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What are hyperbolic networks?

• Model networks (graphs) generated by placing nodes in hyperbolic
spaces.

• Real networks embedded into a hyperbolic space.
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Introduction
Historical timeline

• Random Hyperbolic Graph (RHG) or S1/H2 model:
D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá: Hyperbolic
geometry of complex networks. Phys. Rev. E. 82, 036106 (2010).

• Popularity Similarity Optimisation (PSO) model:
F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:
Popularity versus similarity in growing networks. Nature 489, 53 (2012).

• HyperMap for embedding into hyperbolic space:
F. Papadopoulos, C. Psomas, D. Krioukov:
Network Mapping by Replaying Hyperbolic Growth. IEEE/ACM Transactions
on Networking. 23, 198–211 (2015).

• Coalescent embeddings:
A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci:
Machine learning meets complex networks via coalescent embedding in the
hyperbolic space. Nat. Commun. 8, 1615 (2017).
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Why is it a good idea to place the nodes of a network into
hyperbolic spaces?
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Network models

What is the goal/motivation of a network model?

• Generate interesting graphs...

• Reproduce statistical properties of the networks representing
real systems.
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Watts-Strogatz model:

• Regular ring network with random rewiring.

• Can generate small-world and highly clustered networks.

D. Watts and S. H. Strogatz, Nature 393,409 (1998)
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Watts-Strogatz model:

• Regular ring network with random rewiring.

• Can generate small-world and highly clustered networks.

D. Watts and S. H. Strogatz, Nature 393,409 (1998)
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Network models
Famous examples

Barabási-Albert model

• Network growth with preferential attachment.

• Generates scale-free networks where p(k) ∝ k−3.

A.-L. Barabási, R. Albert, Science 286, 509–512 (1999).
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Network models
What features are we after?

Most networks representing real complex systems are in most cases:

• Small-world

• Highly clustered

• Inhomogeneous in terms of the degree (scale-free).
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Network models
Can we have all of these in a simple model?

Holme-Kim model:

• B-A model with extra triad formation steps

• Can generate scale-free networks with a tunable clustering
coefficient.

P. Holme and B. J. Kim, Phys. Rev. E 65, 026107 (2002).
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What about random geometric graphs?

Random geometric graphs:

• Place nodes (uniformly) at random in a (Euclidean) space,

• and connect them according to the distance.
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What about random geometric graphs?

Random geometric graphs:

• Place nodes (uniformly) at random in a (Euclidean) space,

• and connect them according to the distance.

Very intuitive, simple to understand model for humans...
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Network models
What about random geometric graphs?

Random geometric graphs:

• Place nodes (uniformly) at random in a (Euclidean) space,

• and connect them according to the distance.

Very intuitive, simple to understand model for humans...

But can we have small-world, highly clustered and scale-free networks in
this approach?
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Small-world vs Regular

REGULARRANDOM

N(`) ≈ ⟨k⟩` N(`) ∼ `2

⟨k⟩` ≈ N ⟨`⟩2 ∼ N
⟨`⟩ ≈ ln N

ln⟨k⟩ ⟨`⟩ ∼ N1/2
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• The number of nodes in concentric shells around a given node
grows exponentially in a small-world network.

↕

• The volume of a sphere displays only a polynomial growth in
Euclidean spaces.
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• The number of nodes in concentric shells around a given node
grows exponentially in a small-world network.

↕

• The volume of a sphere displays only a polynomial growth in
Euclidean spaces.

→ We cannot have large Euclidean random geometric graphs that are
also small-world!



Introduction

Preliminaries
What are hyperbolic
networks?

Why hyperbolic?

Hyperbolic
geometry
Properties

Native disk

Small-world vs Euclidean

• The number of nodes in concentric shells around a given node
grows exponentially in a small-world network.

↕

• The volume of a sphere displays only a polynomial growth in
Euclidean spaces.

→ We cannot have large Euclidean random geometric graphs that are
also small-world!

• However, the volume of spheres grows exponentially in
hyperbolic spaces, thus, they are more suited for hosting small
world networks!
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• A hyperbolic space is a metric space with constant negative
curvature K, usually characterised by ζ =

√
−K.
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Hyperbolic geometry

• A hyperbolic space is a metric space with constant negative
curvature K, usually characterised by ζ =

√
−K.

• Poincaré disk model of 2d hyperbolic space:

(Figure from Krioukov et al.,Phys. Rev. E. 82, 036106 (2010))
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Hyperbolic geometry

• Comparing different geometries:

(Table from Krioukov et al.,Phys. Rev. E. 82, 036106 (2010))
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Hyperbolic geometry

• Hyperbolic geometry on YouTube:

• From CodeParade:
Non-Euclidean Geometry Explained - Hyperbolica Devlog #1

• From Henry Segerman:
Illuminating hyperbolic geometry

• From Numberphile:
Playing Sports in Hyperbolic Space - Numberphile

https://www.youtube.com/watch?v=zQo_S3yNa2w
https://www.youtube.com/watch?v=eGEQ_UuQtYs&t=0s
https://www.youtube.com/watch?v=u6Got0X41pY
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We will work in the native disk representation of the 2d hyperbolic space:

• The radial coordinates correspond to the true (hyperbolic) distance
from disk centre, r ≡ rh = rE.
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Native disk representation

We will work in the native disk representation of the 2d hyperbolic space:

• The radial coordinates correspond to the true (hyperbolic) distance
from disk centre, r ≡ rh = rE.

• The circle perimeter and area are

L(r) = 2π sinh(ζr),
A(r) = 2π (cosh(ζr) − 1) ,

both grow as eζr as a function of r.
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Native disk representation

We will work in the native disk representation of the 2d hyperbolic space:

• The radial coordinates correspond to the true (hyperbolic) distance
from disk centre, r ≡ rh = rE.

• The circle perimeter and area are

L(r) = 2π sinh(ζr),
A(r) = 2π (cosh(ζr) − 1) ,

both grow as eζr as a function of r.

• The hyperbolic law of cosines for the hyperbolic distance x between
two points (r, θ) and (r′, θ′):

cosh(ζx) = cosh(ζr) cosh(ζr′) − sinh(ζr) sinh(ζr′) cos(∆θ),

where ∆θ = π − ∣π − ∣θ − θ′∣∣ is the angular difference.
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Native disk representation

We will work in the native disk representation of the 2d hyperbolic space:

• The radial coordinates correspond to the true (hyperbolic) distance
from disk centre, r ≡ rh = rE.

• The circle perimeter and area are

L(r) = 2π sinh(ζr),
A(r) = 2π (cosh(ζr) − 1) ,

both grow as eζr as a function of r.

• The hyperbolic law of cosines for the hyperbolic distance x between
two points (r, θ) and (r′, θ′):

cosh(ζx) = cosh(ζr) cosh(ζr′) − sinh(ζr) sinh(ζr′) cos(∆θ),

where ∆θ = π − ∣π − ∣θ − θ′∣∣ is the angular difference.

• For sufficiently large ζr, ζr′ and ∆θ > 2
√

e−2ζr + e−2ζr′ the distance
can be approximated as

x ≃ r + r′ + 2
ζ

ln(sin(∆θ

2
)) ≈ r + r′ + 2

ζ
ln(∆θ

2
) .
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POPULARITY SIMILARITY OPTIMISATION MODEL

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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Popularity and similarty during network growth

Plausible effects governing the connection process in growing networks
representing real complex systems:

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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Popularity and similarty during network growth

Plausible effects governing the connection process in growing networks
representing real complex systems:

• Similarity between the entities represented by the nodes is
enhancing the pairwise connection probability.

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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Popularity and similarty during network growth

Plausible effects governing the connection process in growing networks
representing real complex systems:

• Similarity between the entities represented by the nodes is
enhancing the pairwise connection probability.

• Popularity (degree) of an entity can enhance the probability for
connecting to any other node in general.

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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Popularity and similarity in the native disk

Analogy of these two properties in the native disk:

• Similarity: the angle and the angular
separation ∆θ can provide a simple
model of similarity.

• Popularity: the radial distance from the
disk center can model the popularity.
(Smaller radius corresponds to larger
popularity).

(Figure from Krioukov et al., Phys. Rev. E. 82, 036106 (2010))

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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Concept of the PSO model

• A growing network model where we add a new node at each
iteration to the native disk:

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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Concept of the PSO model

• A growing network model where we add a new node at each
iteration to the native disk:

• the angular coordinates are chosen uniformly at random,

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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Concept of the PSO model

• A growing network model where we add a new node at each
iteration to the native disk:

• the angular coordinates are chosen uniformly at random,

• the radial coordinates are chosen such that the node density is
uniform.

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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Concept of the PSO model

• A growing network model where we add a new node at each
iteration to the native disk:

• the angular coordinates are chosen uniformly at random,

• the radial coordinates are chosen such that the node density is
uniform.

• The node pairs are connected according to a probability depending
on the hyperbolic distance.

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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Concept of the PSO model

How should we set the radial coordinates?

• We know that the disk area is increasing exponentially with the
radius...

→ the radial coordinate of the new nodes should increase
logarithmically with the node index (or birth time):

rt = ln(t)

→ The hyperbolic distance between nodes s and t becomes
approximately

xst ≃ rs + rt +
2
ζ

ln(θst

2
) .

If we set ζ = 2,

exst ≃ s ⋅ t
°
pop.

⋅ θst

2
°
sim.

the distance (exponentiated) is basically the logarithm of the product
between popularity and similarity.

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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Concept of the PSO model

How should we connect the node pairs?

→ A basic idea:

• always connect to the closest m nodes.

• connect to all nodes within some radius R.

• (with appropriate choice of R the two can be made equivalent)

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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Model 0
Definition

The PSO model (Model 0)

• The curvature K < parametrised by ζ =
√
−K is set to ζ = 2, making

the formula for the hyp. distance even simpler.

• The only free parameters are the number of nodes N and the
average degree parametrised by m = ⟨k⟩ /2.

• The network is grown according to the following rules:

• At iteration t, the new node obtains a radial coordinate rt = ln t,
and an angular coordinate θt ∈ [0, 2π] uniformly at random.

• If t < m, it connects to all previous nodes, otherwise it connects
to the closest m nodes.

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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Model 0
Definition

Illustration from the original paper:

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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Model 0
Illustration

Network with 100 nodes: Degree distribution (complementary
cumulative):

101 102 103

k

10 3

10 2

10 1

100

1
P(

k)

Model 0
k 1

Average clustering coeff.: 0.85

→ The model generates scale-free networks with γ ≈ 2 !

→ The clustering coefficient is also high!
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Model 0

It would be nice

• if we could control the degree decay exponent γ...

• if we could control the average clustering coefficient ⟨C⟩...



Hyperbolic
network models

PSO model
Popularity and
similarity

Model 0

Model 1

Degree distribution

Model 2

Clustering coeff.

Arbitrary ζ

E-PSO model

nPSO model

RHG model
Concept

The S1/H2 model

Model 1

Controlling the degree distribution: popularity fading.

• The degree is determined by the radial coordinate, with nodes
closer to the origin gaining more connections.

→ We could modify the network generation process by slowly pulling
the old nodes outwards to decrease their popularity...

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)



Hyperbolic
network models

PSO model
Popularity and
similarity

Model 0

Model 1

Degree distribution

Model 2

Clustering coeff.

Arbitrary ζ

E-PSO model

nPSO model

RHG model
Concept

The S1/H2 model

Model 1
Definition

The PSO model (Model 1)

• The curvature K < parametrised by ζ =
√
−K is set to ζ = 2, making

the formula for the hyp. distance even simpler.

• Free parameters are N, m = ⟨k⟩ /2 and β, controlling the popularity
fading.

• The network is grown according to the following rules:

• At iteration t, the new node obtains a radial coordinate
rt(t) = ln t, and an angular coordinate θt ∈ [0, 2π] uniformly at
random.

• Popularity fading: The radial coordinate of all existing nodes
is updated as

rs(t) = βrs(s) + (1 − β)rt(t)
(At β = 1 we recover Model 0).

• If t < m, the new node connects to all previous nodes,
otherwise it connects to the closest m nodes.

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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Model 0 vs Model 1

Network generated with Model 0:
(N = 100, m = 3, β = 1)

Network generated with Model 1:
(N = 100, m = 3, β = 1

2 )
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Model 0 vs Model 1

The degree distributions:

101 102 103

k

10 3

10 2

10 1

100

1
P(

k)

"Model 0" ( = 1)
"Model I" ( = 1/2)
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Analytic calculation of the degree distribution

Main steps:

• Convert
"connect to m closest nodes"
into

"connect to all nodes within a cutoff radius R"
(by appropriate choice of R).

• Using that, show that the linking probability between a new node t
and an old node s is equivalent to that in a generalised B-A model.

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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Analytic calculation of the degree distribution

• What is the expected number of nodes within a radius R from the
node appearing at t?

• The prob. that s is closer than R is

P(xst < R) ≃ P(rs + rt +
2
ζ

ln(θst/2) < R) = P(θst < 2e−
ζ
2 (rs+rt−R)) .

Since we have set ζ = 2, and θst is uniform in [0, π]

P(xst < R) ≃ P (θst < 2e−(rs+rt−R)) = 2
π

e−(rs+rt−R)

• By summing over all existing nodes we gain

N̄(R) =
t

∑
i=1

P(xit < R) ≃ ∫
t

1
P(xit < R)di = 2

π
e−(rt−R)

∫
t

1
e−ri(t)di.

• The integral can be expressed as:

∫
t

1
e−ri(t)di. =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e−(1−β)rt

1−β [e(1−β)rt − 1] = 1
1−β [1 − e−(1−β)rt] . if β < 1

ln(t) = rt if β = 1.
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Analytic calculation of the degree distribution

• The expected number of nodes within a radius R from the node t:

N̄(R) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2
π

e−(rt−R) 1
1−β [1 − e−(1−β)rt] , if β < 1

2
π

e−(rt−R)rt if β = 1.

• By setting N̄ = m, we can define a t-dependent cutoff radius, for
which the expected number of older nodes within is m as

Rt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

rt − ln [ 2
π

[1−e−(1−β)rt ]
m(1−β) ] , if β < 1

rt − ln [ 2
π

rt
m ] if β = 1.
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Analytic calculation of the degree distribution

• Let’s focus now on the probability that t is connecting to s:

Π(s, t) = P(xst < Rt) =
2
π

e−(rs(t)+rt(t)−Rt) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e−rs(t)m
1

1−β [1−e−(1−β)rt ] , if β < 1

e−rs(t)m
rt

if β = 1.

By realising that the denominator is ∫
t

1 e−ri di,

Π(s, t) = m
e−rs(t)

t

∫
1

e−ri(t)di
= m

e−βrs(s)−(1−β)rt(t)

t

∫
1

e−βri(i)−(1−β)rt(t)di
= m

e−βrs(s)

t

∫
1

e−βri(i)di
,

or equivalently

Π(s, t) = m
s−β

t

∫
1

i−βdi
= m

( s
t )
−β

t

∫
1
( i

t )
−β

di
.
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Analytic calculation of the degree distribution

• Dorogovtsev, Mendes and Samukhin generalised the B-A model
where a new node bringing m new links is choosing s as

P(s) ∝ ks(t) −m + A,

where A is a further model-parameter.

• The connection probability is

Π(s, t) = m
ks(t) −m + A

t(m + A)
.

The degree of node introduced at t = s can be written as

k̄s(t) = m + A [( s
t
)
−β
− 1] ,

where β is an exponent β ∈ (0, 1) depending on the model
parameters, and

β = 1
1 − γ

↔ γ = 1 + 1
β
.

N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000)
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Analytic calculation of the degree distribution

• By replacing ks(t) by its expected value

Π̄(s, t) =m
k̄s(t) −m + A

t(m + A)
= m

A ( s
t )
−β

∫
t

1 (ki(t) −m + A)di
= m

A ( s
t )
−β

A ∫
t

1 ( i
t )
−β

di
=

m
( s

t )
−β

∫
t

1 ( i
t )
−β

di

• This is exactly the same as the connection prob. in Model 1!

→ Model 1 is generating scale-free networks where γ is controlled
by β as

γ = 1 + 1
β
.
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Analytic calculation of the degree distribution

Comparing PSO and preferential attachment in the original paper:
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Analytic calculation of the degree distribution

• Let us turn back to the expected degree of node s:

k̄s(t) ∼ ( s
t
)
−β

= e−β(rs(s)−rs(t))

Using that rs(t) = βrs(s) + (1 − β)rt(t) we can write
βrs(s) = rs(t) + (β − 1)rt(t), hence

k̄s(t) ∼ e−(rs(t)−rt(t)).

• Thus, the expected node degree is determined by the radial
coordinate, or equivalently, by the birth time of the node, and the
expected degree is decreasing as a function of r.
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How to control also the clustering coefficient?
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How to control also the clustering coefficient?

• The large C comes from the relatively "strict" connection rule, where
we connect to everybody within Rt and to no one farther away...
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How to control also the clustering coefficient?

• The large C comes from the relatively "strict" connection rule, where
we connect to everybody within Rt and to no one farther away...

• Softening this rule can decrease C.
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How to control also the clustering coefficient?

• The large C comes from the relatively "strict" connection rule, where
we connect to everybody within Rt and to no one farther away...

• Softening this rule can decrease C.

• A natural idea is to use

p(xst) =
1

1 + e
xst−Rt

T

0 2 4 6 8 10 12
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

p(
x)

T = 0
T1 > 0
T2 > T1
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The PSO model (Model 2)

• The curvature K < parametrised by ζ =
√
−K is set to ζ = 2.

• Parameters: N, m = ⟨k⟩ /2, β, and T, controlling ⟨C⟩.
• The network is grown according to the following rules:

• At iteration t, the new node obtains rt(t) = ln t, and θt ∈ [0, 2π]
uniformly at random.

• The radial coordinate of all existing nodes is updated as

rs(t) = βrs(s) + (1 − β)rt(t)

• If t < m, the new node connects to all previous nodes.
• Otherwise repeat until m links are realised:

- Choose a node s uniformly at random.
- Connect to this node according to

p(xst) =
1

1 + e
1
T (xst−Rt)
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What happens to the degree distribution with this modification?
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What happens to the degree distribution with this modification?

• Let’s write the distance dependent connection prob. as

p(xst) =
1

1 + e
1
T (rs+rt+ln(θst/2)−Rt)

= 1

1 + (X(s, t) θst
2 )

1
T
,

where we introduced X(s, t) = ers+rt−Rt .

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)



Hyperbolic
network models

PSO model
Popularity and
similarity

Model 0

Model 1

Degree distribution

Model 2

Clustering coeff.

Arbitrary ζ

E-PSO model

nPSO model

RHG model
Concept

The S1/H2 model

Model 2
Degree distribution

What happens to the degree distribution with this modification?

• Let’s write the distance dependent connection prob. as

p(xst) =
1

1 + e
1
T (rs+rt+ln(θst/2)−Rt)

= 1

1 + (X(s, t) θst
2 )

1
T
,

where we introduced X(s, t) = ers+rt−Rt .

• Since θst is uniformly random in [0, π], and nodes are chosen at
random, the prob. that t connects to s in one round is

P(s, t) = 1
t

1
π ∫

π

0

1

1 + (X(s, t) θst
2 )

1
T

dθst.
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What happens to the degree distribution with this modification?

• Let’s write the distance dependent connection prob. as

p(xst) =
1

1 + e
1
T (rs+rt+ln(θst/2)−Rt)

= 1

1 + (X(s, t) θst
2 )

1
T
,

where we introduced X(s, t) = ers+rt−Rt .

• Since θst is uniformly random in [0, π], and nodes are chosen at
random, the prob. that t connects to s in one round is

P(s, t) = 1
t

1
π ∫

π

0

1

1 + (X(s, t) θst
2 )

1
T

dθst.

• If T < 1, and assuming that X(s, t) >> 1, by change of variables the
integral can be approximated as

P(s, t) ≈ 2T
t sin(πT)

1
X(s, t)

.
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• The probability that node t is connecting to s overall can be written
as

Π(s, t) = m
P(s, t)
∫

r
1 P(i, t)di

= m
X(s, t)−1

∫
t

1 X(i, t)−1di
= m

e−rs(t)

∫
t

1 e−ri(t)di
.
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• The probability that node t is connecting to s overall can be written
as

Π(s, t) = m
P(s, t)
∫

r
1 P(i, t)di

= m
X(s, t)−1

∫
t

1 X(i, t)−1di
= m

e−rs(t)

∫
t

1 e−ri(t)di
.

• This is the same as in Model 1!
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• The probability that node t is connecting to s overall can be written
as

Π(s, t) = m
P(s, t)
∫

r
1 P(i, t)di

= m
X(s, t)−1

∫
t

1 X(i, t)−1di
= m

e−rs(t)

∫
t

1 e−ri(t)di
.

• This is the same as in Model 1!

→ Thus, the degree distribution is not affected by changing from
Model 1 to Model 2, and γ is still controlled (only) by β!
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What about the cutoff radius Rt?
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What about the cutoff radius Rt?

• Number of expected nodes t will connect to is

N̄(Rt) =t∫
t

1
P(i, t)dt = t∫

t

1

2T
t sin(πT)

e−(ri(t)+rt(t)−Rt)di =

2T
sin(πT)

e−(rt−Rt) ∫
t

1
e−ri(t)di.
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What about the cutoff radius Rt?

• Number of expected nodes t will connect to is

N̄(Rt) =t∫
t

1
P(i, t)dt = t∫

t

1

2T
t sin(πT)

e−(ri(t)+rt(t)−Rt)di =

2T
sin(πT)

e−(rt−Rt) ∫
t

1
e−ri(t)di.

We have calculated the same integral before, thus,

N̄(Rt) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2T
sin(πT) e−(rt−Rt) 1

1−β [1 − e−(1−β)rt] . if β < 1

2T
sin(πT) e−(rt−Rt)rt if β = 1
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What about the cutoff radius Rt?

• Number of expected nodes t will connect to is

N̄(Rt) =t∫
t

1
P(i, t)dt = t∫

t

1

2T
t sin(πT)

e−(ri(t)+rt(t)−Rt)di =

2T
sin(πT)

e−(rt−Rt) ∫
t

1
e−ri(t)di.

We have calculated the same integral before, thus,

N̄(Rt) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2T
sin(πT) e−(rt−Rt) 1

1−β [1 − e−(1−β)rt] . if β < 1

2T
sin(πT) e−(rt−Rt)rt if β = 1

• Based on that

Rt =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

rt − ln [ 2T
sin(πT)

[1−e−(1−β)rt ]
m(1−β) ] , if β < 1

rt − ln [ 2T
sin(πT)

rt
m ] if β = 1.
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From the original paper:
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How does the clustering coefficient behave in Model 2?
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How does the clustering coefficient behave in Model 2?

• Simple closed formula for C̄ cannot be given.
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How does the clustering coefficient behave in Model 2?

• Simple closed formula for C̄ cannot be given.

• However, it can be shown that ⟨C⟩ is decreasing as a function of T,
and at any fixed β, the strongest clustering can be achieved at T = 0.
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How does the clustering coefficient behave in Model 2?

• Simple closed formula for C̄ cannot be given.

• However, it can be shown that ⟨C⟩ is decreasing as a function of T,
and at any fixed β, the strongest clustering can be achieved at T = 0.

• Intuitive view:

• At low T nodes connect almost only to the closest other notes.

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)



Hyperbolic
network models

PSO model
Popularity and
similarity

Model 0

Model 1

Degree distribution

Model 2

Clustering coeff.

Arbitrary ζ

E-PSO model

nPSO model

RHG model
Concept

The S1/H2 model

Model 2
Clustering coefficient

How does the clustering coefficient behave in Model 2?

• Simple closed formula for C̄ cannot be given.

• However, it can be shown that ⟨C⟩ is decreasing as a function of T,
and at any fixed β, the strongest clustering can be achieved at T = 0.

• Intuitive view:

• At low T nodes connect almost only to the closest other notes.
→ Due to the triangle inequality a lot of triangles are formed.
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How does the clustering coefficient behave in Model 2?

• Simple closed formula for C̄ cannot be given.

• However, it can be shown that ⟨C⟩ is decreasing as a function of T,
and at any fixed β, the strongest clustering can be achieved at T = 0.

• Intuitive view:

• At low T nodes connect almost only to the closest other notes.
→ Due to the triangle inequality a lot of triangles are formed.
• At high T nodes can connect to nodes further away as well.
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Model 2
Clustering coefficient

How does the clustering coefficient behave in Model 2?

• Simple closed formula for C̄ cannot be given.

• However, it can be shown that ⟨C⟩ is decreasing as a function of T,
and at any fixed β, the strongest clustering can be achieved at T = 0.

• Intuitive view:

• At low T nodes connect almost only to the closest other notes.
→ Due to the triangle inequality a lot of triangles are formed.
• At high T nodes can connect to nodes further away as well.
→ The number of triangles (and consequently, C̄) is reduced.

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:
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Simulations

From the original paper:

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)



Hyperbolic
network models

PSO model
Popularity and
similarity

Model 0

Model 1

Degree distribution

Model 2

Clustering coeff.

Arbitrary ζ

E-PSO model

nPSO model

RHG model
Concept

The S1/H2 model

Model 2
Comparing with a real network

From the original paper:
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General ζ

How to extend the model to any curvature K = −ζ2?
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How to extend the model to any curvature K = −ζ2?

• The radial coordinate of the new nodes has to be modified as

rt = ln t Ð→ rt =
2
ζ

ln t.
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General ζ

How to extend the model to any curvature K = −ζ2?

• The radial coordinate of the new nodes has to be modified as

rt = ln t Ð→ rt =
2
ζ

ln t.

• The connection probability has to be modified as

p(xst) =
1

1 + e
xst−Rt

T

Ð→ p(xst) =
1

1 + e
ζ
2T (xst−Rt)

.
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General ζ

How to extend the model to any curvature K = −ζ2?

• The radial coordinate of the new nodes has to be modified as

rt = ln t Ð→ rt =
2
ζ

ln t.

• The connection probability has to be modified as

p(xst) =
1

1 + e
xst−Rt

T

Ð→ p(xst) =
1

1 + e
ζ
2T (xst−Rt)

.

• The new cutoff radius becomes

Rt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

rt − 2
ζ

ln

⎡⎢⎢⎢⎢⎢⎣

2T
sin(πT)

[1−e−
ζ
2 (1−β)rt ]

m(1−β)

⎤⎥⎥⎥⎥⎥⎦
, if β < 1

rt − 2
ζ

ln [ 2T
sin(πT)

ζrt
m ] if β = 1.
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General ζ

How to extend the model to any curvature K = −ζ2?

• The radial coordinate of the new nodes has to be modified as

rt = ln t Ð→ rt =
2
ζ

ln t.

• The connection probability has to be modified as

p(xst) =
1

1 + e
xst−Rt

T

Ð→ p(xst) =
1

1 + e
ζ
2T (xst−Rt)

.

• The new cutoff radius becomes

Rt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

rt − 2
ζ

ln

⎡⎢⎢⎢⎢⎢⎣

2T
sin(πT)

[1−e−
ζ
2 (1−β)rt ]

m(1−β)

⎤⎥⎥⎥⎥⎥⎦
, if β < 1

rt − 2
ζ

ln [ 2T
sin(πT)

ζrt
m ] if β = 1.

• With these modifications the same results hold.
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PSO model

The PSO model (canonical form)

• Parameters: ζ =
√
−K, m = ⟨k⟩ /2, β ∈ (0, 1], and T ∈ [0, 1).

• The network is grown according to the following rules:

• At time step t, the new node appears at
rt(t) = 2

ζ
ln t, and θt ∈ [0, 2π]

• The radial coordinate of all existing nodes is updated as
rs(t) = βrs(s) + (1 − β)rt(t)

• If t < m, the new node connects to all previous nodes.
• Otherwise repeat until m links are realised:

- Choose a node s uniformly at random.
- Connect to this node according to p(xst) = 1

1+e
ζ
2T (xst−Rt)

, where

Rt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

rt −
2
ζ
ln

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2T
sin(πT)

[1−e−
ζ
2 (1−β)rt ]

m(1−β)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, if β < 1

rt −
2
ζ
ln [

2T
sin(πT)

ζrt
m ] if β = 1.
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The PSO model

The main properties of the generated network:

• The degree distribution is scale-free.

• High clustering coefficient.

• The degree of the nodes is determined by their radial
coordinate.
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The PSO model

Can we also define a version for T > 1?
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The PSO model

Can we also define a version for T > 1?

• The former calculation of the degree distribution does not hold.
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The PSO model

Can we also define a version for T > 1?

• The former calculation of the degree distribution does not hold.

• In order to retain the same β dependency of the degree distribution,
the initial radial coordinate of the nodes has to be changed to
rt = 2T

ζ
ln t instead of rt = 2

ζ
ln t.
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EXTENDED POPULARITY SIMILARITY OPTIMISATION MODEL

F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).
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Motivation

• In real complex networks new connections may appear also
between already existing nodes as well...



Hyperbolic
network models

PSO model
Popularity and
similarity

Model 0

Model 1

Degree distribution

Model 2

Clustering coeff.

Arbitrary ζ

E-PSO model

nPSO model

RHG model
Concept

The S1/H2 model

The E-PSO model
Motivation
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The E-PSO model
Motivation

• In real complex networks new connections may appear also
between already existing nodes as well...

• E.g., Internet, World Wide Web, online social media, etc.

• Let’s extend the model with this feature!
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The E-PSO model

Extension to the PSO-model:

• Grow the network according the PSO model...

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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The E-PSO model

Extension to the PSO-model:

• Grow the network according the PSO model...

• However, at each time step, after connecting the new node with m
links to the already existing nodes, we also distribute L extra internal
links between the old nodes:
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The E-PSO model

Extension to the PSO-model:

• Grow the network according the PSO model...

• However, at each time step, after connecting the new node with m
links to the already existing nodes, we also distribute L extra internal
links between the old nodes:

• Random i, j < t pairs of nodes are selected at random, and are
linked according to

p(xij) =
1

1 + e
ζ
2T (xij−Rt)

.
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The E-PSO model

Extension to the PSO-model:

• Grow the network according the PSO model...

• However, at each time step, after connecting the new node with m
links to the already existing nodes, we also distribute L extra internal
links between the old nodes:

• Random i, j < t pairs of nodes are selected at random, and are
linked according to

p(xij) =
1

1 + e
ζ
2T (xij−Rt)

.

• The above step is repeated until L internal connections are realised.

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:
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The E-PSO model

• The average degree becomes

⟨k⟩ = 2(m + L).
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The E-PSO model

• The average degree becomes

⟨k⟩ = 2(m + L).

• The probability for an old node to attract a link from the new node is
close to what we observe in the original PSO if k is sufficiently large.
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The E-PSO model

• The average degree becomes

⟨k⟩ = 2(m + L).

• The probability for an old node to attract a link from the new node is
close to what we observe in the original PSO if k is sufficiently large.

→ The degree decay exponent is still γ = 1 + 1
β

in the asymptotic limit.

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:
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What is the difference then?

F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).
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What is the difference then?

• The extra internal links can decrease further the average distance.

F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).
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The E-PSO model

What is the difference then?

• The extra internal links can decrease further the average distance.

• The densification of sub-graphs spanning between nodes with
k > kmin as a function of kmin observed in some real networks can be
reproduced this way.

F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).
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The E-PSO model

How about distributing the extra "internal" links straight away together
with the new links coming with the new node?

F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).
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The E-PSO model

How about distributing the extra "internal" links straight away together
with the new links coming with the new node?

→ The number of new links m on the new nodes is now not uniform,
instead depends on t.

F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).
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The E-PSO model

How about distributing the extra "internal" links straight away together
with the new links coming with the new node?

•→ The number of new links m on the new nodes is now not uniform,
instead depends on t.

• Still, this allows a formulation of the model that will be very beneficial
when trying to embed real networks into the hyperbolic space.

F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).
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The E-PSO model

•• The average number of links created between node s and all
previous nodes up to a certain time t if we have also extra internal
link formation:

m̄s(t) ≃ m + L
2(1 − β)

(1 − t−(1−β))2(2β − 1)
[( t

s
)

2β−1

− 1] (1 − s−(1−β)) .

F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).
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The E-PSO model

• The average number of links created between node s and all
previous nodes up to a certain time t if we have also extra internal
link formation:

m̄s(t) ≃ m + L
2(1 − β)

(1 − t−(1−β))2(2β − 1)
[( t

s
)

2β−1

− 1] (1 − s−(1−β)) .

• At the end of the network generation process t = N, thus, for node s
the total number of links to previous nodes is

m̄s ≃ m + L
2(1 − β)

(1 − N−(1−β))2(2β − 1)
[(N

s
)

2β−1

− 1] (1 − s−(1−β)) .

F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.
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The E-PSO model

• The average number of links created between node s and all
previous nodes up to a certain time t if we have also extra internal
link formation:

m̄s(t) ≃ m + L
2(1 − β)

(1 − t−(1−β))2(2β − 1)
[( t

s
)

2β−1

− 1] (1 − s−(1−β)) .

• At the end of the network generation process t = N, thus, for node s
the total number of links to previous nodes is

m̄s ≃ m + L
2(1 − β)

(1 − N−(1−β))2(2β − 1)
[(N

s
)

2β−1

− 1] (1 − s−(1−β)) .

→ We could replace m in the PSO model by the m̄s above!

F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).
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The E-PSO model

• In the Extended PSO model we have the following parameters:
ζ =

√
−K, m, L β ∈ (0, 1], and T ∈ [0, 1).

• The network is grown according to the rules of the PSO model.

• However, at time step t, the number of new links with which we
connect the new node to the already existing part is

mt ≃ m + L
2(1 − β)

(1 − N−(1−β))2(2β − 1)
[(N

t
)

2β−1

− 1] (1 − t−(1−β)) .

F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).
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The E-PSO model

Comparing the Internet on the level of Autonomous Systems with the
E-PSO model in the original paper:

F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).
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The E-PSO model

What about generalising also for link deletion?

→ In the model where we add extra links between old nodes, the basic
idea would be something like this:

• Grow the network according the E-PSO model.

• However at each time step, after distributing L+ extra internal links
between the old nodes, also delete L− links between the old nodes...

B. Kovács, G. Palla: Optimisation of the coalescent hyperbolic embedding of complex networks.

Sci. Rep. 11, 8350 (2021).
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OK, but how to choose the links to be deleted?

• At T = 0, the natural choice is to delete the links that connect the
node pairs i, j with the largest xij.

→ At T > 0 we can extend this by declaring that for any existing link
between old nodes i, j:

• the probability to survive the link removal is p(xij) = 1

1+e
ζ
2T (xij−Rt)

,

• and the probability to be removed is 1 − p(xij) = 1

1+e−
ζ
2T (xij−Rt)

.

• With this definition, when L+ = L−, we recover a network equivalent
to a graph generated by the original PSO model (without any
insertion or deletion of internal links).

B. Kovács, G. Palla: Optimisation of the coalescent hyperbolic embedding of complex networks.

Sci. Rep. 11, 8350 (2021).
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The E-PSO model

Again, we can turn this into a model where the extra internal link addition
or link deletion is carried out already at the birth of the new node:

• Let’s redefine L as the net number of added and removed internal
links, L = L+ − L−.

• The expected number of connections from node s to previous nodes
at the end of the network generation process:

m̄s ≃ m + L
2(1 − β)

(1 − N−(1−β))2(2β − 1)
[(N

s
)

2β−1

− 1] (1 − s−(1−β)) .

• This looks identical to ms in the previous version, however an
important difference is that now L can also be negative.

B. Kovács, G. Palla: Optimisation of the coalescent hyperbolic embedding of complex networks.

Sci. Rep. 11, 8350 (2021).
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The E-PSO model’

• In the Extended PSO model’ we have the following parameters:
ζ =

√
−K, m, L β ∈ (0, 1], and T ∈ [0, 1). The L can be now also

negative.

• The network is grown according to the rules of the PSO model.

• However, at time step t, the number of new links with which we
connect the new node to the already existing part is

mt ≃ m + L
2(1 − β)

(1 − N−(1−β))2(2β − 1)
[(N

t
)

2β−1

− 1] (1 − t−(1−β)) .

B. Kovács, G. Palla: Optimisation of the coalescent hyperbolic embedding of complex networks.

Sci. Rep. 11, 8350 (2021).
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Average internal degree of subgraphs spanning between nodes with
k > kmin as a function of kmin for E-PSO’ networks:
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2 · (m+L)

B. Kovács, G. Palla: Optimisation of the coalescent hyperbolic embedding of complex networks.

Sci. Rep. 11, 8350 (2021).
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NONUNIFORM POPULARITY OPTIMISATION MODEL

A. Muscoloni, C. V. Cannistraci: A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate

realistic complex networks with communities. New. J Phys. 20, 052002 (2018).
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nPSO model

How about non-uniform angular coordinates?

A. Muscoloni, C. V. Cannistraci: A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate

realistic complex networks with communities. New. J Phys. 20, 052002 (2018).
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nPSO model

How about non-uniform angular coordinates?

• In the region of higher node density we can also expect a higher link
density (due to "locality").

A. Muscoloni, C. V. Cannistraci: A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate

realistic complex networks with communities. New. J Phys. 20, 052002 (2018).
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nPSO model

How about non-uniform angular coordinates?

• In the region of higher node density we can also expect a higher link
density (due to "locality").

→ In the vicinity of the peaks communities are going to be formed in
the resulting network!

A. Muscoloni, C. V. Cannistraci: A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate

realistic complex networks with communities. New. J Phys. 20, 052002 (2018).
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What sort of distributions should we use for θ?

A. Muscoloni, C. V. Cannistraci: A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate

realistic complex networks with communities. New. J Phys. 20, 052002 (2018).
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What sort of distributions should we use for θ?

• Gaussian mixture: superposition of Gaussian distributions.

• Gamma mixture: superposition of Gamma distributions.

• Gaussian and Gamma mixture: superposition of Gaussian and
Gamma distributions.

• etc.

A. Muscoloni, C. V. Cannistraci: A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate

realistic complex networks with communities. New. J Phys. 20, 052002 (2018).
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Superposing distributions:

• Suppose we aim for n communities.

• We can define the µ1...n ∈ [0, 2π) community centers (expected
values),

• and also the σ1...n > 0 community spreads (standard deviations).

• Furthermore, p1...n with ∑i pi = 1 define the relative community sizes
in terms of the number of community members.

• The mixture is

ρ(θ) =
n

∑
c=1

pcρ(θ ∣ µc, σc)

• When the sampled θ falls beyond [0, 2π), it is shifted back using the
modulo operator.

A. Muscoloni, C. V. Cannistraci: A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate

realistic complex networks with communities. New. J Phys. 20, 052002 (2018).
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Examples for non-uniform θ distributions:

A. Muscoloni, C. V. Cannistraci: A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate

realistic complex networks with communities. New. J Phys. 20, 052002 (2018).



Hyperbolic
network models

PSO model
Popularity and
similarity

Model 0

Model 1

Degree distribution

Model 2

Clustering coeff.

Arbitrary ζ

E-PSO model

nPSO model

RHG model
Concept

The S1/H2 model

nPSO model

nPSO model

• Parameters:

• The usual PSO parameters: N, m, β, T,
• The parameters characterising the angular distribution: n, {µc},

{σc}, {pc}.

• Grow the network according to the PSO model.

• However, the angular coordinate of the new node is sampled from
the non-uniform mixture distribution instead of the uniform
distribution over [0, 2π].

A. Muscoloni, C. V. Cannistraci: A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate

realistic complex networks with communities. New. J Phys. 20, 052002 (2018).
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Examples:

A. Muscoloni, C. V. Cannistraci: A nonuniform popularity-similarity optimization (nPSO) model to efficiently generate

realistic complex networks with communities. New. J Phys. 20, 052002 (2018).
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RANDOM HYPERBOLIC GRAPH MODEL

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá:

Hyperbolic geometry of complex networks. Phys. Rev. E. 82, 036106 (2010).
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Static network models

A large class of network models are static:

• Erdős-Rényi model,

• Configuration model,

• Static scale-free model,

• Stochastic block model,

• Hidden variable model,

• etc.
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Static network models

A large class of network models are static:

• Erdős-Rényi model,

• Configuration model,

• Static scale-free model,

• Stochastic block model,

• Hidden variable model,

• etc.

→What about a static hyperbolic model?
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Concept of the H2 model:

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá:

Hyperbolic geometry of complex networks. Phys. Rev. E. 82, 036106 (2010).
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Concept of the H2 model:

• Place N nodes uniformly at random inside a circle of radius R in the
native disk.

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá:

Hyperbolic geometry of complex networks. Phys. Rev. E. 82, 036106 (2010).



Hyperbolic
network models

PSO model
Popularity and
similarity

Model 0

Model 1

Degree distribution

Model 2

Clustering coeff.

Arbitrary ζ

E-PSO model

nPSO model

RHG model
Concept

The S1/H2 model

The H2 model
Concept

Concept of the H2 model:

• Place N nodes uniformly at random inside a circle of radius R in the
native disk.

• Connect the node pairs according to a probability decaying with the
hyperbolic distance.

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá:

Hyperbolic geometry of complex networks. Phys. Rev. E. 82, 036106 (2010).
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The H2 model
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Concept of the H2 model:

• Place N nodes uniformly at random inside a circle of radius R in the
native disk.

• Connect the node pairs according to a probability decaying with the
hyperbolic distance.

→ Simplest idea is to connect with all other nodes closer than R:

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá:

Hyperbolic geometry of complex networks. Phys. Rev. E. 82, 036106 (2010).
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The H2 model
Concept

Concept of the H2 model:

• Place N nodes uniformly at random inside a circle of radius R in the
native disk.

• Connect the node pairs according to a probability decaying with the
hyperbolic distance.

→ Simplest idea is to connect with all other nodes closer than R:

• The ⟨k⟩ can be controlled by the choice of R, and the resulting
network is scale-free and highly clustered.

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá:

Hyperbolic geometry of complex networks. Phys. Rev. E. 82, 036106 (2010).
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Concept of the H2 model:

• Place N nodes uniformly at random inside a circle of radius R in the
native disk.

• Connect the node pairs according to a probability decaying with the
hyperbolic distance.

→ Simplest idea is to connect with all other nodes closer than R:

• The ⟨k⟩ can be controlled by the choice of R, and the resulting
network is scale-free and highly clustered.

• To allow control also over the degree decay exponent γ, the radial
coordinates have to be turned slightly non-uniform (similarly to
popularity fading in PSO).

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá:

Hyperbolic geometry of complex networks. Phys. Rev. E. 82, 036106 (2010).
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The H2 model

• The H2 model is also equivalent to the S1 model...
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The S1 model

• The S1 approach aims at modelling a network with one of the
simplest possible underlying metric structure, a circle.

• It is also a hidden variable model, where the connection
probability is affected by "hidden" variables associated to the nodes.

M. Á. Serrano D. Krioukov, M. Boguñá: Self-Similarity of Complex Networks and Hidden Metric Spaces.

Phys. Rev. Lett. 100, 078701 (2008).
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The S1 model

• Parameters: N, the hidden variable distribution ρ(κ), a connection
function p(χ), and µ, controlling the average degree.

• Place the nodes uniformly at random on a circle of radius N
2π .

• Assign hidden variables drawn from ρ(κ). Let us focus on the case
where

ρ(κ) = (γ − 1)κ−γ

κ1−γ
0

.

• Connect node pairs at θ, θ′ separated by an arc distance of
d = N∆θ/2π with probability

p(χ) where χ = d
µκκ′

.

(p(χ) can be any integrable function).

M. Á. Serrano D. Krioukov, M. Boguñá: Self-Similarity of Complex Networks and Hidden Metric Spaces.

Phys. Rev. Lett. 100, 078701 (2008).
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The S1 model

• With appropriate choice of κ0, the expected degree of a node with
hidden variable κ becomes k̄(κ) = κ.

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá:

Hyperbolic geometry of complex networks. Phys. Rev. E. 82, 036106 (2010).
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The S1 model

• With appropriate choice of κ0, the expected degree of a node with
hidden variable κ becomes k̄(κ) = κ.

• How to map this to H2?

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá:

Hyperbolic geometry of complex networks. Phys. Rev. E. 82, 036106 (2010).
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• With appropriate choice of κ0, the expected degree of a node with
hidden variable κ becomes k̄(κ) = κ.

• How to map this to H2?

• In H2 the degree is controlled by r. The mapping

rt = R̂ − 2 ln( κt

κ0
) ↔ κt = κ0e

R̂−rt
2

with R̂ = 2 ln( N
µπκ2

0
) is connecting equivalent models where

p(χ) =p( d
µκsκt

) = p( Nθst

2πµκsκt
) = p( Nθst

2πµκ2
0

e
rs+rt−2R̂

2 ) =

p( Nθst

2πµκ2
0

e
rs+rt−R̂

2
µπκ2

0

N
) = p(e

rs+rt+ln(θst/2)−R̂
2 ) = p(e

xst−R̂
2 )

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá:

Hyperbolic geometry of complex networks. Phys. Rev. E. 82, 036106 (2010).
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The S1/H2 model

Concept of the S1/H2 model:

• Place N nodes uniformly at random on a circle (the S1 space), and
assign a hidden variable to each node that controls its
attractiveness.

• Connect node pairs according to a probability that depends both on
the hidden variables and the angular separation.

• To obtain a hyperbolic network, convert the hidden variables into
radial coordinates in the native disk, and your nodes are now placed
in the H2 space.

G. García-Pérez, A. Allard, M. Á. Serrano, M. Boguñá:

Mercator: uncovering faithful hyperbolic embeddings of complex networks. New J. Phys. 21, 123033 (2019).
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The S1/H2 model

• Parameters: N, ⟨k⟩, the degree decay exponent γ of the target
degree distribution, and α > 1, controlling the average clustering
coefficient.

• Assign each node i an angular coordinate of θi ∈ [0, 2π) uniformly at
random, and a hidden variable κi sampled from
ρ(κ) = (γ − 1) ⋅ κ

−γ

κ
1−γ
0

, where κ0 = γ−2
γ−1 ⋅ ⟨k⟩.

• Each pair of nodes i − j is connected with probability

pij =
1

1 + ( N⋅∆θij
2π⋅µ⋅κi ⋅κj

)
α ,

where ∆θij = π − ∣π − ∣θi − θj∣∣ is the angular distance between the
nodes, and µ = α

2π⟨k⟩ ⋅ sin ( π
α
).

• Convert the hidden variables into a radial coordinates in the native
disk (at K = −1) as ri = R̂ − 2 ln ( κi

κ0
), where R̂ = 2 ln( N

µπκ2
0
).

G. García-Pérez, A. Allard, M. Á. Serrano, M. Boguñá:

Mercator: uncovering faithful hyperbolic embeddings of complex networks. New J. Phys. 21, 123033 (2019).



Hyperbolic
network models

PSO model
Popularity and
similarity

Model 0

Model 1

Degree distribution

Model 2

Clustering coeff.

Arbitrary ζ

E-PSO model

nPSO model

RHG model
Concept

The S1/H2 model

The S1/H2 model

Simulation results from the original paper:

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá:

Hyperbolic geometry of complex networks. Phys. Rev. E. 82, 036106 (2010).



Hyperbolic
network models

PSO model
Popularity and
similarity

Model 0

Model 1

Degree distribution

Model 2

Clustering coeff.

Arbitrary ζ

E-PSO model

nPSO model

RHG model
Concept

The S1/H2 model

The S1/H2 model

Simulation results from the original paper:

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá:

Hyperbolic geometry of complex networks. Phys. Rev. E. 82, 036106 (2010).



Hyperbolic
embedding

Why embed?

Likelihood
optimisation

HyperMap

Dim. reduction

Hyperbolic embedding

¼



Hyperbolic
embedding

Why embed?

Likelihood
optimisation

HyperMap

Dim. reduction

WHY EMBED A NETWORK?



Hyperbolic
embedding

Why embed?

Likelihood
optimisation

HyperMap

Dim. reduction

Why embed a network?

• Embedding a network into a hyperbolic space can be considered as
the "inverse" problem of modelling:

• instead of drawing links based on coordinates
• we try to guess coordinates based on links.



Hyperbolic
embedding

Why embed?

Likelihood
optimisation

HyperMap

Dim. reduction

Why embed a network?

• Embedding a network into a hyperbolic space can be considered as
the "inverse" problem of modelling:

• instead of drawing links based on coordinates
• we try to guess coordinates based on links.

→ Interesting problem on its own.



Hyperbolic
embedding

Why embed?

Likelihood
optimisation

HyperMap

Dim. reduction

Why embed a network?

• Embedding a network into a hyperbolic space can be considered as
the "inverse" problem of modelling:

• instead of drawing links based on coordinates
• we try to guess coordinates based on links.

→ Interesting problem on its own.

• Practical benefits:

• can be used for greedy routing.
• can be used for missing link prediction.
• can provide input for machine learning tasks.
• can define a clearly organised intuitive layout!
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using only local information can be defined:

• Based on the target coordinate and the coordinates of the
neighbours, the current node will forward to the neighbour that is the
closest to the target.

• The path can become either successful (by eventually reaching the
target), or can run into a cycle. In latter case the forwarding is
stopped.

• In another version, if the current node is closer to the target than
any of its neighbours, the forwarding is immediately stopped.
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Greedy routing

If the network is embedded into a metric space, a navigation protocol
using only local information can be defined:

• Based on the target coordinate and the coordinates of the
neighbours, the current node will forward to the neighbour that is the
closest to the target.

• The path can become either successful (by eventually reaching the
target), or can run into a cycle. In latter case the forwarding is
stopped.

• In another version, if the current node is closer to the target than
any of its neighbours, the forwarding is immediately stopped.

Greedy routing can be extremely efficient in random graphs
generated by hyperbolic models!
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Greedy routing

In RHG networks, shortest paths, greedy routing paths and geodesic
lines are usually very close to each other:

Illustration: Fraction of successful greedy
routing paths:

D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, M. Boguñá:

Hyperbolic geometry of complex networks. Phys. Rev. E. 82, 036106 (2010).
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How to embed a network?

• Likelihood optimisation
(with respect to an assumed hyperbolic model).

• Dimension reduction.

• Mixing the above two ideas.
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specifying the connection probability between node pairs in some way

P(Aij = 1) = pM(i, j ∣ {σ}), P(Aij = 0) = 1 − pM(i, j ∣ {σ}).
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The likelihood for observing a given adjacency matrix A can be written as

L(A) = P(A ∣ {σ}) =∏
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Likelihood optimisation

Let’s assume a network modelM in general, with parameter set {σ},
specifying the connection probability between node pairs in some way

P(Aij = 1) = pM(i, j ∣ {σ}), P(Aij = 0) = 1 − pM(i, j ∣ {σ}).

The likelihood for observing a given adjacency matrix A can be written as

L(A) = P(A ∣ {σ}) =∏
i<j

[pM(i, j ∣ {σ})]Aij [1 − pM(i, j ∣ {σ})]1−Aij

By taking the logarithm we obtain the log-likelihood

lnL(A) = ∑
i<j

Aij ln [pM(i, j ∣ {σ})] +∑
i<j

(1 − Aij) ln [1 − pM(i, j ∣ {σ})] .
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Likelihood optimisation

Let’s assume a network modelM in general, with parameter set {σ},
specifying the connection probability between node pairs in some way

P(Aij = 1) = pM(i, j ∣ {σ}), P(Aij = 0) = 1 − pM(i, j ∣ {σ}).

The likelihood for observing a given adjacency matrix A can be written as

L(A) = P(A ∣ {σ}) =∏
i<j

[pM(i, j ∣ {σ})]Aij [1 − pM(i, j ∣ {σ})]1−Aij

By taking the logarithm we obtain the log-likelihood

lnL(A) = ∑
i<j

Aij ln [pM(i, j ∣ {σ})] +∑
i<j

(1 − Aij) ln [1 − pM(i, j ∣ {σ})] .

Here {σ} are fixed, and Aij can vary if e.g., we generate more samples
usingM.
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fitting {σ}?

→ In this case Aij is fixed, and the inferred {σ} can vary if e.g., we try
out different parameter estimation methods.

• Maximum Likelihood Estimation:

• We try to find {σ} that maximises L(A).
→ In practice it is more convenient to maximise lnL(A) instead.
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• What if we observe a given network, and would like to find the best
fitting {σ}?

→ In this case Aij is fixed, and the inferred {σ} can vary if e.g., we try
out different parameter estimation methods.

• Maximum Likelihood Estimation:

• We try to find {σ} that maximises L(A).
→ In practice it is more convenient to maximise lnL(A) instead.
• Since connection probabilities cannot exceed 1, lnL(A) < 0.
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Likelihood optimisation

• What if we observe a given network, and would like to find the best
fitting {σ}?

→ In this case Aij is fixed, and the inferred {σ} can vary if e.g., we try
out different parameter estimation methods.

• Maximum Likelihood Estimation:

• We try to find {σ} that maximises L(A).
→ In practice it is more convenient to maximise lnL(A) instead.
• Since connection probabilities cannot exceed 1, lnL(A) < 0.
• Equivalently to maximising lnL(A) we can minimise the

logarithmic loss

LL = − lnL(A) =
−∑

i<j
Aij ln [pM(i, j ∣ {σ})] −∑

i<j
(1 − Aij) ln [1 − pM(i, j ∣ {σ})] .
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Bayesian inference:
According to Bayes’ theorem, the conditional probability that the
observed A was generated using {σ} is

P({σ} ∣ A;λ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

posterior

=

likelihood
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
P(A ∣ {σ})

prior
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
P({σ} ∣ λ)

P(A ∣ λ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

evidence

,

where

• Prior: The distribution of the model parameters, controlled by
hyperparameter λ.

• Evidence: Also called as marginal likelihood:

P(A ∣ λ) = ∫ P(A ∣ {σ})P({σ} ∣ λ)dσ1...dσn.

Does not depend on {σ}, thus, can be also treated as a constant.

• Posterior: the distribution of {σ} we are interested in, depending on
both the observed data and the prior.
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• Uninformed prior: If we have no prior belief regarding the values of
{σ} we can assume a uniform distribution over all possible values.
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• Uninformed prior: If we have no prior belief regarding the values of
{σ} we can assume a uniform distribution over all possible values.

• In this case

P({σ} ∣ A) = P(A ∣ {σ})

constant
³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
P({σ})

P(A)
²
constant

∝ P(A ∣ {σ})

the posterior distribution becomes simply proportional to the
likelihood.
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constant
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the posterior distribution becomes simply proportional to the
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• How to sample from the posterior distribution?
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Likelihood optimisation

• Uninformed prior: If we have no prior belief regarding the values of
{σ} we can assume a uniform distribution over all possible values.

• In this case

P({σ} ∣ A) = P(A ∣ {σ})

constant
³¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
P({σ})

P(A)
²
constant

∝ P(A ∣ {σ})

the posterior distribution becomes simply proportional to the
likelihood.

• How to sample from the posterior distribution?

→ Using Markov-Chain Monte Carlo (MCMC) methods:

• the sampled σ form a Markov-Chain, where the next σ is
chosen from candidates in the vicinity of the present value,

• and the acceptance probabilities are set such that in the long
run, the distribution of the sampled σ follows the posterior.
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Likelihood optimisation

Likelihood optimisation for the PSO-model:

• The m, β and T parameters can be estimated based on overall
network properties such as ⟨k⟩, ⟨C⟩ and γ.

• The radial coordinates can be set by matching the actual degree of
the node to the expected degree at r, using that k̄s(t) ∼ ert−rs(t).

• The angular coordinates are optimised using MCMC.

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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Likelihood optimisation in the original PSO paper:

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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Likelihood optimisation

Likelihood optimisation in the original PSO paper:

F. Papadopoulos, M. Kitsak, M. Á. Serrano, M. Boguñá, D. Krioukov:

Popularity versus similarity in growing networks. Nature 489, 53 (2012)
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F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).
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HyperMap
Concepts

Concepts of HyperMap:

• Perform a likelihood optimisation with respect to the E-PSO model.

• However, instead of a "standard" MCMC method, replay the
assumed network growth, and find the optimal coordinate "locally"
for the new node at each step.

F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).
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Important note:

• We are going to assign coordinates to the nodes that correspond to
their position at the end of the network generation process.

• However, since popularity fading is pulling the nodes outward during
every time step, the actual node coordinates when the connections
arise are different from these!

• Luckily, the probability that s and t, having a distance xst at the end
of the network generation are connected can be given as

p̃(xst) =
1

N − smin + 1

N

∑
s=smin

1

1 + e
ζ
2T (xst−RN+∆s)

≃ 1

1 + e
ζ
2T (xst−RN)

,

where smin = max(2, ⌈Ne−
ζxst

4(1−β) ⌉), and ∆s = 2
ζ

ln [(N
s )

2β−1 mIs
msIN

].

F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).



Hyperbolic
embedding

Why embed?

Likelihood
optimisation

HyperMap

Dim. reduction

HyperMap

• The likelihood of observing an adjacency matrix Aij for given final
hyperbolic distances xij can be written as

LA ≡ L(Aij ∣ {ri(t = N), θi},m,L, ζ, β,T) = ∏
1≤j<i≤N

p̃(xij)Aij [1 − p̃(xij)]1−Aij .

• Bayes’ theorem:

Lr,θ ≡Lr,θ({ri(N), θi} ∣ Aij,m,L, ζ, β,T) =
L({ri(N), θi} ∣ m,L, ζ, β,T) ⋅ LA

L(Aij ∣ m,L, ζ, β,T)
,

where the conditional probability for obtaining the final node
coordinates {ri(N), θi} given the model parameters is

L({ri(N), θi} ∣ m,L, ζ, β,T) =L({ri(N), θi} ∣ ζ, β) =

1
(2π)N

N

∏
i=1

ζ

2β
e

ζ
2β (ri(N)−rN(N)),

where rN(N) = 2
ζ

ln N.
F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).
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• The logarithmic loss is

LLr,θ = − lnLr,θ =

C − ζ

2β

N

∑
i=1

ri(N) −
N−1

∑
i=1

N

∑
j=i+1

Aij ln p̃(xij) −
N−1

∑
i=1

N

∑
j=i+1

(1 − Aij) ln [1 − p̃(xij)] .

• The optimal value for the radial coordinates can be calculated
analytically, resulting in

r∗i (i) = 2
ζ

ln i∗, r∗i (N) = βr∗i (i) + (1 − β)r∗N(N),

where the optimal ordering of the nodes given by i∗ is following the
node degrees, with the largest degree node in the network obtaining
i∗ = 1.

• Thus, we have to optimise "only" the angular coordinates based on

LLθ = −
N−1

∑
i=1

N

∑
j=i+1

Aij ln p̃(xij) −
N−1

∑
i=1

N

∑
j=i+1

(1 − Aij) ln [1 − p̃(xij)] .
F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).
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• Instead of a general MCMC method, we take advantage of that the
degrees define both a radial and a time ordering:

• 1st hub: i = 1,
• 2nd hub: i = 2,
• etc.

• We can replay the network growth as follows:

• Add the nodes one by one at their starting radial coordinates,
• update the radial coordinates (popularity fading),
• and optimise the angular coordinate of the "new" node j based

on its connections to previous nodes, using a local likelihood

LLloc. = −
j−1

∑
i=1

Aij ln p(xij) −
j−1

∑
i=1

(1 − Aij) ln [1 − p(xij)] .

(Here we can use the original E-PSO connection probability).

F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).
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HyperMap embedding algorithm

• Set m, L, β and T according to the "global" properties of the network
such as ⟨k⟩, kmin, ⟨C⟩ and γ.

• Sort node degrees in decreasing order k1 > k2 > ⋯ > kN . (Break ties
randomly).

• Assign node indices according to the degree order.

• Node i = 1 is born with initial radial coordinate r1(t = 1) = 0 and a
random θ1 ∈ [0, 2π].

• for i = 2 to N do:

• Node i is born with ri(t = i) = 2
ζ

ln(i).
• Increase the radial coordinate of all previous nodes j < i as

rj(i) = βrj(j) + (1 − β)ri(i).
• Assign node i the θi that maximises the local likelihood

LLloc. = −
j−1

∑
i=1

Aij ln p(xij) −
j−1

∑
i=1

(1 − Aij) ln [1 − p(xij)] .

F. Papadopoulos, C. Psomas, D. Krioukov: Network Mapping by Replaying Hyperbolic Growth.

IEEE/ACM Transactions on Networking. 23, 198–211 (2015).
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Embedding via dimension reduction

• Rough flowchart of this approach:

network
↓

"distance" matrix
↓

dimension reduction
↓

hyperbolic coordinates

• How could this work?
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• Manifold learning:
When data is organised into some lower dimensional manifold
embedded in higher dimensional space, revealing the manifold can
be beneficial.



Hyperbolic
embedding

Why embed?

Likelihood
optimisation

HyperMap

Dim. reduction

Embedding via dimension reduction

• Manifold learning:
When data is organised into some lower dimensional manifold
embedded in higher dimensional space, revealing the manifold can
be beneficial.

→ Manifold learning techniques in Machine Learning are aimed to
do this.



Hyperbolic
embedding

Why embed?

Likelihood
optimisation

HyperMap

Dim. reduction

Embedding via dimension reduction

• Manifold learning:
When data is organised into some lower dimensional manifold
embedded in higher dimensional space, revealing the manifold can
be beneficial.

→ Manifold learning techniques in Machine Learning are aimed to
do this.

• At the heart of these techniques we often find a dimension
reduction method.



Hyperbolic
embedding

Why embed?

Likelihood
optimisation

HyperMap

Dim. reduction

Embedding via dimension reduction

• Manifold learning:
When data is organised into some lower dimensional manifold
embedded in higher dimensional space, revealing the manifold can
be beneficial.

→ Manifold learning techniques in Machine Learning are aimed to
do this.

• At the heart of these techniques we often find a dimension
reduction method.

• Angular coalescence:
When applying manifold learning techniques on networks generated
with hyperbolic models, they can provide a 1d manifold organised
according to the original angular coordinates in the network.



Hyperbolic
embedding

Why embed?

Likelihood
optimisation

HyperMap

Dim. reduction
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• Manifold learning:
When data is organised into some lower dimensional manifold
embedded in higher dimensional space, revealing the manifold can
be beneficial.

→ Manifold learning techniques in Machine Learning are aimed to
do this.

• At the heart of these techniques we often find a dimension
reduction method.

• Angular coalescence:
When applying manifold learning techniques on networks generated
with hyperbolic models, they can provide a 1d manifold organised
according to the original angular coordinates in the network.

→ We can exploit this for inferring the angular coordinates!
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Coalescent embeddings
Angular coalescence

A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci:

Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat. Commun. 8, 1615 (2017).
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Coalescent embeddings
Flow chart

A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci:

Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat. Commun. 8, 1615 (2017).
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ncMCE embedding

Non-centered minimum curvilinear embedding:

• The matrix D we prepare is trying to model the minimum curvilinear
distances between the nodes.

• Otherwise we follow the general flowchart of coalescent
embeddings with SVD dimension reduction.

A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci:

Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat. Commun. 8, 1615 (2017).
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ncMCE embedding

• Pre-weighting: we prepare a matrix W with elements

Wij =
ki + kj + kikj

1 + CNij
,

where CNij is the number of common neighbours between i and j.

→ This way nodes in different neighbourhoods obtain larger Wij, i.e.,
they are less similar.

• We prepare the minimum weight spanning tree of W, and define
D based on the pairwise distance in the spanning tree.
Dij is an estimate for the min. curvilinear distance between i and j

• The dimension reduction is carried out via singular value
decomposition, D = UΣVT , where Σ is a diagonal matrix, from which
we keep only the two largest ones (the rest is put to 0).

• Angular coordinates are obtained from the 2nd column of
X = (

√
Σ ⋅VT)T

.

• These are then rescaled in an equidistant manner in [0, 2π).

• Radial coords. are set based on the degree, similarly to Hypermap.
A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci:

Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat. Commun. 8, 1615 (2017).



Hyperbolic
embedding

Why embed?

Likelihood
optimisation

HyperMap

Dim. reduction

Coalescent embeddings
Results

Correlation between original and embedded hyperbolic distances for
PSO networks:

A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci:

Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat. Commun. 8, 1615 (2017).



Hyperbolic
embedding

Why embed?

Likelihood
optimisation

HyperMap

Dim. reduction

Coalescent embeddings
Results

Average greedy routing scores for embedded real networks:

A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci:

Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat. Commun. 8, 1615 (2017).
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Results

Running times on PSO networks

A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci:

Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat. Commun. 8, 1615 (2017).
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Results

Embedded layouts for social networks:

A. Muscoloni, J. M. Thomas, S. Ciucci, G. Bianconi, C. V. Cannistraci:

Machine learning meets complex networks via coalescent embedding in the hyperbolic space. Nat. Commun. 8, 1615 (2017).
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Optimised coalescent embedding

• Dimension reduction and likelihood optimisation can also be
combined.

• Since radial coordinates are set according to the PSO model also in
coalescent embeddings, it can make sense to apply a further
angular optimisation (using likelihood optimisation) on the
coordinates obtained from dimension reduction.

B. Kovács, G. Palla: Optimisation of the coalescent hyperbolic embedding of complex networks.

Sci. Rep. 11, 8350 (2021).
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B. Kovács, G. Palla: Optimisation of the coalescent hyperbolic embedding of complex networks.

Sci. Rep. 11, 8350 (2021).
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What are communities?

Communities, modules, clusters, or cohesive groups:
more highly interconnected parts in networks with no widely accepted
unique definition.

Examples:

• A family, or a group of friends in a social network.

• A group of proteins having the same function or taking part in the
same process in a protein interaction graph.

• Interlinked Web pages with the same topic.

• ...
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Modularity

• Modularity is the most widely used quantity for measuring the
"strength" of communities based on the network structure.

• It compares the observed fraction of links inside community c with
expected fraction of inside links based on the configuration model:

Q =
n

∑
c=1

[Lc

L
− ( kc

2L
)

2

]
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Communities in PSO and RHG networks
Commuities found by maximising Q

Communities found by Louvain algorithm in PSO and RHG networks:

B. Kovács, G. Palla: The inherent community structure of hyperbolic networks

Sci. Rep. 11, 16050 (2021).
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B. Kovács, G. Palla: The inherent community structure of hyperbolic networks

Sci. Rep. 11, 16050 (2021).
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