)
s ⩽ Hs

δ(Aλ,δ) + ε.

Then Hs
δ(Aλ,δ ∩ Ui) = Hs

∞(Aλ,δ ∩ Ui) and Aλ,δ ∩ Ui ⊂ X ∩B(xi, diam(Ui)), where

xi ∈ Aλ,δ ∩ Ui. By the subadditivity and monotonicity of the Hausdorff content,

we thus have

Hs
δ(Aλ,δ) ⩽

∑
i

Hs
δ(Aλ,δ ∩ Ui) =

∑
i

Hs
∞(Aλ,δ ∩ Ui)

⩽
∑
i

Hs
∞(X ∩B(xi, diam(Ui))) ⩽ (1− λ)

∑
i

diam(Ui)
s

⩽ (1− λ)(Hs
δ(Aλ,δ) + ε).

By letting ε ↓ 0, we get Hs
δ(Aλ,δ) ⩽ (1− λ)Hs

δ(Aλ,δ). Since Hs
δ(Aλ,δ) ⩽ Hs(Aλ,δ) ⩽

Hs(X) < ∞ by the monotonicity of the Hausdorff measure, we see that this is

possible only when Hs
δ(Aλ,δ) = 0. □

2.2. Hausdorff measure and Ahlfors regularity. If X ⊂ Rd is a Borel set,

then the Hausdorff measure satisfies

Hs(X) = sup{Hs(K) : K ⊂ X is compact such that Hs(K) <∞}; (2.3)

see, for example, Mattila [28, Theorem 8.13]. It is easy to see thatH0 is the counting

measure and H1 is the length measure. Relying on the isodiametric inequality,

it can be shown that Hd = 2dα(d)−1Ld; see Evans and Gariepy [6, Theorem 2.5].

By (2.1) and Lemma 2.1, we thus have Hd(B(x, r)) = 2drd = Hd
∞(B(x, r)) for all

x ∈ Rd and r > 0. Furthermore, if f : X → Rd is a Lipschitz map, i.e. there is
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λ > 0 such that

|f(x)− f(y)| ⩽ λ|x− y|

for all x, y ∈ X, then it follows easily that

Hs(f(X)) ⩽ λsHs(X). (2.4)

In particular, if f : X → Rd is a bi-Lipschitz map, i.e. there are η, λ > 0 such that

η|x− y| ⩽ |f(x)− f(y)| ⩽ λ|x− y|

for all x, y ∈ X, then, by applying (2.4) to the inverse f−1 : f(X) → X, we have

ηsHs(X) ⩽ Hs(f(X)) ⩽ λsHs(X). (2.5)

It follows that the Hausdorff measure Hs is translation and rotation invariant, and

is also stable under scaling:

Hs(X + z) = Hs(X) and Hs(λX) = λsHs(X), (2.6)

where X + z = {x+ z : x ∈ X} and λX = {λx : x ∈ X}. We note that (2.4)–(2.6)

are valid also for the Hausdorff content. For a detailed treatment of basic properties

of the Hausdorff measure, the reader is referred to Evans and Gariepy [6, §2],
Falconer [10, §2], and Mattila [28, §4].

The properties of the Hausdorff measure can be studied by finding general

measures with certain behavior. We say that a Borel measure µ on Rd is Ahlfors

s-regular if there is C ⩾ 1 such that

C−1rs ⩽ µ(B(x, r)) ⩽ Crs

for all x ∈ spt(µ) and 0 < r < diam(spt(µ)). A compact set X ⊂ Rd is Ahlfors

s-regular if it supports an Ahlfors s-regular measure. A Borel measure µ satisfying

µ(B(x, r)) ⩽ Crs for all x ∈ Rd and r > 0 is called an s-Frostman measure.

Theorem 2.3. Let µ be a finite Borel measure on Rd, X ⊂ Rd be a Borel set, and

0 < C <∞.

(1) If for every x ∈ X it holds that

lim sup
r↓0

µ(B(x, r))

rs
⩽ C,
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then Hs(X) ⩾ C−1µ(X).

(2) If for every x ∈ X it holds that

lim sup
r↓0

µ(B(x, r))

rs
⩾ C−1,

then Hs(X) ⩽ 2sCµ(X).

Proof. (1) Fix ε > 0 and write

Xn = {x ∈ X : µ(B(x, r)) ⩽ (C + ε)rs for all 0 < r ⩽ 1
n
}

for all n ∈ N. Notice that X1 ⊂ X2 ⊂ · · · and, by the assumption, X =
⋃

n∈NXn.

Let {Ui}i be a cover of X such that diam(Ui) ⩽ 1
n
for all i. For every i and n with

Ui ∩Xn ̸= ∅ we choose xi,n ∈ Ui ∩Xn. Then clearly

Xn ⊂
⋃

i :Ui∩Xn ̸=∅

Ui ⊂
⋃

i :Ui∩Xn ̸=∅

B(xi,n, diam(Ui))

and hence, by the definition of Xn,

µ(Xn) ⩽
∑

i :Ui∩Xn ̸=∅

µ(B(xi,n, diam(Ui))) ⩽ (C + ε)
∑
i

diam(Ui)
s

for all n ∈ N. Since this holds for any 1
n
-cover of X, it follows that µ(Xn) ⩽

(C+ε)Hs
1
n

(X) ⩽ (C+ε)Hs(X). Therefore, µ(X) = limn→∞ µ(Xn) ⩽ (C+ε)Hs(X)

and the claim follows by letting ε ↓ 0.

(2) Let ε > 0. By Mattila [28, Theorem 1.10(2)], there exists an open set U ⊃ X

such that µ(U \X) < ε. Fix δ > 0 and define

B = {B(x, r) ⊂ U : x ∈ X, 0 < 2r ⩽ δ, and µ(B(x, r)) ⩾ (C−1 − ε)rs}.

Notice that, by the assumption, X ⊂
⋃

B∈B B and inf{r > 0 : B(x, r) ∈ B} = 0

for all x ∈ X. Let K ⊂ X be a compact set such that Hs(K) < ∞. By Vitali’s

covering theorem for Radon measures, see Mattila [28, Theorem 2.8], there are

pairwise disjoint balls B1, B2, . . . ∈ B such that Hs(K \
⋃

i∈NBi) = 0. Since the
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Hausdorff content is subadditive, we get

Hs
δ(K) ⩽ Hs

δ

(⋃
i∈N

Bi

)
⩽

∑
i∈N

diam(Bi)
s ⩽ 2s(C−1 − ε)−1

∑
i∈N

µ(Bi)

⩽ 2s(C−1 − ε)−1µ(U) ⩽ 2s(C−1 − ε)−1(µ(X) + ε).

By letting δ ↓ 0 and ε ↓ 0, we see that Hs(K) ⩽ 2sCµ(X). Since this holds for all

compact sets K ⊂ X with Hs(K) <∞, the claim follows from (2.3). □

For more details on densities, the reader is referred to Mattila [28, §6] and
Käenmäki [20]. Theorem 2.3 has numerous consequences. The first is an observation

that the Hausdorff measure restricted to the Ahlfors regular set is Ahlfors regular.

Theorem 2.4. A compact set X ⊂ Rd is Ahlfors s-regular if and only if there is

C ⩾ 1 such that

C−1rs ⩽ Hs(X ∩B(x, r)) ⩽ Crs

for all x ∈ X and 0 < r < diam(X).

Proof. Since the restriction Hs|X is a Borel measure, it suffices to prove that the

Ahlfors regularity of X implies the Ahlfors regularity of Hs|X . Suppose that µ is a

Borel measure supported on X and C ⩾ 1 such that

C−1rs ⩽ µ(B(x, r)) ⩽ Crs (2.7)

for all x ∈ X and 0 < r < diam(X). By Theorem 2.3 and (2.7), we have

C−2rs ⩽ C−1µ(B(x, r)) ⩽ Hs(X ∩B(x, r)) ⩽ 2sCµ(B(x, r)) ⩽ 2sC2rs

for all x ∈ X and 0 < r < diam(X). □

The second consequence is that we can replace the Hausdorff content in Theo-

rem 2.2 by the Hausdorff measure.

Theorem 2.5. If X ⊂ Rd and Hs(X) <∞, then

1 ⩽ lim sup
r↓0

Hs(X ∩B(x, r))

rs
⩽ 2s

for Hs-almost all x ∈ X.
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Proof. By Theorem 2.2 and the fact that Hs
∞(A) ⩽ Hs(A) for all sets A ⊂ Rd, it

suffices to prove the right-hand side inequality. Suppose to the contrary that there

are λ > 2s and a Borel set A ⊂ X with Hs(A) > 0 such that

lim sup
r↓0

Hs|X(B(x, r))

rs
⩾ λ

for all x ∈ A, where Hs|X is the restriction of Hs to X. By Theorem 2.3(2), it

follows that Hs(A) ⩽ 2sλ−1Hs|X(A) < Hs(A) which is a contradiction. □

The third consequence is an observation that every set with positive Hausdorff

measure supports a Frostman measure.

Theorem 2.6. A Borel set X ⊂ Rd satisfies Hs(X) > 0 if and only if there exists

an s-Frostman measure µ such that µ(X) > 0.

Proof. Let us first assume that there are a Borel measure µ satisfying µ(X) > 0

and a constant C ⩾ 1 such that µ(B(x, r)) ⩽ Crs for all x ∈ Rd and r > 0.

Choose R > 0 such that µ(X ∩B(0, R)) > 0 and let ν = µ|B(0,R) be the restriction

of µ to B(0, R). Since ν(B(x, r)) ⩽ Crs for all x ∈ Rd and r > 0 and, in

particular, ν(Rd) ⩽ CRs < ∞, Theorem 2.3(1) gives Hs(X) ⩾ C−1ν(X) =

C−1µ(X ∩B(0, R)) > 0 as required.

To prove the other direction, suppose that Hs(X) > 0. Recalling (2.3), let

K ⊂ X be a compact set such that 0 < Hs(K) <∞. By Theorem 2.5, the set

K ′ =

{
x ∈ K : lim sup

r↓0

Hs|K(B(x, r))

rs
⩽ 2s

}
satisfies Hs(K \K ′) = 0. By Egorov’s theorem, we find a compact set K0 ⊂ K ′

with Hs(K0) > 0 and r0 > 0 such that Hs(K ∩ B(x, r)) ⩽ 21+srs for all x ∈ K0

and 0 < r < r0. Writing µ = Hs|K0 , we thus have µ(K0) > 0 and

µ(B(x, r)) ⩽ Hs(K ∩B(x, r)) ⩽ 21+srs

for all x ∈ Rd and 0 < r < r0. Since

µ(B(x, r))

rs
⩽

Hs(K)

rs0
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for all x ∈ Rd and r ⩾ r0, we have shown that µ is an s-Frostman measure with

µ(X) ⩾ µ(K0) > 0. □

Theorem 2.3 is also required in proving the variational principle for the Hausdorff

dimension, i.e. connecting Hausdorff dimensions of measures and their supports.

2.3. Hausdorff dimension. Suppose that X ⊂ Rd and 0 ⩽ s < t < ∞. It is

straightforward to see that if Hs(X) < ∞, then Ht(X) = 0, and if Ht(X) > 0,

then Hs(X) = ∞. The Hausdorff dimension of X is

dimH(X) = inf{s ⩾ 0 : Hs(X) <∞} = inf{s ⩾ 0 : Hs(X) = 0}

= sup{s ⩾ 0 : Hs(X) = ∞} = sup{s ⩾ 0 : Hs(X) > 0},

where we interpret sup ∅ = 0. For example, if X is Ahlfors s-regular, then, by

Theorem 2.4, dimH(X) = s. Monotonicity of the Hausdorff measure implies that

the Hausdorff dimension is monotone, i.e.

dimH(X) ⩽ dimH(X
′)

whenever X ⊂ X ′ ⊂ Rd. Therefore, by the subadditivity of the Hausdorff measure,

the Hausdorff dimension is countably stable, i.e.

dimH

(⋃
i∈N

Xi

)
= sup

i∈N
dimH(Xi)

for all X1, X2, . . . ⊂ Rd. As a single point clearly has H0 measure one, countable

stability implies that any countable set has zero Hausdorff dimension. It is easy

to see that the Hausdorff dimension gives maximal dimension to open sets, i.e.

dimH(U) = d for all open sets U ⊂ Rd. Hence, dimH(Q) = dimH(R) = 1 >

0 = dimH(Q) and the Hausdorff dimension is not stable under taking closure.

Furthermore, if f : X → Rd is a Lipschitz map, then it follows immediately from

(2.4) that

dimH(f(X)) ⩽ dimH(X).

We thus see that orthogonal projections cannot increase the Hausdorff dimension.

If f : X → Rd is a bi-Lipschitz map, then (2.5) implies that

dimH(f(X)) = dimH(X).
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In other words, the Hausdorff dimension is invariant under bi-Lipschitz maps. For

a detailed treatment of basic properties of the Hausdorff dimension, the reader is

referred to Falconer [10, §2] and Mattila [28, §4].

Suppose that µ is a Borel measure on Rd. The lower pointwise dimension of µ

at x ∈ Rd is

dimloc(µ, x) = lim inf
r↓0

log µ(B(x, r))

log r

and the upper Hausdorff dimension of µ is

dimH(µ) = ess sup
x∼µ

dimloc(µ, x).

For example, if µ is Ahlfors s-regular, then dimH(µ) = s. For more details on

pointwise dimensions, the reader is referred to Falconer [9, §10]. The following

variational principle is well-known in a form where the maximum is replaced by a

supremum. Since the question whether the supremum can be attained does not

seem to be so well documented, we modify Falconer, Fraser, and Käenmäki [11,

Theorem 3.1] and present the full details in the following.

Theorem 2.7. If X ⊂ Rd is a Borel set, then

dimH(X) = max{dimH(µ) : µ is a finite Borel measure on X}.

Proof. Fix a finite Borel measure µ supported on X and let s < dimH(µ). Choose a

Borel set A ⊂ X such that µ(A) > 0 and dimloc(µ, x) > s for all x ∈ A. It follows

that

lim sup
r↓0

µ(B(x, r))

rs
⩽ 1

for all x ∈ A and hence, by Theorem 2.3(1), Hs(X) ⩾ Hs(A) ⩾ µ(A) > 0 and

dimH(X) ⩾ s. By letting s ↑ dimH(µ), we see that dimH(X) ⩾ dimH(µ). Therefore,

to prove the claim, it suffices to find a finite Borel measure µ supported on X such

that dimH(X) ⩽ dimH(µ).

Write sn = dimH(X) − 1
n
for all n ∈ N. Recall that, by (2.3), for each n ∈ N

there exists a compact set Kn ⊂ X such that 0 < Hsn(Kn) <∞. Define

µn =
Hsn|Kn

Hsn(Kn)
and µ =

∑
n∈N

2−nµn,
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and note that µ is a Borel probability measure. Let s > dimH(µ) and notice that

the set

A = {x ∈ X : dimloc(µ, x) ⩽ dimH(µ)}

has full measure, µ(A) = 1. It follows that dimloc(µ, x) < s and

lim sup
r↓0

µ(B(x, r))

rs
⩾ 1

for all x ∈ A and hence, by Theorem 2.3(2), Hs(A) ⩽ 2sµ(A) <∞ and dimH(A) ⩽

s. By letting s ↓ dimH(µ), we see that dimH(A) ⩽ dimH(µ). Since 1 = µ(A) =∑
n∈N 2

−nµn(A), we have µn(A) = 1 and Hsn(Kn ∩ A) = Hsn(Kn) for all n ∈ N.
Therefore, Hsn(A) ⩾ Hsn(Kn∩A) = Hsn(Kn) > 0 and dimH(A) ⩾ sn = dimH(X)−
1
n
for all n ∈ N. It follows that dimH(X) ⩽ dimH(A) ⩽ dimH(µ). □

3. Assoud dimension and weak tangents

3.1. Assouad dimension. For a bounded set A ⊂ Rd, the r-covering number of

A, i.e.

Nr(A) = min

{
k ∈ N : A ⊂

k⋃
i=1

B(xi, r) for some x1, . . . , xk ∈ Rd

}
,

is the least number of closed balls of radius r > 0 needed to cover A. The Assouad

dimension of X ⊂ Rd is

dimA(X) = inf

{
s ⩾ 0 : there is C ⩾ 1 such that for every 0 < r < R ⩽ 1

and x ∈ X it holds that Nr(X ∩B(x,R)) ⩽ C
(R
r

)s
}
.

It follows immediately that the Assouad dimension is monotone, i.e.

dimA(X) ⩽ dimA(X
′)

whenever X ⊂ X ′ ⊂ Rd. It is thus easy to see that the Assouad dimension is

finitely stable, i.e.

dimA(X ∪X ′) = max{dimA(X), dimA(X
′)}
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for all X,X ′ ⊂ Rd. It is also straightforward to see that

dimA(X ×X ′) ⩽ dimA(X) + dimA(X
′) (3.1)

for all X,X ′ ⊂ Rd. The inequality in (3.1) can be strict; see Robinson [30, §9.2].
The Assouad dimension is stable under taking closure, i.e. dimA(X) = dimA(X)

for all X ⊂ Rd, and it gives maximal dimension to open sets, i.e. dimA(U) = d

for all open sets U ⊂ Rd. Hence, dimA(Q) = dimA(Q) = dimA(R) = 1 and the

Assouad dimension is not countably stable since a single point clearly has zero

Assouad dimension. On a related note, it is illustrative and straightforward to see

that dimA({ 1
n
: n ∈ N}) = 1 and dimA({ 1

2n
: n ∈ N}) = 0. Finally, the Assouad

dimension is invariant under bi-Lipschitz maps, i.e.

dimA(f(X)) = dimA(X)

for all X ⊂ Rd and bi-Lipschitz maps f : X → Rd. For a detailed treatment of

basic properties of the Assouad dimension, the reader is referred to Luukkainen

[25, §3] and Fraser [15, §2].

The following lemma shows that the Hausdorff dimension is bounded above by

the Assouad dimension.

Lemma 3.1. If X ⊂ Rd, then dimH(X) ⩽ dimA(X).

Proof. By the countable stability of the Hausdorff dimension, it suffices to show

that

dimH(X ∩B(x, 1)) ⩽ dimA(X)

for all x ∈ X. Let s > dimA(X) and notice that, by the definition of the Assouad

dimension, there exists C ⩾ 1 such that for every x ∈ X and 0 < r < 1 we have

Nr(X ∩B(x, 1)) ⩽ C
(1
r

)s

.

Hence, by the definition of the Hausdorff content,

Hs
r(X ∩B(x, 1)) ⩽ Nr(X ∩B(x, 1))(2r)s ⩽ 2sC.

By letting r ↓ 0, we get Hs(X ∩ B(x, 1)) < ∞ and dimH(X ∩ B(x, 1)) ⩽ s. The

claim follows by letting s ↓ dimA(X). □
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The following result shows that on Ahlfors regular sets the dimensions coincide.

Lemma 3.2. If X ⊂ Rd is Ahlfors s-regular, then dimH(X) = dimA(X) = s.

Proof. By Theorem 2.4, we have dimH(X) = s. Therefore, by Lemma 3.1, it is

enough to show that dimA(X) ⩽ s. Fix x ∈ X and 0 < r < R ⩽ 1. Let {xi}i∈I ⊂
X ∩B(x,R) be a maximal collection of points such that the family {B(xi,

r
2
)}i∈I is

pairwise disjoint. Note that, by maximality, we have X ∩B(x,R) ⊂
⋃

i∈I B(xi, r).

Since
⋃

i∈I X ∩B(xi,
r
2
) ⊂ X ∩B(x, 2R), it follows from Theorem 2.4 that there is

C ⩾ 1 such that

C−1#I( r
2
)s ⩽

∑
i∈I

Hs(X ∩B(xi,
r
2
)) = Hs

(⋃
i∈I

X ∩B(xi,
r
2
)

)
⩽ Hs(X ∩B(x, 2R)) ⩽ C(2R)s.

It follows that Nr(X ∩B(x,R)) ⩽ #I ⩽ 4sC2(R
r
)s and dimA(X) ⩽ s. □

3.2. Weak tangents. Let X ⊂ Rd be closed and K(X) = {K ⊂ X is compact}.
The Hausdorff distance dH : K(X)×K(X) → [0,∞) is defined by setting

dH(A,B) = max{sup
x∈A

dist(x,B), sup
y∈B

dist(y, A)}

for all A,B ∈ K(X). It is easy to see that K(X) equipped with the Hausdorff

distance is a complete metric space; consult e.g. Edgar [5, §2.5]. Furthermore, the

topology generated by the Hausdorff distance is the Vietoris topology whose basis

consists of sets of the form

⟨U1, . . . , Un⟩ =
{
K ∈ K(X) : K ⊂

n⋃
i=1

Ui and Ui ∩K ̸= ∅ for all i

}
,

where U1, . . . , Un are non-empty open subsets of X. The following result is proved

by Mattila and Mauldin [29, Theorem 2.1].

Lemma 3.3. If X ⊂ Rd is closed, then the function Hs
∞ : K(X) → [0,∞) is upper

semicontinuous.

Proof. Let K ∈ K(X) and notice that Hs
∞(K) ⩽ diam(K)s < ∞. Fix c ∈ [0,∞).

By the definition of the Hausdorff content and compactness ofK, we haveHs
∞(K) <
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c if and only if there are open sets U1, . . . , Un intersecting K such that

K ⊂
n⋃

i=1

Ui and
n∑

i=1

diam(Ui)
s < c.

Since the set ⟨U1, . . . , Un⟩, where
∑n

i=1 diam(Ui)
s < c, is open in the Vietoris

topology, we conclude that {K ∈ K(X) : Hs
∞(K) < c} is open and the function

Hs
∞ : K(X) → [0,∞) is upper semicontinuous. □

For each x ∈ X and r > 0 the magnification at x by r is the homothety

Mx,r : Rd → Rd for which

Mx,r(z) =
z − x

r

for all z ∈ Rd. A set T ⊂ Rd is a weak tangent of X if there are sequences (xn)n∈N

of points in X and (rn)n∈N of positive reals such that limn→∞ rn = 0 and

Mxn,rn(X) ∩B(0, 1) → T

in Hausdorff distance. We denote the collection of all weak tangents of X by

Tan(X). The following lemma, proved by Käenmäki and Rossi [22, Lemma 3.11],

shows that weak tangents of weak tangents are weak tangents.

Lemma 3.4. If X ⊂ Rd is closed, then Tan(Tan(X)) ⊂ Tan(X).

Proof. Fix T ∈ Tan(X) and T ′ ∈ Tan(T ). Let (Mn)n∈N and (Ln)n∈N be sequences

of homotheties such that

Mn(X) ∩B(0, 1) → T and Ln(T ) ∩B(0, 1) → T ′

in Hausdorff distance. Let ε > 0 and choose N such that

dH(T
′, LN(T ) ∩B(0, 1)) <

ε

2
.

Write LN(x) = λNx+ tN and choose P such that

dH(T,MP (X) ∩B(0, 1)) <
ε

2λN
.

It follows that

dH(T
′, LN ◦MP (X) ∩B(0, 1)) < ε.

The claim follows by letting ε ↓ 0. □
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For positive Hausdorff measure sets, the following lemma, proved by Käenmäki

and Rutar [23, Lemma 2.6], shows the existence of a weak tangent set having

Hausdorff content bounded from below.

Lemma 3.5. If X ⊂ Rd is closed and Hs(X) > 0, then there exists T ∈ Tan(X)

such that Hs
∞(T ) ⩾ 1.

Proof. Recalling (2.3), let K ⊂ X be a compact set such that 0 < Hs(K) < ∞.

By Theorem 2.2, we have

lim sup
r↓0

Hs
∞(K ∩B(x, r))

rs
⩾ 1

forHs-almost all x ∈ K. Fix such a point x ∈ K. Noticing thatMx,r(K)∩B(0, 1) =

r−1(K − x) ∩B(0, 1) = r−1((K ∩B(x, r))− x) and recalling (2.6), we can rewrite

the above inequality as

lim sup
r↓0

Hs
∞(Mx,r(K) ∩B(0, 1)) ⩾ 1.

Since Hs
∞ : K(K) → [0,∞) is upper semicontinuous by Lemma 3.3, there are

T ′ ∈ Tan(K) and a sequence (rn)n∈N of positive reals such that limn→∞ rn = 0,

Mx,rn(K) ∩B(0, 1) → T ′

in Hausdorff distance, and Hs
∞(T ′) ⩾ 1. Since Mx,rn(K) ∩ B(0, 1) ⊂ Mx,rn(X) ∩

B(0, 1) for all n ∈ N and, by possibly going into a subsequence, there is T ∈ Tan(X)

such that

Mx,rn(X) ∩B(0, 1) → T

in Hausdorff distance, we have T ′ ⊂ T by compactness. Hence, by the monotonicity

of the Hausdorff content, Hs
∞(T ) ⩾ Hs

∞(T ′) ⩾ 1. □

Our goal is to generalize the previous lemma to show the existence of such a

weak tangent set when the parameter s is the Assouad dimension. This goal will

be achieved in Theorem 5.7. To that end, we compare the Assouad dimensions of

a set and its weak tangent sets.

Let Q ∩ [0, 1] = {qi : i ∈ N} be an enumeration of rationals in the unit interval

and Xn = {qi : i ∈ {1, . . . , n}} be a finite set in [0, 1]. The Assouad dimension
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is finitely stable and we have dimA(Xn) = 0 for all n ∈ N. Since Xn → [0, 1] in

Hausdorff distance and dimA([0, 1]) = 1, we see that the Assouad dimension is

not necessarily continuous with respect to the Hausdorff distance1. The following

lemma is proved by Mackay and Tyson [27, Proposition 6.1.5].

Lemma 3.6. If X ⊂ Rd is closed, then dimA(T ) ⩽ dimA(X) for all T ∈ Tan(X).

Proof. Fix T ∈ Tan(X) and let (xn)n∈N be a sequence of points in X and (rn)n∈N

be a sequence of positive reals such that limn→∞ rn = 0 and

Mxn,rn(X) ∩B(0, 1) → T

in Hausdorff distance. Without loss of generality, we may assume that rn < 1

for all n ∈ N. Let s > dimA(X) be arbitrary and, by definition of the Assouad

dimension, get a constant C > 0 so that

Nr(B(x,R) ∩X) ⩽ C
(R
r

)s

for all x ∈ X and 0 < r ⩽ R < 1.

Now let y ∈ T and 0 < r ⩽ R < 1 be arbitrary. By definition of T , let n ∈ N be

such that

dH(Mxn,rn(X) ∩B(0, 1), T ) ⩽ r.

Now, consider the ball M−1
xn,rn(B(y,R)) which contains some point x ∈ X, so in

particular M−1
xn,rn(B(y,R)) ⊂ B(x, 2Rrn). By choice of C,

Nrrn(B(x, 2Rrn) ∩X) ⩽ C2d
(R
r

)s

.

Therefore,

Nr(Mxn,rn(X) ∩B(0, 1) ∩B(y,R)) ⩽ C2d
(R
r

)s

.

But each element of T is distance at most r from some element in in Mxn,rn(X) ∩
B(0, 1), and moreover each ball B(x, 2r) can be covered by Dd balls of radius r,

1This observation also disproves [24, Lemma 2.16].
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where Dd is some constant depending only on d. Thus

Nr(T ∩B(y,R)) ⩽ DdNr(Mxn,rn(X) ∩B(0, 1) ∩B(y,R))

⩽ Dd2
dC

(R
r

)s

.

Since y ∈ T and 0 < r ⩽ R < 1 were arbitrary, we conclude that dimA(T ) ⩽ s.

Since s > dimA(X) was arbitrary, we conclude that dimA(T ) ⩽ dimA(X), as

claimed. □

We conclude this section with an immediate corollary.

Corollary 3.7. If X ⊂ Rd is closed, then

sup{dimH(T ) : T ∈ Tan(X)} ⩽ dimA(X).

Proof. The claim follows directly from Lemmas 3.1 and 3.6. □

4. Self-similar and self-affine sets

4.1. Self-affine sets and affinity dimension. Let Φ = (φ1, . . . , φN) be a tuple

of affine maps φi : Rd → Rd, φi(x) = Aix+ vi, where A = (A1, . . . , AN ) ∈ GLd(R)N

is a tuple of contractive invertible matrices and (v1, . . . , vN) ∈ (Rd)N is a tuple of

translation vectors. By the classical result of Hutchinson [19, §3.1], there exists a

unique non-empty compact set X ⊂ Rd such that

X =
N⋃
i=1

φi(X). (4.1)

The set X is called the self-affine set associated to Φ. To avoid triviality, we

assume that X has at least two points. If the tuple A consists only of a constant

multiple of orthogonal matrices, then the maps φi are similarities and the self-affine

set is called self-similar. We use the convention that whenever we speak about a

self-affine set, then it is automatically accompanied with a tuple of affine maps

which defines it.

We recall that the singular values of A ∈ GLd(R) are defined to be the non-

negative square roots of the eigenvalues of the positive-semidefinite matrix A⊤A and

are denoted α1(A), . . . , αd(A) in non-increasing order. The identities α1(A) = ∥A∥,
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αd(A) = ∥A−1∥−1, and
∏d

i=1 αi(A) = | detA| are standard. For each s ⩾ 0 we

define the singular value function by setting

φs(A) =

α1(A) · · ·α⌊s⌋(A)α⌈s⌉(A)
s−⌊s⌋, if 0 ⩽ s ⩽ d,

| det(A)| s2 , if s > d.

The value φs(A) represents a measurement of the s-dimensional volume of the

ellipse A(B(0, 1)). Note that αd(A)
s ⩽ φs(A) = ∥A∥s for all 0 ⩽ s ⩽ 1 and

αd(A)
s ⩽ φs(A) ⩽ ∥A∥s for all s > 1. By Falconer [7, Lemma 2.1] (see also

Käenmäki and Morris [20, §3.4]), the singular value function is sub-multiplicative

meaning that φs(AB) ⩽ φs(A)φs(B) for all A,B ∈ GLd(R).

Let Σ = {1, . . . , N}N be the collection of all infinite words obtained from the

letters {1, . . . , N}. If i = i1i2 · · · ∈ Σ, then we define σi = σ(i) = i2i3 · · ·
and i|n = i1 · · · in for all n ∈ N. The empty word i|0 is denoted by ∅. Define

Σn = {i|n : i ∈ Σ} for all n ∈ N and Σ∗ =
⋃

n∈NΣn ∪ {∅}. Thus Σ∗ is the

collection of all finite words. The length of a word j is denoted by |j| and the

concatenation of a finite word i and j is denoted by ij. If i ∈ Σ∗, then by ik we

mean the word ii · · · i where i is repeated k times. We write

φi = φi1 ◦ · · · ◦ φin ,

Ai = Ai1 · · ·Ain

for all i = i1 · · · in ∈ Σn and n ∈ N.

For each A = (A1, . . . , AN) ∈ GLd(R)N and s ⩾ 0 we define the singular value

pressure by setting

P (A, s) = lim
n→∞

1

n
log

∑
i∈Σn

φs(Ai).

By the sub-multiplicativity of the singular value function, (log
∑

i∈Σn
φs(Ai))n∈N is

a sub-additive sequence and hence, the limit above exists by Fekete’s lemma. It is

also easy to see that the pressure P (A, s) is continuous and strictly decreasing as a

function of s with P (A, 0) ⩾ 0 and lims→∞ P (A, s) = −∞. We may thus define the

affinity dimension by setting dimaff(A) to be the unique s ⩾ 0 for which P (A, s) = 0.

If X is a self-affine set, then by dimaff(X) we mean the affinity dimension dimaff(A).

Relying on (4.1), the self-affine set X can naturally be covered by the sets φi(B),
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where B is a ball containing X. Observe that in the planar case, each ellipse

φi(B) can be covered by one ball of radius α1(Ai) diam(B) or by α1(Ai)/α2(Ai)

many balls of radius α2(Ai) diam(B). This gives a motivation to study the limiting

behavior of the sums
∑

i∈Σn
φs(Ai) and indeed, it is straightforward to see that

dimH(X) ⩽ min{d, dimaff(X)}; (4.2)

see Falconer [7, Theorem 5.4].

The canonical projection π : Σ → X is defined by setting

πi = π(i) =
∞∑
n=1

Ai|n−1vin

for all i = i1i2 · · · ∈ Σ. It is easy to see that the image of Σ is the self-affine set,

π(Σ) = X. Separation conditions allow simple interplay between Σ and X. We

say that X satisfies the strong separation condition if φi(X)∩φj(X) = ∅ whenever

i ̸= j. The strong separation condition is characterized by the requirement that the

canonical projection is one-to-one. We say that X satisfies the open set condition

if there exists an open set U ⊂ R2 such that φi(U) ⊂ U for all i ∈ {1, . . . , N} and

φi(U) ∩ φj(U) = ∅ whenever i ̸= j. If such a set U also intersects X, then we say

that X satisfies the strong open set condition. Observe that the strong separation

condition implies the strong open set condition.

4.2. Self-similar sets and separation conditions. Let us next survey some

known results on separation conditions for self-similar sets. Fix a self-similar set

X ⊂ Rd and let A = (r1O1, . . . , rNON), where 0 < ri < 1 and Oi ∈ O(d) for

all i ∈ {1, . . . , N}, be the associated tuple of matrices. In this case, the affinity

dimension is called similarity dimension and we denote it by dimsim(X). Notice

that dimsim(X) is the unique s ⩾ 0 for which
∑N

i=1 r
s
i = 1. Let us endow the group

of all affine maps with the topology of pointwise convergence and define

Σ(x, r) = {i ∈ Σ∗ : diam(φi(X)) ⩽ r < diam(φi−(X))

and φi(X) ∩B(x, r) ̸= ∅}

for all x ∈ Rd and r > 0. Recall that Hs(X) <∞ for s = dimH(X) by Falconer [8,

Theorem 4]. The following theorem characterizes Hs(X) > 0 for s = dimsim(X).
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Theorem 4.1. If X ⊂ Rd is a self-similar set and s = dimsim(X), then the

following seven conditions are equivalent:

(1) X satisfies the open set condition,

(2) X satisfies the strong open set condition,

(3) sup{#Σ(x, r) : x ∈ X and r > 0} <∞,

(4) the identity is not in the closure of {φ−1
i ◦ φj : i, j ∈ Σ∗ such that i ̸= j},

(5) there is η > 0 such that |φi − φj| ⩾ η diam(φi(X)) for all i, j ∈ Σ∗ with

i ̸= j,

(6) Hs(X) > 0,

(7) X is Ahlfors s-regular,

Proof. Notice that (2) ⇒ (1) is a triviality and (7) ⇒ (6) follows from Theorem 2.4.

Hutchinson [19, §5.3] proved the implications (1) ⇒ (3) ⇒ (7), Bandt and Graf

[2] showed that (6) ⇔ (4) ⇔ (5), and finally, Schief [32, Theorem 2.1] verified the

remaining implication (6) ⇒ (2). □

We say that a self-similar set X ⊂ Rd satisfies the weak separation condition if

sup{#Φ(x, r) : x ∈ X and r > 0} <∞,

where

Φ(x, r) = {φi : diam(φi(X)) ⩽ r < diam(φi−(X))

and φi(X) ∩B(x, r) ̸= ∅}

for all x ∈ Rd and r > 0. By Theorem 4.1, the open set condition is valid if and

only if the weak separation condition holds and φi ̸= φj for all i, j ∈ Σ∗ with

i ̸= j.

Theorem 4.2. If X ⊂ Rd is a self-similar set, then the following three conditions

are equivalent:

(1) X satisfies the weak separation condition,

(2) the identity is not a limit point of {φ−1
i ◦ φj : i, j ∈ Σ∗ such that i ̸= j},

(3) there is η > 0 such that |φi − φj| ⩾ η diam(φi(X)) for all i, j ∈ Σ∗ with

φi ̸= φj.
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Furthermore, if s = dimH(X), then the following three conditions follow from the

above conditions:

(4) Hs(X) > 0,

(5) X is Ahlfors s-regular,

(6) dimH(X) = dimA(X).

Proof. It follows from Zerner [33, Theorem 1] that (1) ⇔ (2) ⇔ (3). Note that

[33, Corollary after Proposition 2] verifies the implication (1) ⇒ (4) and, by [12,

Corollary 3.1], we have (4) ⇔ (5). The implication (5) ⇒ (6) follows immediately

from Lemma 3.2. □

The weak separation condition is intimately connected to the behavior of weak

tangets. The following result is by Fraser, Henderson, Olson, and Robinson [16,

Theorem 3.1]. Angelevska, Käenmäki, and Troscheit [1, Theorem 4.1] generalized

the argument for a more general setting which proof Rutar [31, Theorem 3.4] then

modified with simplifications for the self-similar case.

Theorem 4.3. If a self-similar set X ⊂ R does not satisfy the weak separation

condition, then there exists T ∈ Tan(X) such that dimH(T ) = 1.

Proof. Let (φ1, . . . , φN ) be the associated tuple of similarities φi : R → R, φi(x) =

rix + vi, where 0 < |ri| < 1 and vi ∈ R. Without loss of generality, we may

assume that φ1(0) = 0 and r1 > 0. Since X does not satisfy the weak separation

condition, the identity is a limit point of {φ−1
i ◦ φj : i, j ∈ Σ∗ such that i ̸= j}

by Theorem 4.2. In other words, for each ε > 0 there exist i ̸= j, 0 ⩽ δ < ε, and

|γ − 1| < ε such that (δ, γ) ̸= (0, 1) and

φ−1
i ◦ φj(x) = γx+ δ (4.3)

for all x ∈ X. By appending at most two letters to i and j if necessary, we may

assume that ri, rj, δ > 0.
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Fix m ∈ N and let h1 = ∅ and ε1 = 1. For each ℓ ∈ {1, . . . ,m} use (4.3) to

choose iℓ, jℓ ∈ Σ∗ and kℓ ∈ N0 recursively so that with

hℓ = jℓ−11
kℓ−1 · · · j11k1 ,

εℓ = r
k1+···+kℓ−1

1 ri1 · · · riℓ−1

it holds that:

(1) φ−1
iℓ

◦ φjℓ(x) = γℓx+ δℓ for all x ∈ X, where (δℓ, γℓ) ̸= (0, 1) and

0 ⩽ δℓ <
εℓ
m

and |γℓ − 1| < r1εℓ
2m|φhℓ(0)|

,

(2) kℓ satisfies

r1
m
<
r−kℓ
1 δℓ
εℓ

⩽
1

m
.

Set

kℓ = im1
km · · · iℓ1kℓ ,

ϱ = rk1+···+km
1 ri1 · · · rim

and note that, by construction,

φ−1
1kℓ

◦ φ−1
iℓ

◦ φjℓ ◦ φ1kℓ (x) = γℓx+ r−kℓ
1 δℓ

for all x ∈ X. Therefore,

φkℓ+1hℓ+1
(0)− φkℓhℓ(0) = φkℓ ◦ φ−1

1kℓ
◦ φ−1

iℓ
◦ φjℓ ◦ φ1kℓ ◦ φhℓ(0)− φkℓhℓ(0)

= rkℓ+···+km
1 riℓ · · · rim(r

−kℓ
1 δℓ + φhℓ(0)(γℓ − 1))

= ϱ∆ℓ

for some ∆ℓ satisfying
r1
2
⩽ m∆ℓ ⩽ 1 + r1

2
by the choice of kℓ. In particular,

{0,∆1, . . . ,∆1 + · · ·+∆m−1} ⊂ X − φk1h1(0)

ϱ
=Mφk1h1 (0),ϱ

(X).

By letting m→ ∞, we conclude that [0, 1] ∈ Tan(X) which finishes the proof. □

As a direct corollary, we see that in the real line all six conditions of Theorem 4.2

are equivalent.
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Corollary 4.4. If X ⊂ R is a self-similar set such that s = dimH(X) < 1, then

the following four conditions are equivalent:

(1) X satisfies the weak separation condition,

(2) Hs(X) > 0,

(3) X is Ahlfors s-regular,

(4) dimH(X) = dimA(X).

Proof. By Theorem 4.2 and its proof, it suffices to show that (4) ⇒ (1). If X does

not satisfy the weak separation condition, then Theorem 4.3 guarantees the existence

of T ∈ Tan(X) for which dimH(T ) = 1. As a consequence, the assumption together

with Lemmas 3.1 and 3.6 show that dimH(X) < 1 = dimH(T ) ⩽ dimA(T ) ⩽

dimA(X) which contradicts with (4). □

We can also use Theorem 4.3 to show that, perhaps a bit surprisingly, Lipschitz

maps can increase the Assouad dimension.

Example 4.5. We follow Fraser [13, §3.1] and construct a planar self-similar set whose

Assouad dimension increases under an orthogonal projection. Let 0 < α, β, γ < 1

and choose φi : R2 → R2 by setting

φ1(x, y) = α(x, y),

φ2(x, y) = β(x, y) + (0, 1− β),

φ3(x, y) = γ(x, y) + (1− γ, 0).

Denote the self-similar set associated to (φ1, φ2, φ3) by X and let projV : R2 → V ,

projV (x, y) = x, be the orthogonal projection onto the x-axis V , which we identify

with R. It is easy to see that projV (X) is a self-similar set associated to (ψ1, ψ2, ψ3),

where the maps ψi : R → R are such that

ψ1(x) = αx,

ψ2(x) = βx,

ψ3(x) = γx+ (1− γ).

We may now clearly choose 0 < α, β, γ < 1 so that X satisfies the open set condition

and dimH(X) < 1 but projV (X) does not satisfy the weak separation condition. For
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example, Fraser [13, §3.1] calculated that the choices α = 2−
√
3, β = 1

2
, γ = 1

10
work.

Theorem 4.3 guarantees the existence of T ∈ Tan(projV (X)) for which dimH(T ) = 1.

Lemmas 3.1 and 3.6 show that 1 = dimH(T ) ⩽ dimA(T ) ⩽ dimA(projV (X)) ⩽ 1.

Therefore, by Theorem 4.1 and Lemma 3.2, we have

dimA(projV (X)) = 1 > dimH(X) = dimA(X)

as claimed.

5. Maximal weak tangent

5.1. Dyadic cubes. An interval I ⊂ [0, 1) is called dyadic if it is of the form

I =

[
j

2n
,
j + 1

2n

)
for some integers j, n ∈ N0. If I1, . . . , Id are dyadic intervals of the same length,

then the product

Q = I1 × · · · × Id ⊂ [0, 1)d

is a dyadic cube. The collection of all dyadic cubes of side length 2−n is denoted

by Qn. We also write Q =
⋃

n∈N0
Qn. It is straightforward to see that if Q and Q′

are dyadic cubes such that Q ∩Q′ ̸= ∅, then they are contained in each other, i.e.

Q ⊂ Q′ or vice versa. Therefore, if Q ∈ Qn is a dyadic cube, then there is a unique

dyadic cube, called the parent of Q, in Qn−1 which contains Q. Similarly, the 2d

dyadic cubes of Qn+1 contained in Q are called the children of Q. In particular,

the dyadic cubes Q can be obtained by applying an iterated function system

(φ1, . . . , φ2d) satisfying the open set condition, where φ1, . . . , φ2d are the unique

homotheties taking [0, 1)d surjectively to Q1, . . . , Q2d ∈ Q1, respectively.

In this section, we study the Assouad dimension of sets in [0, 1)d. This is not a

restriction since the Assouad dimension is invariant under bi-Lipschitz maps and

any bounded set can be scaled and translated into [0, 1)d. For a set X ⊂ Rd, the

dyadic n-covering number of X, i.e.

Dn(X) = #{Q′ ∈ Qn : X ∩Q′ ̸= ∅},

is the least number of dyadic cubes of side length 2−n needed to cover X ∩ [0, 1)d.
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Lemma 5.1. If X ⊂ [0, 1)d and 0 < t < dimA(X), then there are m,n ∈ N0 and

Q ∈ Qm such that

#Dn(X ∩Q) ⩾ 2(n−m)t.

Proof. By the definition of the Assouad dimension there are 0 < r < R ⩽ 1 and

x ∈ X such that

Nr(X ∩B(x,R)) > 2d+2t
√
d
t
(R
r

)t

.

Let m ∈ N0 be such that 2−m−1 < 2R ⩽ 2−m. Notice that the closed ball B(x,R)

is contained in an union of at most 2d dyadic cubes in Qm. Therefore, by the

pigeonhole principle, there exists Q ∈ Qm such that

Nr(X ∩Q) > 22t
√
d
t
(R
r

)t

>
√
d
t
(2−m

r

)t

. (5.1)

Let n ∈ N0 be such that
√
d2−n−1 ⩽ r <

√
d2−n. Write k = #Dn(X ∩Q) and let

Q′
1, . . . , Q

′
k ∈ Qn be such that Q′

i ⊂ Q and Q′
i ∩X ≠ ∅. Since each Q′

i is contained

in a closed ball Bi of radius r, we see that

X ∩Q ⊂
k⋃

i=1

Q′
i ⊂

k⋃
i=1

Bi

and Nr(X ∩Q) ⩽ k. Therefore, by (5.1),

#Dn(X ∩Q) = k ⩾
√
d
t
(2−m

r

)t

>
(2−m

2−n

)t

as claimed. □

For each Q ∈ Q we let MQ : Rd → Rd be the unique homothety sending Q

surjectively to [0, 1)d. We define the maximal relative dyadic n-covering number of

X ⊂ [0, 1)d to be

D∗
n(X) = max

Q∈Qm

Dn(MQ(X)) = max
Q∈Qm
m∈N0

Dm+n(X ∩Q).

Lemma 5.1 shows that for each 0 < t < dimA(X) there is n ∈ N such that

D∗
n(X) ⩾ 2nt. We will strenghten this to hold for all large enough n. Furstenberg

[18, Lemma 5.1] observed that the sequence (D∗
n(A))n∈N is submultiplicative.

Lemma 5.2. If X ⊂ [0, 1)d, then D∗
n+k(X) ⩽ D∗

n(X)D∗
k(X) for all n, k ∈ N.
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Proof. Let Q ∈ Q be such that D∗
n+k(X) = Dn+k(MQ(X)). If Q′ ∈ Qn satisfies

MQ(X) ∩Q′ ̸= ∅, then Dn+k(MQ(X) ∩Q′) = Dk(MQ′ ◦MQ(X)) ⩽ D∗
k(X) and

D∗
n+k(X) ⩽

∑
Q′∈Qn:MQ(X)∩Q′ ̸=∅

Dn+k(MQ(X) ∩Q′)

⩽ Dn(MQ(X))D∗
k(X) ⩽ D∗

n(X)D∗
k(X)

as claimed. □

Relying on Fekete’s lemma for subadditive sequences, we may now write

∆(X) = lim
n→∞

logD∗
n(X)

log 2n
(5.2)

for all sets X ⊂ [0, 1)d. Note that for each 0 < t < ∆(X) there is n0 ∈ N such that

D∗
n(X) ⩾ 2nt for all n ⩾ n0. The following lemma, proved by Käenmäki and Rossi

[22, Proposition 3.13], shows that the Assouad dimension is bounded above by ∆.

Lemma 5.3. If X ⊂ [0, 1)d, then dimA(X) ⩽ ∆(X).

Proof. Let s > ∆(X) and choose n0 such that D∗
n(X) < 2ns for all n ⩾ n0. Fix

0 < r < R ⩽ 1 and x ∈ X. Let m ∈ N0 be such that 2−m−1 < 2R ⩽ 2−m

and notice that the closed ball B(x,R) is contained in an union of at most 2d

dyadic cubes in Qm. If r <
√
d2−n0+1R, then we choose n ⩾ n0 such that√

d2−m−n−1 ⩽ r <
√
d2−m−n. Let Q ∈ Qm be such that Q ∩ B(x,R) ̸= ∅ and

notice that Dn(MQ(X)) = Dm+n(X∩Q) ⩽ D∗
n(X). Write k = Dn(MQ(X)) whence

k < 2ns. Let Q′
1, . . . , Q

′
k ∈ Qn be such that MQ(X) ∩ [0, 1)d ⊂

⋃k
i=1Q

′
i and denote

the center of each Q′
i by xi ∈ Rd. Since

⋃k
i=1Q

′
i ⊂

⋃k
i=1B(xi, 2

mr), we have

Nr(X ∩Q) = N2mr(MQ(X) ∩ [0, 1)d) ⩽ k < 2ns.

Therefore,

Nr(X ∩B(x,R)) ⩽
∑

Q∈Qm :Q∩B(x,R)̸=∅

Nr(X ∩Q) ⩽ 2dNr(X ∩Q)

< 2d2ns = 2d+2s
(2−m−2

2−m−n

)s

< 2d+2s
√
d
s
(R
r

)s

.
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If
√
d2−n0+1R ⩽ r < R, then the previous estimate applied to ϱ = 2−n0R satisfying

2−n0r < ϱ < r gives

Nr(X ∩B(x,R)) ⩽ Nϱ(X ∩B(x,R))

< 2d+2s
√
d
s
(R
ϱ

)s

< 2d+(n0+2)s
√
d
s
(R
r

)s

and, consequently, dimA(X) ⩽ s. The claim follows by letting s ↓ ∆(X). □

5.2. Discrete Frostman measure. If a collection {wQ}Q∈Qn of non-negative real

numbers satisfies
∑

Q∈Qn
wQ = 1, then the Borel probability measure

µ =
∑
Q∈Qn

wQ
Ld|Q
Ld(Q)

is the Qn-discrete measure with respect to weights {wQ}Q∈Qn . Suppose that µ is a

Borel probability measure on [0, 1)d and Q ∈ Qm is such that µ(Q) > 0 for some

m ∈ N0. Recall that MQ is the unique homothety sending Q surjectively to [0, 1)d,

µ|Q is the restriction of µ to Q, and (MQ)∗µ is the push-forward of µ under MQ.

The Borel probability measure

µQ =
(MQ)∗(µ|Q)

µ(Q)

is the magnification of µ with respect to Q. The following lemma shows that a

magnified discrete measure is a discrete measure.

Lemma 5.4. If µ is a Qn-discrete measure with respect to weights {wQ}Q∈Qn

and Q ∈ Qm is such that µ(Q) > 0 where m ∈ {0, . . . , n − 1}, then µQ is a

Qn−m-discrete measure with respect to weights {µ(Q)−1wM−1
Q (Q′)}Q′∈Qn−m.

Proof. Notice first that

µQ =
(MQ)∗(µ|Q)

µ(Q)
= µ(Q)−1

∑
Q′∈Qn :Q′⊂Q

wQ′
Ld|MQ(Q′)

Ld(MQ(Q′))

=
∑

Q′∈Qn−m

µ(Q)−1wM−1
Q (Q′)

Ld|Q′

Ld(Q′)
.
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Since ∑
Q′∈Qn−m

µ(Q)−1wM−1
Q (Q′) = µ(Q)−1

∑
Q′∈Qn :Q′⊂Q

wQ′

= µ(Q)−1
∑

Q′∈Qn

wQ′
Ld|Q′(Q)

Ld(Q′)
= 1,

the Borel probability measure µQ is a Qn−m-discrete measure with respect to

weights {µ(Q)−1wM−1
Q (Q′)}Q′∈Qn−m . □

The maximal relative dyadic covering number introduces us a discrete measure

supported on a neighborhood of a magnification of the set.

Lemma 5.5. For every n ∈ N there exist Q ∈ Q and a Qn-discrete measure with

respect to weights {wQ′}Q′∈Qn, where

wQ′ =

D∗
n(X)−1, if MQ(X) ∩Q′ ̸= ∅,

0, if MQ(X) ∩Q′ = ∅

and MQ : Rd → Rd is the unique homothety sending Q surjectively to [0, 1)d.

Proof. Fix n ∈ N and let Q ∈ Q be such that D∗
n(X) = Dn(MQ(X)). Since∑

Q′∈Qn

wQ′ =
∑

Q′∈Qn :MQ(X)∩Q′ ̸=∅

Dn(MQ(X))−1 = 1,

the claim follows. □

A Borel probability measure µ on [0, 1)d is a Qn-discrete s-Frostman measure if

µ(Q) ⩽ diam(Q)s

for all Q ∈ Qℓ and ℓ ∈ {0, . . . , n}.

Proposition 5.6. If X ⊂ [0, 1)d, 0 < s < ∆(X), and n ∈ N, then there exists a

Qn-discrete s-Frostman measure µ, i.e.

µ(Q′) ⩽ diam(Q′)s
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for all Q′ ∈ Qℓ and ℓ ∈ {0, . . . , n} such that there is a dyadic cube Q ∈ QN with

N ⩾ n such that µ is supported on the closed
√
d2−N -neighborhood of MQ(X),

where MQ : Rd → Rd is the unique homothety sending Q surjectively to [0, 1)d.

Proof. Fix n ∈ N and let s < t < min{s+ 1,∆(X)}. Recalling (5.2), let k0 ∈ N be

such that

#D∗
k(X) ⩾ 2kt (5.3)

for all k ⩾ k0. Choose an integer k ⩾ max{k0, nd
t−s

} ⩾ n+ 1. Recalling Lemma 5.5,

let Q ∈ Q be such that µ0 is a Qk-discrete measure with respect to weights

{D∗
k(X)−1}Q′∈Qk :MQ(X)∩Q′ ̸=∅. If there are N ∈ {n, . . . , k − 1} and Q′

0 ∈ QN such

that µ
Q′

0
0 is a Qn-discrete s-Frostman measure, then the proof is finished. Otherwise,

since µ0 is a probability measure and #Qn = 2nd, we choose Q0 ∈ Qn such that

µ0(Q0) ⩾ 2−nd and notice that there are ℓ1 ∈ {0, . . . , n} and Q1 ∈ Qℓ1 such that,

writing µ1 = µQ0

0 , we have

µ1(Q1) = µQ0

0 (Q1) > diam(Q1)
s =

√
d
s
2−ℓ1s. (5.4)

Writing Q′
1 =M−1

Q0
(Q1), we see that Q′

1 ∈ Qn+ℓ1 such that Q′
1 ⊂ Q0 and

µ1(Q1) =
µ0(Q

′
1)

µ0(Q0)
=

1

µ0(Q0)D∗
k(X)

∑
Q′∈Qk :MQ(X)∩Q′ ̸=∅

Ld|Q′(Q′
1)

Ld(Q′)

⩽ 2ndD∗
k(X)−1 ·#{Q′ ∈ Qk : Q

′ ⊂ Q′
1 and MQ(X) ∩Q′ ̸= ∅}

= 2ndD∗
k(X)−1Dk−n−ℓ1(MQ′

1
◦MQ(X))

⩽ 2ndD∗
k(X)−1D∗

k−n−ℓ1
(X).

(5.5)

The estimates (5.3) and (5.4) thus give

D∗
k−n−ℓ1

(X) ⩾ 2−ndD∗
k(X)µ1(Q1) > 2−nd2kt

√
d
s
2−ℓ1s. (5.6)

We may now repeat the above procedure with the iterated bound (5.6) in place

of (5.3). Indeed, let µ2 be the Qk−n−ℓ1-discrete measure with respect to weights

{D∗
k−n−ℓ1

(X)−1}Q′∈Qk−n−ℓ1
:MQ(X)∩Q′ ̸=∅ for some Q ∈ Q given by Lemma 5.5. Again,

if µ2 is a Qn-discrete s-Frostman measure, we are done. Otherwise, there are

ℓ2 ∈ {0, . . . , n} and Q2 ∈ Qℓ2 such that

µ2(Q2) > diam(Q2)
s =

√
d
s
2−ℓ2s. (5.7)
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Repeating the reasoning done in (5.5), we see that

µ2(Q2) = D∗
k−n−ℓ1

(X)−1
∑

Q′∈Qk−n−ℓ1
:MQ(X)∩Q′ ̸=∅

Ld|Q′(Q2)

Ld(Q′)

= D∗
k−n−ℓ1

(X)−1Dk−n−(ℓ1+ℓ2)(MQ2 ◦MQ(X))

⩽ D∗
k−n−ℓ1

(X)−1D∗
k−n−(ℓ1+ℓ2)

(X)

and hence, by (5.6) and (5.7),

D∗
k−n−(ℓ1+ℓ2)

(X) ⩾ D∗
k−n−ℓ1

(X)µ2(Q2) > 2−nd2kt
√
d
2s
2−(ℓ1+ℓ2)s.

Continuing inductively, we see that after m steps either the Qk−n−(ℓ1+···+ℓm−1)-

discrete measure µm given by Lemma 5.5 is a Qn-discrete s-Frostman measure or

there is ℓm ∈ {0, . . . , n} such that

D∗
k−n−(ℓ1+···+ℓm)(X) > 2−nd2kt

√
d
ms
2−(ℓ1+···+ℓm)s.

If m is such that k − n < ℓ1 + · · ·+ ℓm ⩽ k, then

2k(t−s)−nd ⩽ 2−nd2kt
√
d
ms
2−ks < D∗

k−n−(ℓ1+···+ℓm)(X) ⩽ 1

and k(t− s)− nd < 1 which is contradicting with the choice of k. Thus µm is a

Qn-discrete s-Frostman measure. □

Furstenberg [18, Theorem 5.1] proved that if X ⊂ [0, 1)d is closed, then there

exists T ∈ Tan(X) such that ∆(X) = dimH(T ). Recalling Corollary 3.7 and

Lemma 5.3, this implies dimA(X) = dimH(T ) and the Assouad dimension is thus

characterized by weak tangents. The result for the Assouad dimension was first

explicitly observed by Käenmäki, Ojala, and Rossi [21, Proposition 5.7].

Theorem 5.7. If X ⊂ [0, 1)d is closed, then dimA(X) = ∆(X) and there exists

T ∈ Tan(X) such that Hs
∞(T ) ⩾ 1 where s = dimA(X).

Proof. We may assume that ∆(X) > 0 as otherwise, by Lemma 5.3, dimA(X) =

∆(X) = 0 and the existence of the claimed tangent set is trivial. Let (sn)n∈N

be a sequence of positive real numbers strictly smaller than ∆(X) such that

limn→∞ sn = ∆(X). For every n ∈ N and 0 < sn < ∆(X), recalling Proposition 5.6,

let Qn ∈ QN with N ⩾ n and µn be a Qn-discrete sn-Frostman measure supported
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on the closed
√
d2−N -neighborhood of MQn(X). In other words,

µn(Q) ⩽ diam(Q)sn =
√
d
sn
2−ℓsn (5.8)

for all Q ∈ Qℓ and ℓ ∈ {0, . . . , n}. Going into a subsequence, if necessary, we

choose T ∈ Tan(X) and a Borel probability measure µ such that

MQn(X) ∩ [0, 1)d → T

in Hausdorff distance and

µn → µ

in weak∗ topology; see Mattila [28, Definition 1.21]. Observe that, by compactness,

µ is supported on T . Write s = ∆(X), let 0 < r < 1, and choose ℓ ∈ N such that

2−ℓ−1 ⩽ 2r < 2−ℓ. Fix x ∈ T and notice that the open ball Bo(x, r) can intersect

at most 2d many dyadic cubes Q ∈ Qℓ. Therefore, by the Portmanteau theorem,

see Mattila [28, Theorem 1.24], and (5.8),

µ(Bo(x, r)) ⩽ lim inf
n→∞

µn(B
o(x, r)) ⩽ 2d lim inf

n→∞

√
d
sn
2−ℓsn

⩽ 2d lim inf
n→∞

√
d
sn
(4r)sn = 2d

√
d
s
4srs.

By Theorem 2.3(1), we have Hs(T ) ⩾ 2−d
√
d
−s
4−sµ(T ) = 2−d

√
d
−s
4−s > 0 and

hence, dimH(T ) ⩾ s = ∆(X). Recalling Corollary 3.7, we see that dimA(X) ⩾

∆(X) which, together with Lemma 5.3, gives the first claim. Furthermore, by

Lemma 3.5, there is T ′ ∈ Tan(T ) such that Hs
∞(T ′) ⩾ 1. Since Lemma 3.4 ensures

that T ′ ∈ Tan(X), we have finished the proof. □

If X ⊂ [0, 1)d is closed and s = dimA(X), it would be interesting to know if there

exists an Ahlfors s-regular weak tangent set T ∈ Tan(X). Regardless, Theorem 5.7

gives us an immediate corollary.

Corollary 5.8. If X ⊂ [0, 1)d is closed, then

dimA(X) = max{dimH(T ) : T ∈ Tan(X)}.

Proof. The claim follows directly from Corollary 3.7 and Theorem 5.7. □
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The above observation introduces a way to calculate the Assouad dimension of

a set by considering its weak tangents. We will apply this approach and study

what can in general be said about the Assouad dimension of orthogonal projections.

Recall that, by Example 4.5, orthogonal projections can increase the Assouad

dimension. Let G(d, k) be the collection of all k-dimensional linear subspaces in

Rd. It is a compact smooth manifold of dimension k(d− k) and inherits a Haar

measure γd,k from the orthogonal group O(d). If V ∈ G(d, k), then we denote the

orthogonal projection onto V by projV : Rd → V . The following result is due to

Fraser [14, Theorem 2.9].

Theorem 5.9. If X ⊂ [0, 1)d and k ∈ {1, . . . , d− 1}, then

dimA(projV (X)) ⩾ min{k, dimA(X)}

for γd,k-almost all V ∈ G(d, k).

Proof. Since projV (X) ⊂ projV (X) and the Assouad dimension is stable under

taking closure, we may assume that X is closed. By Corollary 5.8, there exists

T ∈ Tan(X) such that dimH(T ) = dimA(X). Let (Mn)n∈N be the sequence of

homotheties for which

Mn(X) ∩B(0, 1) → T (5.9)

in Hausdorff distance. Write Mn(x) = rnx+ vn, where rn > 0 and vn ∈ Rd. Since

Mn is a homothety, the map LV,n = projV ◦Mn ◦ proj−1
V : V → V is well-defined for

all V ∈ G(d, k). Note that

LV,n(x) = projV (rn proj
−1
V (x) + vn) = rnx+ projV (vn)

for all x ∈ V and hence, LV,n is a homothety. Therefore, by (5.9),

LV,n(projV (X)) ∩ projV (B(0, 1)) = projV (Mn(X)) ∩ projV (B(0, 1))

⊃ projV (Mn(X) ∩B(0, 1)) → projV (T )

in Hausdorff distance. By going into a subsequence, if necessary, we find T ′ ∈
Tan(projV (X)) such that

LV,n(projV (X)) ∩ projV (B(0, 1)) → T ′ ⊃ projV (T ).
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By Lemma 3.6, monotonicity of the Assouad dimension, and Lemma 3.1, we have

dimA(projV (X)) ⩾ dimA(T
′) ⩾ dimA(projV (T )) ⩾ dimH(projV (T )). (5.10)

Furthermore, by Marstrand’s projection theorem, see Mattila [28, Corollaries 9.4

and 9.8], and the choice of T ∈ Tan(X), we have

dimH(projV (T )) = min{k, dimH(T )} = min{k, dimA(X)} (5.11)

for γd,k-almost all V ∈ G(d, k). The proof follows by combining (5.10) and (5.11).

□

Fraser and Käenmäki [17, Theorem 2.1] showed that for every upper semi-

continuous function f : G(2, 1) → [0, 1] there exists a compact set X ⊂ R2 with

dimA(X) = 0 such that dimA(projV (X)) = f(V ) for all V ∈ G(2, 1). The result

demonstrates that dimA(projV (X)) can take on any countable number of distinct

values with positive measure and also, can avoid all values almost surely.

6. Tangents on self-affine sets

6.1. Tangents and maximality on self-affine sets. A set T ⊂ Rd is a tangent

of X ⊂ Rd at x ∈ Rd if there is a sequence (rn)n∈N of positive reals such that

limn→∞ rn = 0 and

Mx,rn(X) ∩B(0, 1) → T

in Hausdorff distance. We denote the collection of tangents of X at x by Tan(X, x).

Note that every tangent is a weak tangent, Tan(X, x) ⊂ Tan(X). We remark that

Lemma 3.5 shows the existence of a tangent with Hausdorff content bounded from

below. The following example of Le Donne and Rajala [24, Example 2.20] shows

that, in general, the Assouad dimension cannot be characterized by tangents.

Example 6.1. Let

X = {0} ∪
∞⋃
k=1

k⋃
ℓ=0

{2−k + ℓ4−k} ⊂ [0, 1].

It is straightforward to see that dimA(X) = 1 but dimA(T ) = 0 for all T ∈ Tan(X, x)

and x ∈ X.
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By Corollary 5.8, the Assouad dimension gets realized on a weak tangent. This

is particularly important detail in the study of self-affine sets as such sets often

undergo a metamorphosis in approaching the weak tangent. A common technique in

studying self-affine sets is to relate the underlying geometry to symbolic properties

associated with the space of all infinite words. Therefore, if the Assouad dimension

of a self-affine set was realized on a tangent, then upper bounding the Assouad

dimension would be easier since one may fix in advance an infinite word for the

point. The following theorem, proved by Käenmäki and Rutar [23, Theorem 2.12],

guarantees that this is indeed the case.

Theorem 6.2. If X ⊂ Rd is a self-affine set and s = dimA(X), then there exist

x ∈ X and T ∈ Tan(X, x) such that Hs
∞(T ) ⩾ 2−s.

Proof. Let (φ1, . . . , φN ) be the associated tuple of affine maps φi : Rd → Rd, φi(x) =

Aix + vi, where (A1, . . . , AN) ∈ GLd(R)N and (v1, . . . , vN) ∈ (Rd)N . Fix x1 ∈ X

and 0 < r1 ⩽ 1. Since X is a self-affine set, there is an affine map f1 such that

f1(X) ⊂ X∩B(x1, r1). Indeed, if i ∈ Σ is such that π(i) = x1, then we may choose

f1 = φi|n where n is the smallest integer such that α1(Ai|n) diam(X) < r1. Since

dimA(f1(X)) = s, Theorem 5.7 guarantees the existence of T1 ∈ Tan(f1(X)) such

that Hs
∞(T1) ⩾ 1. Thus there exists a homothety M1 : Rd → Rd, M1(x) = λ1x+ v1,

such that 0 ∈M1(X), it is expanding by λ1 ⩾ 1, and

dH(T1,M1(f1(X)) ∩B(0, 1)) ⩽ 1.

Choose next x2 ∈ X and 0 < r2 ⩽ 1
2
such that B(x2, r2) ⊂ M−1

1 (Bo(x1, r1)),

and repeat the above construction. Iterating, we obtain a sequence (fn)n∈N of

affine maps, a sequence (Tn)n∈N ∈ (Tan(fn(X)))N of compact sets, and a sequence

(Mn)n∈N of homotheties, each expanding by λn ⩾ n, such that

(1) fn(X) ⊂ X,

(2) Hs
∞(Tn) ⩾ 1,

(3) M−1
n+1(B(0, 1)) ⊂M−1

n (B(0, 1)),

(4) dH(Tn,Mn(fn(X)) ∩B(0, 1)) ⩽ 1
n
.
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Let x = limn→∞M−1
n (0) and note that, by (3), x ∈ M−1

n (B(0, 1)) for all n ∈ N.
Recalling (4), let Ln be a homothety such that it is contracting by 1

2
and

dH

(
Ln(Tn),

λn(fn(X)− x)

2
∩B(0, 1)

)
⩽

1

n
. (6.1)

Observe that, by (2.6) and (2), we have Hs
∞(Ln(Tn)) ⩾ 2−s. Passing to a subse-

quence if necessary, we may set

T0 = lim
n→∞

λn(fn(X)− x)

2
∩B(0, 1) and T = lim

n→∞

λn(X − x)

2
∩B(0, 1).

By (6.1) and (1), we have limn→∞ Ln(Tn) = T0 ⊂ T ∈ Tan(X, x). Since the

Hausdorff content is upper semicontinuous by Lemma 3.3, we conclude that

Hs
∞(T ) ⩾ Hs

∞(T0) ⩾ lim sup
n→∞

Hs
∞(Ln(Tn)) ⩾ 2−s

as required. □

It is an immediate corollary of Theorem 6.2 that the Assouad dimension of a

self-affine set gets realized on a tangent at some point. It is worthwhile to emphasize

that the result does not assume any separation condition.

Corollary 6.3. If X ⊂ Rd is a self-affine set, then

dimA(X) = max{dimH(T ) : x ∈ X and T ∈ Tan(X, x)}.

Proof. The claim follows directly from Corollary 3.7 and Theorem 6.2. □

6.2. Assouad dimension of Bedford-McMullen carpets. We will consider a

particular class of self-affine sets. Let q > p ⩾ 2 and N ∈ {2, . . . , pq} be integers.

Write A = diag(1
p
, 1
q
) ∈ GL2(R) and choose I ⊂ {0, . . . , p−1}×{0, . . . , q−1} to be

a set of N elements. The Bedford-McMullen carpet is the self-affine set X ⊂ [0, 1]2

associated to a tuple (φ1, . . . , φN) of affine maps which all have the same linear

part A and the translation part is from the set {( j
p
, k
q
) ∈ [0, 1]2 : (j, k) ∈ I}. Write

nj = #{k : (j, k) ∈ I} to denote the number of sets φi([0, 1)
2) the vertical line

{( j
p
, y) : y ∈ R} intersects. We use the convention that whenever we speak about a

Bedford-McMullen carpet, then it is automatically accompanied with this notation.
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Our goal is to determine the Assouad dimension of a Bedford-McMullen carpet

X. The result is due to Mackay [26, Theorem 1.1]. Our approach below relies on

the fact that the Assouad dimension of a self-affine set gets realized on a tangent

and the proof is a modification of Bárány, Käenmäki, and Yu [3, proof of Theorem

3.2]. To that end, we begin with an observation that a vertical slice of any tangent

set can be affinely embedded into X.

Lemma 6.4. If X ⊂ R2 is a Bedford-McMullen carpet satisfying the strong

separation condition and V ∈ G(2, 1) is the y-axis, then for every x ∈ X and

T ∈ Tan(X, x) there exist z ∈ X such that

dimA(T ∩ V ) ⩽ dimA(projV (T )) ⩽ dimA(X ∩ (V + z)).

Proof. Let i ∈ Σ be such that πi = x and let (rn)n∈N be a sequence of positive

reals such that limn→∞ rn = 0 and

Mx,rn(X) ∩B(0, 1) → T

in Hausdorff distance. For each n ∈ N choose kn ∈ N such that q−kn−2 ⩽ rn <

q−kn−1. Notice that X ∩ B(x, rn) ⊂ φi|kn (X). By compactness, going into a

subsequence if necessary, there is x ∈ X such that πσ−kni → z. Hence,

φ−1
i|kn

◦M−1
x,rn → λ projV +z

uniformly on B(0, 1), where λ ∈ [q−2, q−1], and thus,

φ−1
i|kn

(X ∩B(x, rn)) = φ−1
i|kn

◦M−1
x,rn(Mx,rn(X) ∩B(0, 1)) → λ projV (T ) + z

in Hausdorff distance. Since φ−1
i|kn

(X ∩ B(x, rn)) ⊂ X, we get by compactness

that λ projV (T ) + z ⊂ X. As trivially T ∩ V ⊂ projV (T ), the claim follows by

recalling that the Assouad dimension is monotone and invariant under bi-Lipschitz

maps. □

By considering maximal tangent sets, this observation easily converts to an upper

bound for the Assouad dimension by means of the projection onto the x-axis and

the maximal vertical slice.
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Proposition 6.5. If X ⊂ R2 is a Bedford-McMullen carpet satisfying the strong

separation condition and V ∈ G(2, 1) is the y-axis, then for every x ∈ X and

T ∈ Tan(X, x) it holds that

dimA(T ) ⩽ dimA(projV ⊥(X)) + max
x∈R2

dimA(X ∩ (V + x)).

Proof. Since trivially T ⊂ projV ⊥(T )× projV (T ), we get from (3.1) that

dimA(T ) ⩽ dimA(projV ⊥(T )) + dimA(projV (T )).

By Lemma 6.4, there exists z ∈ X such that

dimA(projV (T )) ⩽ dimA(X ∩ (V + z))

and the proof is finished. □

The construction of the Bedford-McMullen carpet has a lot of regularity and

therefore it is expected that the dimensions of the projection and the maximal

slice play a role also in the lower bound. In the following lemma, we express these

quantities by means of the data given to define the carpet.

Proposition 6.6. If X ⊂ R2 is a Bedford-McMullen carpet satisfying the strong

separation condition and V ∈ G(2, 1) is the y-axis, then

dimH(projV ⊥(X)) = dimA(projV ⊥(X)) =
log#{j ∈ {1, . . . , p} : nj ̸= 0}

log p

and

max
x∈R2

dimH(X ∩ (V + x)) = max
x∈R2

dimA(X ∩ (V + x)) = max
j∈{1,...,p}

log nj

log q
.

Proof. We identify both the y-axis V and the x-axis V ⊥ with R. It is easy to see that

projV ⊥(X) ⊂ [0, 1] is the self-similar set associated to #{j ∈ {1, . . . , p} : nj ̸= 0}
many homotheties ψj : [0, 1] → [0, 1], ψj(x) =

1
p
x+ j

p
, where nj ̸= 0. Furthermore,

as projV ⊥(X) satisfies the strong separation condition, Theorems 4.1 and 4.2 give

dimA(projV ⊥(X)) = dimH(projV ⊥(X)) = dimsim(projV ⊥(X))

=
log#{j ∈ {1, . . . , p} : nj ̸= 0}

log p



TANGENT SETS AND ASSOUAD DIMENSION 39

as required.

To prove the second claim, notice that it suffices to maximize the dimensions of

X∩(V +(x, 0)) over x ∈ [0, 1]. Let j0 ∈ {1, . . . , p} be such that nj0 = maxj∈{1,...,p} nj .

Define z = limn→∞ ψjn0
(0) =

∑∞
k=1

j0
pk

∈ [0, 1] and notice that X ∩ (V +(z, 0)) is the

self-similar set associated to nj0 many homotheties γk : [0, 1] → [0, 1], γk(y) =
1
q
y+ k

q
,

where (j0, k) ∈ I. Furthermore, as X ∩ (V + (z, 0)) satisfies the strong separation

condition, Theorems 4.1 and 4.2 imply that

dimA(X ∩ (V + (z, 0))) = dimH(X ∩ (V + (z, 0)))

= dimsim(X ∩ (V + (z, 0))) =
log nj0

log q
.

By the definition of z, it is evident that the dimension of X ∩ (V + (x, 0)) reaches

its maximal value at x = z. □

To find the lower bound for the Assouad dimension, we bound the dimensions of

the projection and the maximal slice from above by means of tangent sets.

Lemma 6.7. If X ⊂ R2 is a Bedford-McMullen carpet satisfying the strong

separation condition and V ∈ G(2, 1) is the y-axis, then for every x ∈ X and

T ∈ Tan(X, x) it holds that

dimH(projV ⊥(X)) ⩽ dimH(T ∩ (V ⊥ + y))

for all y ∈ T ∩ V ∩B(0, 1
2
).

Proof. Let i ∈ Σ be such that πi = x = (x1, x2) and let (rn)n∈N be a sequence of

positive reals such that limn→∞ rn = 0 and

Mx,rn(X) ∩B(0, 1) → T

in Hausdorff distance. For each n ∈ N choose kn ∈ N such that p−kn+1 ⩽ rn <

p−kn+2. Notice that φi|kn (X) ⊂ B(0, 1) and

rn
p−kn

projV ⊥(Mx,rn(φi|kn (X))) + (x1, 0) = projV ⊥(X).
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Since Mx,rn(φi|kn (X)) ⊂ R× [− q−kn

rn
, q

−kn

rn
] and q−kn

rn
→ 0, going into a subsequence

if necessary, we see that

Mx,rn(φi|kn (X)) → λ(projV ⊥(X)− (x1, 0))

in Hausdorff distance, where λ ∈ [p−2, p−1]. Recalling that Mx,rn(φi|kn (X)) ⊂
Mx,rn(X) ∩B(0, 1), we get by compactness that

λ(projV ⊥(X)− (x1, 0)) ⊂ T ∩ V ⊥.

By the construction of the Bedford-McMullen carpet, it is evident that an affine

copy of projV ⊥(X) is contained also in T ∩ (V ⊥+y) for all y ∈ T ∩V ∩B(0, 1
2
). The

claim follows by recalling that the Hausdorff dimension is monotone and invariant

under bi-Lipschitz maps. □

Recalling Lemma 6.4, the second lemma shows the existence of a tangent set

having maximal vertical slice.

Lemma 6.8. If X ⊂ R2 is a Bedford-McMullen carpet satisfying the strong

separation condition and V ∈ G(2, 1) is the y-axis, then there exist z ∈ X and

T ∈ Tan(X, z) such that

max
x∈R2

dimH(X ∩ (V + x)) ⩽ dimH(T ∩ V ).

Proof. Recall from the proof of Proposition 6.6 that the maximum in the claim is

attained at dimH(X ∩ (V + x)), where X ∩ (V + x) is a self-similar set. Therefore,

by Corollary 6.3 and Proposition 6.6, there are z ∈ X ∩ (V + x) and T ∈ Tan(X ∩
(V + x), z) such that dimH(T ) = dimA(X ∩ (V + x)) = dimH(X ∩ (V + x)). Let

(rn)n∈N be a sequence of positive reals such that limn→∞ rn = 0 and

Mz,rn(X ∩ (V + x)) ∩B(0, 1) → T

in Hausdorff distance. Note that, asMz,rn is a homothety, we haveMz,rn(V +x) = V .

By going into a subsequence, if necessary, we find T ′ ∈ Tan(X, z) such that

Mz,rn(X) ∩B(0, 1) → T ′
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in Hausdorff distance. By compactness, we have T ⊂ T ′ ∩ V and thus,

dimH(X ∩ (V + x)) = dimH(T ) ⩽ dimH(T
′ ∩ V )

as required. □

The above two lemmas now convert to a lower bound for the Assouad dimension

by means of the projection onto the x-axis and the maximal vertical slice.

Proposition 6.9. If X ⊂ R2 is a Bedford-McMullen carpet satisfying the strong

separation condition and V ∈ G(2, 1) is the y-axis, then there exist z ∈ X and

T ∈ Tan(X, z) such that

dimH(T ) ⩾ dimH(projV ⊥(X)) + max
x∈R2

dimH(X ∩ (V + x)).

Proof. By Lemma 6.8, there exist z ∈ X and T ∈ Tan(X, z) such that

max
x∈R2

dimH(X ∩ (V + x)) ⩽ dimH(T ∩ V ) (6.2)

and, by Lemma 6.7, it holds that

dimH(projV ⊥(X)) ⩽ dimH(T ∩ (V ⊥ + y)) (6.3)

for all y ∈ T ∩ V ∩ B(0, 1
2
). Relying on Proposition 6.6 and (6.2), choose 0 <

s < dimH(T ∩ V ) and, by Theorem 2.6, let µ be an s-Frostman measure on

T ∩V ∩B(0, 1
2
). By Marstrand’s slicing theorem, see Bishop and Peres [4, Theorem

3.3.1], we have

dimH(T ∩ (V ⊥ + y)) ⩽ dimH(T )− s (6.4)

for µ-almost all y ∈ T ∩ V ∩ B(0, 1
2
). By letting s ↑ dimH(T ∩ V ), we get from

(6.3), (6.4), and (6.2) that

dimH(projV ⊥(X)) ⩽ dimH(T )− dimH(T ∩ V )

⩽ dimH(T )−max
x∈R2

dimH(X ∩ (V + x))

as required. □

As a corollary, we are able to determine the Assouad dimension of a Bedford-

McMullen carpet.
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Corollary 6.10. If X ⊂ R2 is a Bedford-McMullen carpet satisfying the strong

separation condition, then

dimA(X) =
log#{j ∈ {1, . . . , p} : nj ̸= 0}

log p
+ max

j∈{1,...,p}

log nj

log q
.

Proof. By Corollary 6.3, the claim follows directly from Propositions 6.5, 6.6

and 6.9. □

Recall from Theorem 4.2 that a self-similar set X satisfying the weak separation

condition has dimH(X) = dimA(X). By (4.2), we have dimH(X) ⩽ dimaff(X) for

all self-affine sets X. In the following example, we show that a Bedford-McMullen

carpet X can have dimaff(X) < dimA(X) even if the strong separation condition is

satisfied.

Example 6.11. Write A = (A, . . . , A) ∈ GL2(R)N , where A = diag(1
p
, 1
q
), and note

that P (A, s) = log(Nφs(A)). Hence,

dimaff(X) =


logN
log p

, if N ∈ {2, . . . , p},

1 + logN/p
log q

, if N ∈ {p+ 1, . . . , pq}.
(6.5)

Let X ⊂ [0, 1]2 be the Bedford-McMullen carpet associated to the following choices:

Fix q = 5, p = 4, and N = 5, and choose the translation vectors such that n1 = 3,

n2 = 0, n3 = 1 = n4, and that the strong separation condition is satisfied. Then,

by (6.5) and Corollary 6.10, we have

dimaff(X) = 2− log 4

log 5
<

log 3

log 4
+

log 3

log 5
= dimA(X).
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