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Lecture I.
Motivating Examples, the Math Model,
Mean-Field Approximations and Beyond
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A. Motivating Examples
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Interacting Stochastic Processes

Study of large collections of randomly evolving interacting
“particles”, whose dynamic interactions are governed by an
underlying network (graph), that is itself possibly random

Notation: G = (V ,E ), Nv = {u ∈ V : uv ∈ E}, dv = |Nv |

The stochastic evolution of each particle is directly influenced only
by the states (or histories of states) of neighboring particles in the
graph

such stochastic dynamics model phenomena in a plethora of
applications
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A. Some Motivating Examples
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1. Epidemiology

Spread of human diseases
Graph: human social contact networks
(determined using location tracking technology and contact tracing)

Mason et al, (Int J. Heathcare Tech. & Management, Vol 11, No, 6, 2010)
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1. Epidemiology

Spread of animal diseases (Chronic Wasting Disease in 1090 farms in
PA over 7.68 year period)
Graph: Animal transport network
(determined from data collected on shipment of farm animals)

Rorres et al, Epidemics, 23:71-75, 2018
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1. Epidemiology

Spread of viruses in computer networks
Graph: portion of the internet
(determined, e.g., from Bell Labs Internet Mapping or Opte Projects)

Wikipedia: routing map in a portion of the interent from Opte Project
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Idealized Models of Infection Spread

Particles (individuals/animals/computers) are represented as nodes
on a locally finite (possibly directed) graph G = (V ,E ) that
captures their “interaction structure”;

SIR model: Each vertex takes three states {S , I ,R} where
S (healthy but) susceptible; (white)
I infected; (grey)
R recovered (and immune); (green)

Each particle’s evolution depends only on its own state and those of
neighbors in the graph:

S
p×(no. infected neighbors)
−−−−−−−−−−−−−−−−−−−−→ I

1−→ R
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SIR model

S
p×(no. infected neighbors)
−−−−−−−−−−−−−−−−−−−−→ I

q−→ R
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SIS Model or Contact Process

SIS model or Contact Process:

Each particle is in one of two states.
Represent the state space by {S , I}, where

S represents susceptible;
I represents infected;

Xv (t) is the state of particle v at time t;

Each susceptible particle is infected at a rate proportional to the
number of infected particles in their neighborhood in the graph, and
each infected particle recovers at a unit rate;

S
p×(no. infected neighbors)
−−−−−−−−−−−−−−−−−−−−→ I

1−→ S
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Discrete-Time Contact Process (with parameter p)

S
p×(no. infected neighbors)
−−−−−−−−−−−−−−−−−−−−→ I

1−→ S
Transition to healthy with rate q

Transition to ill with rate 0

Transition to ill with rate p

Transition to ill with rate p/2

Transition rule F: At time t for each v ∈ V ,

state Xv (t) = I , it switches to Xv (t + 1) = S w.p. 1,

state Xv (t) = S , it switches to Xv (t + 1) = I w.p.

p
∑
u∼v

Xu(t),
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Some Questions of Interest

How many times will a particular individual get (re)-infected?

What is the fraction of individuals in the population infected at any
time?

How long does it take an epidemic to die out? How does this
depend on the graph structure?
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Probabilistic Cellular Automata

The SIR and SIS processes are examples of synchronous Markov chains or
probabilistic cellular automata

• Consider a collection of particles, indexed by the vertices of a graph
G = (V ,E ); V is the vertex set and E is the set of edges of the graph.

• For v ∈ V and t ∈ {0, 1, . . .}, let Xv (t) denote the state of the particle
v at time t, which takes values in a (measure) state space S .

• For v ∈ V , the evolution of Xv is as follows: for t ∈ {0, 1, . . . , },

Xv (t + 1) = F (Xv (t), (Xu(t))u∼v , ξv (t + 1)) ,

where
◦ ξv (t), v ∈ V , t ∈ {0, 1, . . . , }, are independent, identically distributed
random variables/noises, and
◦ F provides the transition rule at each time
◦ F depends symmetrically on the variables in the second argument
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2. Opinion Dynamics

K. Ramanan Dynamics on Sparse Networks



A Simple Idealized Model of Opinion Dynamics

Voter Model

State of each particle lies in S = {0, 1} representing two different
opinions

The set of transitions each particle can make lies in J = {−1, 1}
Each particle, after an independent exponential time, polls one of its
neighbors at random and adopts that opinion
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A Simple Model of Opinion Dynamics

Voter Model Dynamics

can be described by a continuous-time Markov chain on SV where
the rate of transitions or jumps in the direction j of particle v is

rG ,vj (xv ) =

{
I{xv=0}

1
dv

∑
u∈Nv

xu if j = 1,

I{xv=1}

(
1− 1

dv

∑
u∈Nv

xu
)

if j = −1,

given a particle configuration x ∈ SV , for A ⊂ V , denote
xA = (xi )i∈A

v̄ = {v} ∪ Nv denotes the closure of v

dv is the degree of vertex v .

Once again the jump rates of the state Xv (t) of v at time t depend
only on its own state and the states of the neighbors
Xv̄ (t) = (Xu(t))u=v ,u∼v

There are numerous variants of the voter model – majority
dynamics, noisy voter model, etc.
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3. Load Balancing
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3. Load Balancing

N servers; processing time distribution has unit mean (µ = 1);
Nλ arrival rate;

λ < 1

Tradeoff between performance and communication/computation

Join-the-Shortest-Queue (JSQ):
great performance P(Q > 1) ≈ 0, but in some contexts infeasible to

implement
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Load Balancing Algorithms

Random Routing
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Load Balancing Algorithms

Random Routing

In equilibrium

P(Q > `) = λ`

significantly worse than JSQ
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Load Balancing Algorithms

Randomized Load Balancing: SQ(2) Algorithm

Q1. What is the probability of a typical queue exceeding a level?
Q2. How long will an overloaded queue take to clear its backlog?
Q3. How does performance depend on the service distribution?
Q4. What if re-routing is constrained to only be to neighbors?
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4. Neuronal Hawkes Model

the neuronal Hawkes model models the firing of neurons (spike
trains)
X (t) represents the number of firings of the neuron in the time [0, t]

the time of the next firing of X is determined by conditional jump
rate λ(t) of X given the history of the spike train prior to t

λ(t) is equal to a suitable non-linear function h of the sum of a
constant input I0 and the convolution of the history of the spike
train with a filter η.

non-Markovian model: jump rates depend on the history of the
process
network models – often on a directed graph
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1 Fix a directed graph G = (V ,E ), and write u → v if (u, v) ∈ E

2 Xv (t) represents the number of firings of vertex v up to time t

3 Given independent Poisson processes Nv on R2
+, v ∈ V , the

evolution has the form

Xv (t) =

∫
(0,t]×R+

I{r≤rGv (s,X)} Nv (ds, dr),

rGv (s, f ) = h

(
Iv +

∑
u=v or u→v

ηu→v ∗ f (s−)

)
,

where ∗ represents convolution so that ηu→v ∗ X depends on the
history of the processes Xv and Xu, u → v , in the interval [0, s)
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B. The Math Model
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The Basic Framework

Given a finite connected possibly random graph G = (V ,E ), we are
interested in a stochastic process

{Xv (t)}v∈G ,t∈T,

with T = N0 (discrete time) or T = [0,∞) (continuous time)
whose dynamics is such that ...

the instantaneous stochastic evolution of the state Xv (t) of each
node v ∈ V at time t has a local dependence on the states of other
particles, that is, it
depends only on its own state and those of its neighbors in G

the dependence is symmetric in the neighbors (though can allow
random inhomogeneities)

the evolution itself could be described by any of the following:
a discrete-time process – e.g., probabilistic cellular automata
a continuous-time jump process
a (continuous-time) diffusion
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Our General Focus

1 Interested in large systems
2 They suffer from the curse of dimensionality: hard to analyze exactly

or even to simulate to obtain qualitative behavior

3 Goal: To obtain mathematically rigorous statements about
dynamics – specifically want to establish asymptotic limit theorems
as the graph size goes to infinity
leading to principled approximations for dynamics on large graphs

4 Note: There are many underlying graph models that fit the data – I
will not provide details into the panoply of random graph models
Remco van der Hofstad’s lectures
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Specific Questions

Given (G ,V ) and dynamics of the interacting processes, e.g., F in

XG,x
v (t + 1) = F (Xv(t), (XNV(t)), ξv(t + 1)),

where the dependence on (XNV
(t)) is symmetric.

Quantity of interest: global empirical measure and empirical measure
flow:

µG ,x :=
1
|V |

∑
v∈G

δXG,x
v

µG ,x(t) :=
1
|V |

∑
v∈G

δXG,x
v (t)

Key questions: Given a sequence of graphs Gn = (Vn,En) with
|Vn| → ∞, and appropriate initial conditions xn ∈ XVn ,

Q1. Do the processes XGn,xn
converge in a suitable sense?

Q2. Do the global empirical measures µGn,x
n

converge (hydrodynamic
limits) ?

Q3. can one autonomously characterize the limiting dynamics of a fixed
or “typical particle” XGn,xn

v (t), t ∈ [0,T ]?
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C. Mean-Field Limits

Well-studied case: G = Kn, the complete graph on n-vertices. Set
X n,x = XGn,x .

Discrete-time Evolution:

Xn,x
v (t + 1) = F

(
Xn

v(t), (Xn
NV

(t)), ξv(t + 1)
)
,

with X n,x(0) = x , and {ξv (t)}v∈V ,t∈N iid noises.

Assume F depends on X n
NV

symmetrically, and can be written as a nice
function of “average quantities”:

µn(t) =
1
n

n∑
i=1

δX n
v (t) mn

g (t) =
1
n

n∑
i=1

g(X n
v (t))
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Mean-field limits

Xn,x
v (t + 1) = F

(
Xn

v(t), (Xn
NV

(t)), ξv(t + 1)
)
,

µn(t) =
1
n

n∑
i=1

δX n
v (t) mn

g (t) =
1
n

n∑
i=1

g(X n
v (t))

Under our simplifying assumption, we can rewrite the dynamics as

Xn,x
v (t + 1) = F (Xn

v(t), (µn(t)), ξv(t + 1))

Xn,x
v (t + 1) = F (Xn

v(t), (µn(t)), ξv(t + 1))

Classical Theorem

Under mild continuity conditions on F , (equivalently, F̄ ), one can show
that X n

1 converges weakly to the process X̄ , which evolves for t ∈ N like

X̄ (t + 1) = F̄ (X̄ (t), µ̄(t), ξ(t + 1)), µ̄(t) = Law(X (t)),

where {ξ(t)}t∈N is an iid sequence with the same distribution as ξv (t).
Moreover, µ̄(t) = Law(X̄ (t)) is the (weak) limit of µn(t)
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Mean-Field Limits
Xn,x

v (t + 1) = F (Xn
v(t), µn(t), ξv(t + 1))

µn(t) =
1
n

n∑
i=1

δX n
v (t) mn

g (t) =
1
n

n∑
i=1

g(X n
v (t))

Classical Theorem (abridged)

X n
1 converges weakly to the process X̄ , which evolves for t ∈ N like

X̄ (t + 1) = F̄ (X̄ (t), µ̄(t), ξ(t + 1)), µ̄(t) = Law(X (t)),

Moreover, µ̄(t) = Law(X̄ (t)) is the (weak) limit of µn(t)

The trivial setting: Suppose F̄ does not depend on µn(t) (respy,
mn

g (t)). Then you have independent particles, whose law is the same
with every n, and by the strong law of large numbers mn

g (t)

converges (as n→∞) to E[g(X 1
v (t))] for any chosen v .

Intuition for the general case: Due to nature of interactions, you still
have decay of correlations and particles are weakly interacting, and
µn converges to a deterministic limit. Then invoke continuity of F̄ .

K. Ramanan Dynamics on Sparse Networks



Mean-Field Limits

The phenomenon of asymptotic independence is also referred to as
propagation of chaos
In the continuous-time setting, where you have a collection of
particles {X n

v }v∈Kn evolving according to a continuous-time Markov
chain, where each vertex X n

v evolves “like” a Markov chain with the
jump rate from state i to j being Γij(µ

n) (for example, it could
depending on the mean of some function of the particles: Γij(m

n
g ).

In this case the typical particle evolves according to a
time-inhomogeneous Markov chain, where the time-inhomogeneity
arises due to dependence on the law.
Thus, in the continuous time setting you get an ODE rather than a
nonlinear recursion - if the state space is discrete with k values, then
each Γ(p)) is a k × k matrix and µ̄ evolves according to the
nonlinear equation

d µ̄

dt
(t) = µ̄(t)Γ(µ̄(t)),

which describes the law of the the typical particle
(Kolmogorov forward equation or Fokker Planck equation)
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Efficacy of Mean-Field Limits
Mean-field Models work well on complete graphs

SIR model – Kermack-McKendrick model

Opinion dynamics – Curie-Weiss model

Load Balancing networks – used to analyze the power of two choices
Dobrushin-Vvedenskalya-Karpelevich, Mitzenmacher, Budhiraja et al, Borst et al

Neuronal Models
T. Austin, E. Löcherabch, J. Touboul, ...

What about dense graph sequences?

If you have a sequence of dense graphs Gn, n ∈ N, in the sense that
the degrees of all vertices diverge (with additional conditions
imposed), then one can in many cases still show correlation decay
and argue similarly to same intuition of asymptotic independence

The proofs are more complicated.

Caveat. Dense regime more subtle – can fail without additional
conditions.
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However ...

Many real-world networks are not complete (or dense)

In fact, many are sparse or heterogeneous – (see also R.van der
Hofstad lectures)
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Do Mean-Field Approximations Work Well on any Graph?

Discrete-time SIR Process

Plot of probability of being healthy vs. time
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Do Mean-Field Approximations Work Well on any Graph ?

Discrete-time Contact Process

Plot of probability of being healthy vs. time
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Do mean-field (MF) approximations work well on any graph?

Continuous-time voter model on G = T3, a rooted 3-regular tree ...

0 5 10 15 20 25 30
Time

0.34

0.35

0.36

0.37

0.38

0.39

Pr
ob

ab
ilit

y 
of

 a
gr

ee
m

en
t w

ith
 tw

o 
ne

ig
hb

or
s MF vs Voter model agreement with two neighbors

MF
simulation

K. Ramanan Dynamics on Sparse Networks



Do mean-field (MF) approximations work for any graph?

Do common refinements of mean-field (MF) approximations work better?
For example, consider pair approximations (PA)

Voter model on G = T3, a rooted 3-regular tree
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Lecture II:

Aggregate Dynamical Behavior on Large Sparse Graphs:
Hydrodynamic Limits
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Beyond mean-Field approximations (& their refinements)

(a) Complete graph (b) Dense graph (c) Sparse Graph

OUR FOCUS
(SPARSE GRAPH SEQUENCES)

To characterize asymptotic limits of typical node dynamics
for sequences of (possibly random) graphs Gn

whose maximal (average) degree is bounded.
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Includes Discussion of Joint Work with ...

Daniel Lacker
Columbia University
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What is a reasonable asymptotic regime to consider?

First step: for what sequences Gn can we expect to obtain limit
theorems?

Can’t just take the number of vertices to infinity – since graph
topology matters!

Instead, consider graphs Gn that converge in the local topology
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A. Notion of local convergence
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Local weak convergence of graphs

Idea: Encode sparsity via local weak convergence of graphs.
(a.k.a. Benjamini-Schramm convergence; also see Aldous-Steele ’03,
Bordenave ’16, van der Hofstad ’22+)

Definition: A graph G = (V ,E , ρ) is assumed to be rooted, finite or
countable, locally finite, and connected.

Definition: Rooted graphs Gn converge locally to G if:

∀k ∃N s.t. Bk(G ) ∼= Bk(Gn) for all n ≥ N,

where Bk(·) is ball of radius k at root, and ∼= means isomorphism.
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Examples of local weak convergence

1. Cycle graph converges to infinite line

ρ −→

...

ρ

...
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Examples of local weak convergence

2. Line graph converges to infinite line

ρ −→

...

ρ

...
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Examples of local weak convergence

3. Line graph rooted at end converges to semi-infinite line

ρ

−→

...

ρ
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Examples of local weak convergence

4. Finite to infinite d-regular trees

(A graph is d-regular if ever vertex has degree d .)

ρ −→
ρ
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Examples of local weak convergence

5. Uniformly random regular graph to infinite regular tree

Fix d . Among all d-regular
graphs on n vertices, se-
lect one uniformly at random.
Place the root at a (uni-
formly) random vertex. When
n → ∞, this converges (in
law) to the infinite d-regular
tree. (McKay ’81)

−→
ρ
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Examples of local weak convergence

6. Erdős-Rényi to Galton-Watson

If Gn = G (n, pn) with npn → p ∈ (0,∞), then Gn converges in law to the
Galton-Watson tree with offspring distribution Poisson(p).

ρ −→

root

ρ

...
...
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Examples of Local weak convergence

7. Preferential Attachment Graphs to a Random Tree

A result by Berger-Borgs-Chayes-Saberi (’14) shows convergence of
preferential attachment graphs to a random tree

Key Point
Local limits of many classes of random graphs are often trees

8. Convergence of Finite Lattices

Zκ ∩ [−n, n]κ converges to Zκ
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Local convergence of marked graphs

Recall: Gn = (Vn,En, ρn) converges locally to G = (V ,E , ρ) if

∀k ∃N s.t. Bk(G ) ∼= Bk(Gn) for all n ≥ N.

Definition: With Gn,G as above: Given a metric space (E , dE ) and a
sequence xn = (xnv )v∈Gn ∈ EGn , say that (Gn, xn) converges locally to
(G , x) if

∀k, ε > 0 ∃N s.t. ∀n ≥ N ∃ϕ : Bk(Gn)→ Bk(G ) isomorphism
s.t. maxv∈Bk (Gn) dE (xnv , xϕ(v)) < ε.

Lemma
The set G∗[E ] of (isomorphism classes of) (G , x) admits a Polish
topology compatible with the above convergence.
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B. Results on convergence
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Results on Convergence

XGn,xn

v (t + 1) = F
(
XGn,xn

v (t), µGn,xn

v (t), ξv(t + 1)
)

where µGn
v is the local empirical measure of the neighborhood of v :

µGn
v (t) =

1
n

∑
u∈Nv

δ
XGn,xn
u (t)

mGn
v (t) =

1
n

∑
u∈Nv

g(XGn,x
n

u (t)).

Key questions: Given Gn = (Vn,En), xn ∈ XVn , with |Vn| → ∞.

Q1. Do the processes XGn,xn
converge in a suitable sense?

A1: Theorem 1: Lacker-R-Wu ’19
Under mild continuity conditions on F , if (Gn, x

n) converges locally to
(G , x) in distribution, then (Gn,XGn,xn

) converges locally in distribution
to the dynamics on the limit graph (G ,XG,x)

Comment: Incomplete list of related works on discrete processes on
directed graphs (Olvera-Cravioto-Chen-Litvak ’17; Garavaglia-van der
Hofstad-Litvak ’18); pairwise-interacting diffusions
(Oliveira-Reis-Stoleman ’18), ...
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Convergence Result in Discrete Time

Basic Idea of Proof
Need to show that the map (G , x) 7→ (G ,XG ,x) from graphs marked
with initial conditions to graphs marked with IPS trajectories

G∗[S] 7→ G∗[S∞]

This is equivalent to showing that for every t, k ∈ N0 and every
bounded, cont. map ϕ on truncated paths G∗[Sk+1], the function

ψ(G , x) = E[ϕ(G ,XG ,x
t )].

is continuous on G∗[S].
Fix r ∈ N. It suffices to verify that the following “r -localized”
function is continuous:

ψr (G , x) := ϕ(Br (G ),XBr (G),xBr (G)

t ).

Key realization: on any interval [0, t], the behavior of particles in a
Br -neighborhood of the root only depend on the initial conditions in
a Br+t-neighborhood of the root. This dependence is continuous
due to the continuity of each Fs , s ≤ t.

K. Ramanan Dynamics on Sparse Networks



Convergence Result in Discrete Time

Basic Idea of Proof
Need to show that the map (G , x) 7→ (G ,XG ,x) from graphs marked
with initial conditions to graphs marked with IPS trajectories

G∗[S] 7→ G∗[S∞]

This is equivalent to showing that for every t, k ∈ N0 and every
bounded, cont. map ϕ on truncated paths G∗[Sk+1], the function

ψ(G , x) = E[ϕ(G ,XG ,x
t )].

is continuous on G∗[S].

Fix r ∈ N. It suffices to verify that the following “r -localized”
function is continuous:

ψr (G , x) := ϕ(Br (G ),XBr (G),xBr (G)

t ).

Key realization: on any interval [0, t], the behavior of particles in a
Br -neighborhood of the root only depend on the initial conditions in
a Br+t-neighborhood of the root. This dependence is continuous
due to the continuity of each Fs , s ≤ t.

K. Ramanan Dynamics on Sparse Networks



Convergence Result in Discrete Time

Basic Idea of Proof
Need to show that the map (G , x) 7→ (G ,XG ,x) from graphs marked
with initial conditions to graphs marked with IPS trajectories

G∗[S] 7→ G∗[S∞]

This is equivalent to showing that for every t, k ∈ N0 and every
bounded, cont. map ϕ on truncated paths G∗[Sk+1], the function

ψ(G , x) = E[ϕ(G ,XG ,x
t )].

is continuous on G∗[S].
Fix r ∈ N. It suffices to verify that the following “r -localized”
function is continuous:

ψr (G , x) := ϕ(Br (G ),XBr (G),xBr (G)

t ).

Key realization: on any interval [0, t], the behavior of particles in a
Br -neighborhood of the root only depend on the initial conditions in
a Br+t-neighborhood of the root. This dependence is continuous
due to the continuity of each Fs , s ≤ t.

K. Ramanan Dynamics on Sparse Networks



Convergence Result in Discrete Time

Basic Idea of Proof
Need to show that the map (G , x) 7→ (G ,XG ,x) from graphs marked
with initial conditions to graphs marked with IPS trajectories

G∗[S] 7→ G∗[S∞]

This is equivalent to showing that for every t, k ∈ N0 and every
bounded, cont. map ϕ on truncated paths G∗[Sk+1], the function

ψ(G , x) = E[ϕ(G ,XG ,x
t )].

is continuous on G∗[S].
Fix r ∈ N. It suffices to verify that the following “r -localized”
function is continuous:

ψr (G , x) := ϕ(Br (G ),XBr (G),xBr (G)

t ).

Key realization: on any interval [0, t], the behavior of particles in a
Br -neighborhood of the root only depend on the initial conditions in
a Br+t-neighborhood of the root. This dependence is continuous
due to the continuity of each Fs , s ≤ t.

K. Ramanan Dynamics on Sparse Networks



Results on Convergence (contd.)

• In the setting of continuous time jump processes, with jump rates
{r vj }j∈J ,v∈V , the range of influence of dynamics at a node is potentially
infinite at all positive times – this question is more subtle

Assumption. For any fixed time T > 0, there are finite constants
Ck,T , k ∈ N, such that the rates supx,j r

v
j (x) ≤ Cdv ,T .

A1’: Theorem 2: Ganguly-R; ’22

If (Gn, x
n) converges locally to (G , x) in distribution, and the limit

graph G is finitely dissociable, (Gn,XGn,xn
) converges locally in

distribution to (G ,XG,x)

All graphs with maximally bounded degree and Galton-Watson trees
whose offspring distribution have a finite moment are finitely
dissociable (Refer to [G-R ’22] for the definition of finitely
dissociable graphs)

Result in fact holds for non-Markovian jump processes under an
additional continuity condition on the path-dependent jump rates.
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Comments on the Proof

Much more subtle

First prove this for finite graphs, exploiting continuity of jump rates

Show “spatial localization” property (in effect says influence is
restricted to some finite random graph)

Establish a consistent spatial localization property (across
convergent graph sequences)

Use a percolation argument to show that finite dissociability ensures
spatial localization

Analyze an inhomogeneous site percolation on trees to show
Galton-Watson trees are finitely dissociable

A mathematical subtlety: Well-posedness of the IPS on the infinite
graph is not automatic; need restrictions
Recent related work on well-posedness for SEP: Gantert-Schmid ’21
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C. Hydrodynamic Limits
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Hydrodynamic Limits

• Sequence of marked graphs (Gn, xn)→ (G , x) (weakly) in G∗[S]

• Recall original form of dynamics:

XGn,x
n

v (t + 1) = F
(
XGn,x

n

v (t), µGn,x
n

v (t), ξvt+1

)
, v ∈ Vn,

with X (0) = xn and

µGn,x
n

v (t) =
1
|NGn

v |

∑
u∈NGn

v

δ
XGn,xn
v (t)

Key Question 2: Does the (global) empirical measure

µGn,x
n

(t) :=
1
|Vn|

∑
v∈Vn

δ
XGn,xn
v (t)

have a limit?
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Hydrodynamic Limits

• Let G(n, pn) be a (sparse) Erdös-Rényi graph; o a uniform random
vertex

(a) Dense graph (b) Sparse Graph

Theorem 3: Lacker-R-Wu ’19; Ganguly-R ’22

Gn ∼ G(n, pn) with npn → c̄ ∈ (0,∞). Then (µGn)n∈N converges weakly
to the deterministic measure Law(XTo ), where T ∼ UGW (Poisson(c̄).

Note: Get a deterministic limit even though neighboring vertices remain
strongly correlated
Note: In fact, the result applies more broadly as long as (Gn, x

n)

converges to a limit (G , x) locally (in probability), a notion that applies
to possibly disconnected graphs and is stronger than the local
convergence in distribution defined earlier.
Note: Luckily, this stronger convergence continues hold for many
models of interest, including random regular graphs, configuration model,
k-dimensional tori, etc.
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to possibly disconnected graphs and is stronger than the local
convergence in distribution defined earlier.
Note: Luckily, this stronger convergence continues hold for many
models of interest, including random regular graphs, configuration model,
k-dimensional tori, etc. K. Ramanan Dynamics on Sparse Networks



Hydrodynamic Limits (contd.)

Outline of the Proof of Theorem 3

1 Let ρn1 and ρn2 be two independent vertices, both chosen uniformly at
random from the graph Gn.

2 For any k ∈ N, let C n
1 [k] be the connected k-neighborhood of the

graph Gn around the “root” ρn1.

3 Then local convergence of Gn ensures C n
1 [k] and C n

2 [k] are
asymptotically independent

4 We correspondingly establish asymptotic independence of
(XGn,x

n

C n
1 [k] ,X

Gn,x
n

C n
2 [k] ).

5 This requires analysis of the dynamics and is done by establishing
correlation decay estimates, which are obtained using coupling
techniques or (in the continuous time jump process setting)
consistent spatial localization
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Hydrodynamic Limits (contd.)

For a finite graph G = (V ,E ), let Cρ(G ) be the random connected
rooted graph obtained by assigning a root uniformly at random and then
isolating the corresponding connected component.

Theorem 4: Lacker-R-Wu ’18
Gn ∼ G(n, pn) with npn → c̄ ∈ (0,∞). Let T ∼ UGW (Poisson(c̄)).

If c̄ ≤ 1 then (µ̄Cρ(Gn))n∈N converges in law to the random empirical
measure µ̄T .

If c̄ > 1, then (µ̄Cρ(Gn))n∈N converges in law to the random empirical
measure µ̃T defined by

µ̃T =

{
µ̄T on {|T | <∞}
L(XTo ||T | =∞) on {|T | =∞}
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Global Empirical Measure Convergence

Outline of the Proof of Theorem 4

1 Establish a quenched concentration estimate for the empirical
measure (holds in greater generality) – that is show that given a
realization of the graph, the empirical measure is very close to its
expectation on that graph

2 Write out the expectation of the empirical measure, by condition on
being in the maximal component of the graph and not.

3 Uses various properties about the Erdös-Rényi graph at criticality
and subcriticality to show that each term converges to the
corresponding limit term

4 Once again, this result can be extended to a large class of random
graph sequences, using nice duality properties of random graphs
(van der Hofstad, 22+)
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Hydrodynamic Limits

Thus we see that in the sparse regime the empirical measure limit
can be both deterministic and random.

Which one depends on the nature of local convergence, and you get
deterministic limits only with the stronger local convergence in
probability (which I did not define) rather than local convergence in
distribution ensures deterministic limits.

This raises the natural question of whether at least whenever the
empirical measure is deterministic, it coincides with the law of a
typical particle?

Other related convergence results

1 Convergence of empirical measure to the law of the root particle for
lattices.

2 Convergence of empirical meausure to a deterministic limit for
regular trees, but does not equal the law of the root particle.
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Prelude to Lecture 3
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Dynamics of a Typical Particle

A1. Answer to the first question showed that the typical particle XGn,x
v in

a large system can be approximated by the marginal of the dynamical
system on an infinite graph G :

XG
v (t + 1) = F

(
XG
v (t), µv (t), ξv (t + 1)

)
, v ∈ V ,

where F : S × P(S)× S 7→ S,
with µG

v (t) is the local empirical measure at v :

µG
v (t) =

1
dv

∑
u∼v

δXG
u (t), v ∈ V .

Key Questions:
(Q3) Is there an autonomous description of the limiting dynamics of a
typical particle?
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Lecture III:

Marginal Dynamics on Large Sparse Graphs
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Recap of Lectures 1 and 2

Given (G ,V ) and locally interacting processes:

XG,x
v (t + 1) = F (Xv(t), (XNV(t)), ξv(t + 1)), v ∈ V , t ∈ N0

where XG ,x(0) = x and the dependence of F on XNV
is symmetric.

Quantity of interest: global empirical measure and empirical measure
flow:

µG ,x :=
1
|V |

∑
v∈G

δXG,x
v

µG ,x(t) :=
1
|V |

∑
v∈G

δXG,x
v (t)

Key questions: Given a sequence of graphs Gn = (Vn,En) with
|Vn| → ∞, and appropriate initial conditions xn ∈ XVn ,

Q1. Do the processes XGn,xn
converge in a suitable sense?

Q2. Do the global empirical measures µGn,x
n

converge (hydrodynamic
limits) ?

Throughout, assume F is continuous
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Recall First Convergence Result

XG,x
v (t + 1) = F (Xv(t),XNV(t), ξv(t + 1)), v ∈ V

Theorem: Lacker-R-Wu ’19
The graphs marked with initial conditions (Gn, x

n) converge locally to a
limit graph (G , x) in distribution, then the graphs marked with the
solution trajectories (Gn,XGn,xn

) converge locally in distribution to the
dynamics on the limit graph (G ,XG,x).

Examples: G n - E-R, connected component of the root in E-R, CM,
PAM (under second moment assumptions) and random regular
xn - i.i.d. initial conditions or Gibbs measures

Analogous results for
discrete-time on directed graphs for PageRank (Olvera-Cravioto-et al
’17; Garavaglia-van der Hofstad-Litvak ’18, ...)
diffusions (Oliveira-Reis-Stolerman ’18, Lacker-R-Wu ’19)
jump processes: also requires G be finitely dissociable (Ganguly-’R
’22)
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The Second Convergence Result

XG,x
v (t + 1) = F (Xv(t),XNV(t), ξv(t + 1)), µG ,x :=

1
|V |

∑
v∈G

δXG,x
v

Theorem: Lacker-R-Wu ’19

If (Gn, x
n) converges locally in probability to (G , x), then (Gn,XGn,xn

)

converges locally in probability to the dynamics on the limit graph
(G ,XG,x). Furthermore, then the global empirical measure µGn,x

n

converges weakly to Law(XG ,x
o ), the law of the root in the limit graph.

Examples: G n - E-R, connected component of the root in E-R, CM
(under second moment assumptions) and random regular
xn - i.i.d. initial conditions or Gibbs measures
Analogous results for

diffusions (Lacker-R-Wu ’19)
jump processes – with G finitely dissociable (Ganguly-R ’22)

Subtleties: If (G n, xn) only converges locally in law, then the limit
of µGn,x

n

could be stochastic, or may fail to coincide with the law of
the root particle (Prop 7.7, DRW - canopy tree).
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Focus of this Lecture

XG,x
v (t + 1) = F (Xv(t),XNV(t), ξv(t + 1)), v ∈ V , t ∈ N0,

Key Questions:
(Q3) Is there an autonomous description of the (law of the) limiting
dynamics of the root particle, XG ,x

∅ ?

It turns out the right question to ask is whether there is an
autonomous description of the law of the root and its neighborhood:

XG ,x
∅̄ = XG ,x

∅,u∼∅

We will answer this question for the case when G is a (random) tree.

For simplicity we will focus on the case when x is i.i.d. with law λ

(though extensions are considered in Ganguly-’R ’22)

Recall that in the mean-field case, the typical dynamics is described
by a nonlinear Markov chain
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Background on Markov chains

Suppose X = {1, . . . ,m} is a finite state space
{Z (t)}t∈N is a homogeneous Markov chain if there exists a m ×m

(stochastic) matrix P = {Pzz′}z,z′∈X such that

P(Z (t + 1) = z ′|Z (t) = z) = Pz,z′ .

Let P(X ) be the space of probability vectors on X : (ν1, . . . , νm)

with νj ∈ [0, 1] and
∑m

j=1 νj = 1.
The law ν(t) = Law(Z (t)) ∈ P(X ) of the process evolves according
to the (autonomous) linear matrix equation

ν(t + 1) = ν(t)P

Note. If Z (t + 1) depends on Z (t) and Z (t − 1), then
Y (t) = (Z (t − 1),Z (t)) forms a Marov chain on the state space X 2.
{Z (t)}t∈N is an inhomogeneous Markov chain if there exists a family
of (stochastic) matrices P(t) = {Pzz′(t)}z,z′∈X ,t∈N0 such that

P(Z (t + 1) = z ′|Z (t) = z) = Pz,z′(t), ν(t + 1) = ν(t)P(t).
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Background on Markov chains

homogeneous Markov chain:
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Back to Marginal Dynamics on Regular Trees

Suppose the limiting graph G is an infinite d-regular tree with fixed root.

d = 3

d = 4
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Simplest Case: Marginal Dynamics on the Line

. . .
−3 −2−3 −2−3 −2−3 −2 −1 0 1 2 3

. . .

For simplicity consider the case d = 2, identify T2 with Z, set ∅ = 0.
Note that Theorem 1 implies that for a typical vertex ∅,
{X∅, (Xv )v∼∅} can be obtained as the marginal of the infinite
coupled system of Markov chains:

Xi(t + 1) = F (Xi(t),XNi(t), ξi(t + 1)), i ∈ Z, t ∈ N0,

Denote X := XG and note XNi = X{i−1,i,i+1}

So we are interested in an autonomous characterization of the
marginal law of

X{−1,0,1} = (X−1,X0,X1).

Given t ∈ N, A ⊂ Z, sequence y ∈ X∞, denote the history upto
time t by

yA[t] = (yA(0), yA(1), . . . , yA(t))
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A “Ghost” Particle System on the Root Neighborhood

. . .
−3 −2−3 −2−3 −2−3 −2 −1 0 1 2 3

. . .

Start with Y−1,0,1(0) = X−1,0,1(0).

At each time t ∈ N0, given the past Y−1,0,1[t] and its law,
recursively define the family of conditional laws: for z ∈ X ,

γt(z | y0, y1) = P(Y−1(t) = z |Y0[t] = y0[t],Y1[t] = y1[t]
)
, y0, y1 ∈ X∞

Sample independent ghost particles Y−2(t) and Y2(t) such that

P
(
Y−2(t) = z |Y−1,0,1[t]

)
= γt(z |Y−1[t],Y0[t])

P
(
Y2(t) = z |Y−1,0,1[t]

)
= γt(z |Y1[t],Y0[t])

Sample new iid noises (ξ−1(t + 1), ξ0(t + 1), ξ1(t + 1)), and update:

Y−1(t + 1) = F
(
Y−1(t), (Y0(t),Y−2(t)), ξ−1(t + 1)

)
Y1(t + 1) = F

(
Y1(t), (Y0(t),Y2(t)), ξ1(t + 1)

)
Y0(t + 1) = F

(
Yi (t),Yi−1,i+1(t), ξi (t + 1)

)
Note: Y−1,0,1(t + 1) only depends on past Y−1,0,1[t] and its law
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Result in the Case of Z

Xi(t + 1) = F (Xi(t),XNi(t), ξi(t + 1)), i ∈ Z, t ∈ N0.

. . .
−3 −2−3 −2−3 −2−3 −2 −1 0 1 2 3

. . .
Summary of Ghost particle evolution – Local Equations:

Yi (t + 1) = F
(
Yi (t),Yi−1,i+1(t), ξi (t + 1)

)
, i = {−1, 0, 1}, where

P
(
Y2(t) = z |Y−1,0,1[t]

)
= γt(z |Y1[t],Y0[t])

= F (z ,Y−1,0,1[t],Law(Y [t]))

with γt only depending on Law(Y [t]) in the following explicit manner:

γt(z | y0, y1) = P
(
Y−1(t) = z |Y0[t] = y0[t],Y1[t] = y1[t]

)
, y0, y1 ∈ X∞

Theorem 5 (Lacker-R-Wu ’19, ’22)

Let {Y−1,0,1(t)}t∈N be the “ghost” particles starting at X{−1,0,1}(0).
Then Law(Y−1,0,1) = Law(X−1,0,1). This provides an autonomous
characterization of the marginal law!
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How Good are the (Markov) Local Equations
Approximations?

SIR Model

Plot of probability of being healthy vs. time
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How Good are the (Markov) Local Equations
Approximations?

Discrete-time Contact Process

Plot of probability of being healthy vs. time
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Why is the theorem true?

In the complete graph, the autonomous characterization arises due
to asymptotic independence and exchangeability (permutation
symmetry)

In this setting, we show that one can exploit conditional
independence properties and graph symmetries

But let’s see precisely how this is done ...
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Describing Dependencies of High-Dim Random VectorsNotation: For a set A of vertices in a graph G = (V ,E ), define

Boundary: ∂A = NA(G ) = {u ∈ V \A : ∃u ∈ A s.t. u ∼ v}
State space S; Z = {Zv, v ∈ V} high-dimensional vector in SV

Defn. Z = {Zv}v∈V is said to be a Markov Random Field (MRF) with
respect to G if for every partition A,B,C of V with C = ∂A = NA(G )

(Zv )v∈A ⊥ (Zv )v∈B | (Zv )v∈C , (1)

A

A

δ

Defn. On an infinite graph G , Z = (Zv )v∈V is a

Local MRF if the same holds only for A finite

Semi-global MRF (SGMRF) if the same holds only for C finite
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Searching for a Conditional Independence Property

Fix (G , x) infinite. Denote X = XG,x. Assume (Xv(0))v∈V iid.

Xv(t + 1) = F (Xv(t),XNV(t), ξv(t + 1)),

Question A:
For t > 0, will (Xv(t))v∈V form a SGMRF wrt G?

In other words, for A ⊂ V with |∂A| <∞ and B ⊂ V \ [A ∪ ∂A],

is XA(t) ⊥ XB(t)|X∂A(t)?

G = Z,A = {−1,−2, . . . , }, ∂A = {0}B = {1}.

. . .
−3 −2−3 −2−3 −2−3 −2 −1 0 1 2 3

. . . t = 4

. . .
−3 −2 −1−3 −2 −1−3 −2 −1−3 −2 −1 0 1 2 3

. . . t = 3

Answer A:
No!
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In Search of a Conditional Independence Property

Xv(t + 1) = F (Xv(t),XNV(t), ξv(t + 1)),

Question B:
For t > 0, do the particle histories (Xv [t])v∈V form a SGMRF wrt G?

Recall notation for path history: x [t] := (x(s), s = 0, 1, . . . , t).

K. Ramanan Dynamics on Sparse Networks



In Search of a Conditional Independence Property
Xv(t + 1) = F (Xv(t),XNV(t), ξv(t + 1)),

Reformulation of Question B:
Given t > 0, for any A ⊂ V with finite ∂A and B ⊂ V \ [A ∪ ∂A],

Is XA[t] ⊥ XB[t]|X∂A[t]?

G = Z,A = {−1,−2,−3, . . . , }, ∂A = {0},B = {1, 2, . . .}.

· · ·
−3 −2−3 −2−3 −2−3 −2 −1 0 1 2 3

· · · t = 4

· · ·
−3 −2 −1−3 −2 −1−3 −2 −1−3 −2 −1 0 1 2 3

· · · t = 3

X−1(t + 1) = F (X−1(t), (X0(t),X−2(t + 1)), ξ−1(t + 1))

⇒ XA[t + 1] = a function of (XA[t],X0[t], ξA[t + 1])

Likewise XB [t + 1] = a function of (XB [t],X0[t], ξB [t + 1])

Is XA[t] ⊥ XB[t]|X∂A[t]?
Answer B:

No!
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Second-order Markov Random Fields

Double Boundary
∂2A = ∂A ∪ [∂(∂A) \ A]

A

∂A

∂(∂A)\A

Definition: A family of random variables (Yv )v∈V is a 2nd-order Markov
random field if

YA ⊥ YB | Y∂2A,

for all finite sets A,B ⊂ V with B ∩ (A ∪ ∂2A) = ∅.
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Trying again ...

Xv(t + 1) = F (Xv(t),XNV(t), ξv(t + 1)),

Question C:
Given t > 0, for any A ⊂ V with ∂A finite and B ⊂ V \ [A ∪ ∂2A], is

XA[t] ⊥ XB[t]|X∂2A[t]?

· · ·
−3 −2−3 −2−3 −2−3 −2 −1 0 1 2 3

· · · t = 4

· · ·
−3 −2 −1−3 −2 −1−3 −2 −1−3 −2 −1 0 1 2 3

· · · t = 3
...

· · ·
−3 −2 −1−3 −2 −1−3 −2 −1−3 −2 −1 0 1 2 3

· · · t = 0
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Trying again ...

· · ·
−3 −2 −1−3 −2 −1−3 −2 −1−3 −2 −1 0 1 2 3

· · · t = 4

· · ·
−3 −2 −1−3 −2 −1−3 −2 −1−3 −2 −1 0 1 2 3

· · · t = 3
...

· · ·
−3 −2 −1−3 −2 −1−3 −2 −1−3 −2 −1 0 1 2 3

· · · t = 0

Theorem 5: (Lacker, R, Wu ’18, Ganguly-R ’22) YES!

XA[t] ⊥ XB[t]|X∂2A[t]

for all A ⊂ V with ∂A finite and B ⊂ V with B ∩ (A ∪ ∂2A) = ∅.

Generalizations: In fact,
• this result holds even when (Xv(0))v∈V is just a second-order MRF –
does not require (Xv (0))v∈V i.i.d.

Related work for gradient diffusions: Deuschel (’87); Cattiaux, Roelly,
Zessin (’96); ...
For non-gradient diffusions on Zd with shift-invariant initial conditions:
Dereudre and Roelly (2017)
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From Conditional Independence to Local Equations

. . .
−3 −2−3 −2−3 −2−3 −2 −1 0 1 2 3

. . .
Start with Y−1,0,1(0) = X−1,0,1(0).
At each time t ∈ N0, given the past Y−1,0,1[t] and its law,
recursively define the family of conditional laws: for z ∈ X ,

γt(z | y0, y1) = P(Y−1(t) = z |Y0[t] = y0[t],Y1[t] = y1[t]
)
, y0, y1 ∈ X∞

Sample independent ghost particles Y−2(t) and Y2(t) such that

P
(
Y−2(t) = z |Y−1,0,1[t]

)
= γt(z |Y−1[t],Y0[t])

P
(
Y2(t) = z |Y−1,0,1[t]

)
= γt(z |Y1[t],Y0[t])

Sample new iid noises (ξ−1(t + 1), ξ0(t + 1), ξ1(t + 1)), and update:

Y−1(t + 1) = F
(
Y−1(t), (Y0(t),Y−2(t)), ξ−1(t + 1)

)
Y1(t + 1) = F

(
Y1(t), (Y0(t),Y2(t)), ξ1(t + 1)

)
Y0(t + 1) = F

(
Yi (t),Yi−1,i+1(t), ξi (t + 1)

)
Note: Y−1,0,1(t + 1) only depends on past Y−1,0,1[t] and its law
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Similar Results Hold for Jump Markov Processes

Comparison of Mean-Field (MF), pairwise (PA) and
an approximation to the local equations (MA)
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One can extend the local equations to d-regular trees: the MRF
property holds as stated, but one needs to use slightly different
symmetries.

One can extend this to random graphs using symmetries in the
random graph – in this case, one needs to prove a conditional
independence property that also involves the random structure of
the random graph ...
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Short Summary

Established limit theorems for empirical measures and marginal
dynamics of interacting stochastic processes on sequences of
(converging) sparse graphs
In particular resolves an open problem posed in the literature

The marginal dynamics yield a new class of stochastic processes
worthy of further study

Provides a more accurate alternative to mean-field limits

Tip of the icerberg – much work remains to further study
equilibrium dynamics (partial results have been obtained) and to
fully exploit these results to gain insight into specific applications
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THANK YOU!
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