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 Higher-order networks are characterising the 
interactions between two ore more nodes and   

 are  formed by nodes, links, triangles, 
tetrahedra etc.

d=2 simplicial complex     d=3 simplicial complex

Higher-order networks



Simplicial complex models

Emergent Geometry 
Network Geometry with Flavor (NGF) 

[Bianconi Rahmede ,2016 & 2017]

Maximum entropy model 
Configuration model  

of simplicial complexes 
[Courtney Bianconi 2016]
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Lesson II: 
Topology and higher-order dynamics

Introduction to algebraic topology 

Higher-order operators and their properties 

1. Topological signals 
2. The Hodge Laplacian and Hodge decomposition 
3. The Dirac operator 

Simplicial synchronisation and higher-order Kumamoto model 



Introduction to  
Algebraic Topology



Betti numbers
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Betti number 1 

Fungi network from Sang Hoon Lee, et. al. Jour. Compl. Net. (2016) 



Orientation of the simplex

Therefore we have

[i, j] = − [ j, i]

1 2

3

1 2

[i, j, k] = [ j, k, i] = [k, i, j] = − [ j, i, k] = − [k, j, i] = − [i, k, j]

32 Series Name

Figure 12 Example of oriented 1-dimensional and 2-dimensional simplices
with orientation induced by the node labels.

Source: Reprinted figure with permission from [27] ©Copyright (2020) by the American
Physical Society.

A m-dimensional oriented simplex ↵ is a set of m + 1 nodes

↵ = [v0, v1, . . . , vm], (3.1)

associated to an orientation wuch that

[v0, v1, . . . , vm] = (�1)�(⇡)[v⇡(0), v⇡(1), . . . , v⇡(m)] (3.2)

where �(⇡) indicates the parity of the permutation ⇡.

For instance a link ↵ = [r, s] is has opposite sign of the link [s, r], i.e.

[r, s] = �[s, r]. (3.3)

It is good practice to associate to each simplex of the simplicial complex and
orientation induced by the node labels, so that

↵ = [v0, v1, . . . , vm] (3.4)

is associated a positive orientation if

v0 < v1 < . . . < vm. (3.5)

In Figure 12 we show a 1-dimensional simplex and a 2-dimensional simplex
with orientation induced by the node labels. This practice is convenient when
working with higher-order Laplacians because it is possible to prove that the
spectral properties of these operators are independent of the choice of the node
labels as long as the orientation of the simplices is performed in this way.

THE m-CHAINS
Given a simplicial complex, a m-chain Cm consists of the elements of a
free abelian group with basis on the m-simplices of the simplicial complex.



m-Chains
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Figure 13 We show a simplicial complex whose simplices have an orientation
induced by the node labels. On this simplicial complex we highlight in red the

1-chain a = [1, 2] � [2, 3] + [2, 4].

Its elements can be represented as linear combinations of the of all oriented
m-simplices

↵ = [v0, v1, . . . , vm] (3.6)

with coe�cients in Z.

Therefore every element a 2 Cm can be uniquely expressed as a linear
combination of the basis elements (m-simplices) with coe�cients in Z2. In
Figure 13 we show a simplicial complex and an example of a 1-chain a 2 C1

with

a = [1, 2] � [2, 3] + [2, 4]. (3.7)

3.2.2 The boundary maps

The boundary maps are fundamental operators acting on m-chains.

THE BOUNDARY MAP

The boundary map @m is a linear operator

@m : Cm ! Cm�1 (3.8)

whose action is determined by the action on each m-simplex of the



Oriented simplicial complex 
and n-chains

a = [1,3] − [2,3] + [2,4]

Example of 1-chain

a ∈ 𝒞1



Boundary operator

Elements Name 33
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The boundary map @m is a linear operator

@m : Cm ! Cm�1 (3.8)

whose action is determined by the action on each m-simplex of the
34 Series Name

simplicial complex is given by

@m[v0, v1 . . . , vm] =
m’
p=0

(�1)p[v0, v1, . . . , vp�1, vp+1, . . . , vm]. (3.9)

From this definition it follows that the im(@m) corresponds to the space of
(m � 1) boundaries and the ker(@m) is formed by the cyclic m-chains.

Therefore the boundary map maps a m simplex to the (m � 1)-chain formed by
the simplices at its boundary. For instance we have

@1[r, s] = [s] � [r],
@2[r, s, q] = [r, s] + [s, q] � [r, q]. (3.10)

In particular this last expression indicates that the boundary map of a triangle is
a cyclic chain formed by the links at its boundary.

THE BOUNDARY OF THE BOUNDARY IS NULL

The boundary operator @m has the topological and algebraic property

@m@m+1 = 0 8m � 1 (3.11)

which is usually indicated by saying that the boundary of the boundary is
null. This implies that

im(@m+1) ✓ ker(@m). (3.12)

This property follows directly from the definition of the boundary. As an
example we have

@1@2[r, s, q] = @1([s, q] � [r, q] + [r, s])
= [q] � [s] � [q] + [r] + [s] � [r] = 0. (3.13)

3.2.3 Betti numbers and the Euler characteristic

The Betti numbers are topological invariants derived from the simplicial
complex, and correspond, for each m � 0, to the number of linearly independent
m-dimensional cavities in the space. Specifically the Betti number �0 provides
the number of connected components of the simplicial complex, the Betti
number �1 measures the number of 1-dimensional holes, i.e. cycles that are
not boundaries of 2-dimensional subsets of the simplicial complex, and so on
for higher-order Betti numbers. Betti numbers are not only defined for discrete
topological spaces such as simplicial complexes, but they also characterize the

Boundary group  
Cycle group 

B̂m = im(∂m+1)
̂Zm = ker(∂m)

Special groups



Boundary operator

Therefore we have

∂n[i0, i1…, in] =
n

∑
p=0

(−1)p[i0, i1, …, ip−1, ip+1, …, in] .

The  boundary map        is a linear operator  

whose action is determined by the action on each n-simplex of the simplicial complex

∂n

∂n : 𝒞n → 𝒞n−1

∂2[1,2,3] = [2,3] − [1,3] + [1,2] .∂1[1,2] = [2] − [1] .

1 2 1 2

3



The boundary of a 
boundary is null

The boundary operator has the property


Which is usually indicated by saying that the boundary of the 
boundary is null.


This property follows directly from the definition of the 
boundary, as an example we have


 ∂1∂2[i, j, k] = ∂1([ j, k] − [i, k] + [i, j]) = − [ j] + [k] + [i] − [k] − [i] + [ j] = 0.

∂n∂n+1 = 0 ∀n ≥ 1



Incidence matrices

B[1] =

[1,2] [1,3] [2,3] [3,4]
[1] −1 −1 0 0
[2] 1 0 −1 0
[3] 0 1 1 −1
[4] 0 0 0 1

,

B[2] =

[1,2,3]
[1,2] 1
[1,3] −1
[2,3] 1
[3,4] 0

.

∂n[i0, i1…, in] =
n

∑
p=0

(−1)p[i0, i1, …, ip−1, ip+1, …, in] .

Given a basis for the n simplices and n-1 simplices  
the n-boundary operator  

      is captured by the incidence matrix               B[n]



Boundary of the boundary 
is null

In terms of the incidence matrices the relation 

  

Can be expressed as 

B[n]B[n+1] = 0 ∀n ≥ 1 B⊤
[n+1]B

⊤
[n] = 0 ∀n ≥ 1

∂n∂n+1 = 0 ∀n ≥ 1



Homology groups

It follows that   is in the same homology class 
than  with 

a ∈ ker(∂m)
a + b ∈ ker(∂m) b ∈ im(∂m+1)

Elements Name 35

topology of continuous topological spaces, such as a point (�0 = 1, �1 = �2 = 0),
a circle (�0 = �1 = 1, �2 = 0), a sphere (�0 = 1, �1 = 0, �2 = 1), and a torus
(�0 = 1, �1 = 2, �2 = 1) (see Figure 14). The Betti numbers are fundamental
invariant to characterized higher-order networks represented by simplicial
complexes. For instance, in Figure 15 we represent the data for a fungi network
studied in Ref. [66]. This planar network has a topology that can be studied by
performing the clique complex of the data, i.e. interpreting every triangle as
2-dimensional simplex and studying its Betti number �1 which characterize the
number of its 1-dimensional holes. This topological data analysis provides a
very important information about this dataset as it is already apparent from its
planar network representation. Betti numbers are becoming a very important
tool to understand the topology of higher-order networks and in particular in
neuroscience applications [8, 20–23].

In this paragraph we will provide the mathematical definition of Betti numbers
using the basic elements of algebraic topology introduced in previous chapters.
In the previous chapter we have shown that the boundary of (m + 1)-chains are
cyclic m-chains which belong ker(@m), or in other words ker(@m) ✓ im(@m+1).
In intuitive terms these are boundaries of regions of the simplicial complexes
that are "filled" by (m + 1)-dimensional simplices. For instance the boundary of
a triangle [r, s, q] is given by the 1-cyclic chain of links at its boundary. However
when the simplicial complex displays m-dimensional cavities, it means that
there are m-cyclic chains that do not delimit a (m+ 1)-dimensional region of the
simplicial complex that is filled by (m + 1)-dimensional simplices. This implies
that there are m-cyclic chains which do belong to ker(@m) but do not belong to
im(@m+1). The set of all cyclic m-chains can be classified according to di�erent
homology groups.

THE HOMOLOGY GROUPS

The homology group Hm is the quotient space

Hm =
ker(@m)

im(@m+1)
, (3.14)

denoting homology classes of m-cyclic chains that are in the ker(@m) and
they do di�er by cyclic chains that are not boundaries of (m + 1)-chains,
i.e. they are in im(@m+1).

If follows that a 2 ker(@m) is in the same homology class as a
0 = a + b where

b 2 im(@m+1). This means that two cyclic m-chains a and a
0 that only di�ers by

a boundary of a (m + 1)-chain are in the same homology class. Indeed these
two chains will enclose the same number of m-dimensional cavities. However



Betti numbers

36 Series Name

Figure 14 A point, a circle a sphere and a torus and their corresponding Betti
numbers.

a 2 ker(@m) and a
0 2 ker(@m) will not belong to the same homology class if

they enclose a di�erent number of m-dimensional cavities. The total number of
m-dimensional cavities is indicated by the Betti number �m whose algebraic
topology definition is given below.

BETTI NUMBERS

The Betti number �m indicates the number of m-dimensional cavities of a
simplicial complex and is given by the rank of the homology group Hm,
i.e.

�m = rank(Hm) = rank(ker(@m)) � rank(im(@m+1)). (3.15)

The Betti numbers of fundamental topological invariants and as such they are
the pillars of topology and TDA, as we will discuss in the next sections.

The Euler-Poincaré formula relates the Betti number to the another important
topological invariant of simplicial complexes: the Euler characteristic.

THE EULER CHARACTERISTIC AND THE EULER-POINCARÉ FORMULA

The Euler characterisic � is defined as the alternating sum of the number
of m-dimensional simplices, i.e.

� =
’
m�0

sm, (3.16)

where sm is the number of m-dimensional simplices in the simplicial
complex. According to the Euler-Poincaré formula, the Euler characteristic
� of a simplicial complex can be expressed in terms of the Betti numbers
as

� =
’
m�0

(�1)m�m. (3.17)



Euler characteristic
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Persistent homology

Filtration: distance/weights

Persistent homology Barcode

Ghrist 2008



Topological clustering
The node neighbourhood is the clique simplicial complex formed by 
the  set of all the neighbours of a node and their connections

The degree                                            Number of nodes   

Properties of the node                Properties of the node neighbourhood

The local clustering coefficient                            Density of the links 

n
ρ

ki
Ci

AP Kartun-Giles et al. (2019)



Node neighbourhoods  
with the same number  
of nodes and the  
same density of links  
can have very  
different topology

AP Kartun-Giles et al. (2019)



The skeleton of a simplicial complex 
and its clique complex

Attention! 
By concatenating the operations you are not guaranteed to return to the initial  

simplicial complex

Network 
Skeleton

Clique  
complex
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We can infer which higher-order interactions  
using higher-order communities  

and ground-truth community assignments

S. Khrisnagopal and GB (2021)

Inference of higher-order  
interactions

Higher-order communities



Topological signals, 
Hodge Laplacian  

And  
Dirac operator



Topological signals
Simplicial complexes and networks can sustain dynamical variables (signals)  

not only defined on nodes but also defined on higher order simplices 
these signals are called topological signals

1

2

4

3



Topological signals
• Citations in a collaboration network


• Speed of wind at given locations


• Currents at given locations in the ocean


• Fluxes in biological transportation networks


• Synaptic signal


• Edge signals in the brain
Topological signals  

are co-chains or vector fields 



Graph Laplacian in terms of 
the incidence matrix

The graph Laplacian of elements 


Can be expressed in terms of the 1-incidence matrix


as 


(L[0])ij
= δijki − aij

L[0] = B[1]B⊤
[1] .



Higher-order Laplacian
The higher order Laplacians can be defined in terms of the incidence 

matrices as 


The dimension of the                is the n-Betti number  

The higher order Laplacian can be decomposed as


with 


L[n] = Ldown
[n] + Lup

[n],

Ldown
[n] = B⊤

[n]B[n],

Lup
[n] = B[n+1]B⊤

[n+1] .

L[n] = B⊤
[n]B[n] + B[n+1]B⊤

[n+1] .

ker(L[n]) βn



Higher-order Laplacian
The higher order Laplacians can be defined in terms of the incidence 

matrices as 


The dimension of the                is the n-Betti number  

The higher order Laplacian can be decomposed as


with 


L[n] = Ldown
[n] + Lup

[n],

Ldown
[n] = B⊤

[n]B[n],

Lup
[n] = B[n+1]B⊤

[n+1] .

L[n] = B⊤
[n]B[n] + B[n+1]B⊤

[n+1] .

ker(L[n]) βn



Hodge decomposition
The Hodge decomposition implies that topological signals can be decomposed


 in a irrotational, harmonic and solenoidal components


which in the case of topological signals of the links can be sketched as  


ℝDn = im(B⊤
[n]) ⊕ ker(L[n]) ⊕ im(B[n+1])

Solenoidal component 
Curl Flow

Harmonic componentIrrotational component 
Gradient Flow



Apollonian and pseudo-fractal  
simplicial complexes

• We start at time t=1 with a single d-simplex


• At each time t>1, we glue a d-simplex 


A. to every (d-1)-face added at the previous time (Apollonian simplicial complexes) 


B. to every (d-1)-face of the simplicial complex (pseudo-fractal simplicial 
complexes) 



Higher-order spectral dimension

NGFs, Apollonian and pseudo-fractal network 


do not have just a single spectral dimension 


but they display a vector of spectral dimensions 


 


with  one spectral dimension  for each m-order up-Laplacian

dS = (d[0]
S , d[1]

S , …, d[d−2]
S )



Higher-order spectral dimension  
of Apollonian and Pseudo-fractal networks

Apollonian  
simplicial 

complexes 

Pseudo-fractal 
simplicial  

complexes

[M. Reitz, G. Bianconi (2020)] 

Numerical evidence shows that also NGF  
have different spectral dimension of higher-order Laplacians 

[J.J. Torres, G. Bianconi (2020) ]



Topological Dirac operator
How to treat the interaction between topological signals of different dimensions  

coexisting in the same network topology?

G. Bianconi, 
 Topological Dirac equation on networks and simplicial complexes (2021)



Topological spinor
On a network we consider the topological spinor


 


Characterising the dynamical state of the topological signals of the 
network, being a vector with a block structure formed by a 


0-cochain and a 1-cochain                                                     

.

ψ = (ϕ
χ )

ϕ =

ϕ1

ϕ2
⋮

ϕN

, χ =

χℓ1

χℓ2

⋮
χℓL



Topological Dirac operator on a network

We define the Dirac operator of a network is defined as


                                      


with .


We have the notable property that  

D = (
0 bB[1]

b⋆B⊤
[1] 0 )

b ∈ ℂ, |b | = 1

D2 = 𝓛 = (
L[0] 0

0 Ldown
[1] )



Energy eigenstates of the  
Topological Dirac Operator on real networks



Energy eigenstates of the  
Topological Dirac Operator on real networks



The Topological Dirac operator can be extended to higher-dimensional 
simplices. For instance on a 3-dimensional simplex it is given by


 D =

0 b[1]B[1] 0 0

b⋆
[1]B⊤

[1] 0 b[2]B[2] 0

0 b⋆
[2]B⊤

[2] 0 b[3]B[3]

0 0 b⋆
[3]B⊤

[3] 0

Topological Dirac operator on a 
simplicial complex



Topological Dirac equation on simplicial 
complexes

• The topological Dirac equation 
can be extended to simplicial 
complexes, in the case of zero 
mass the eigenstates are  given 
by


                   


• It can be shown that thanks to 
the Hodge decomposition this 
equation leads to a multi-band 
spectrum of the energy states.

Eψ = Dψ
10-1 100 101

E

10-4

10-2

100

G
[n

](E
)

n=0
n=1
n=2

Multi-band eigenspectrum of the  
Topological Dirac equation on a 3-dimensional NGF



Kumamoto  
Model 

on a network



Synchronization is a 
fundamental dynamical process

• N

1
2
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Kuramoto model on a 
network

·θi = ωi + σ
N

∑
j=1

aij sin (θj − θi)1

2

3

4

5
6

7

8

θ1

ω ∼ 𝒩(Ω,1)

Given a network of N nodes  
defined by an adjacency matrix a 

we assign to each node a phase obeying 

where the internal frequencies of the nodes  
are drawn randomly from 

and  the coupling constant is 𝜎



Order parameter for 
synchronization

We consider the global order parameter R


which indicates the 


synchronisation transition


R =
1
N

N

∑
i=1

e θi𝕚

R ≃ 0 for σ < σc

R finite for σ ≥ σc

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

R



The higher-order simplicial  
Kuramoto model

How to define  
the higher-order Kuramoto model  

coupling higher dimensional  
topological signals?



Explosive higher-order 
Kuramoto model  

on simplicial complexes

A. P. Millán, J. J. Torres,  and G.Bianconi,  
Physical Review Letters, 124, 218301 (2020) 



Topological signals
Simplicial complexes can sustain dynamical variables (signals)  

not only defined on nodes but also defined on higher order simplices 
these signals are called topological signals



Standard Kuramoto model in 
terms of incidence matrices

The standard Kuramoto model, can be expressed in terms 


of the incidence matrix  B[1] as


where we have defined the vectors


and we use the notation              


to indicates the column vector where the sine function is taken element wise


 

·θ = ω − σB[1] sin B⊤
[1]θ

θ = (θ1, θ2, …, θi…)⊤

ω = (ω1, ω2, …, ωi…)⊤

sin x



Topological signals

We associate to each  

n-dimensional simplex 𝛼 a phase 𝝓𝛼  

For instance for n=1 we might associate to each link a oscillating flux


The vector of phases is indicated by 

ϕ = (…, ϕα…)⊤



Simplicial synchronisation
We propose to study the higher-order Kuramoto model


defined as 


where is the vector of phases associated to n-simplices


and the topological signals ad their  internal frequencies are indicated by 


with the internal frequencies

·ϕ = ω̂ − σB[n+1] sin B⊤
[n+1]ϕ − σB⊤

[n] sin B[n]ϕ,

ω̂α ∼ 𝒩(Ω,1)

ω̂ = (…, ω̂α…)⊤

ϕ = (…, θα…)⊤



Topologically induced  
many-body  interactions

·ϕ[12] = ω̂[12] − σ sin(ϕ[23] − ϕ[13] + ϕ[12]) − σ [sin(ϕ[12] − ϕ[23]) + sin(ϕ[13] + ϕ[12])],
·ϕ[13] = ω̂[13] + σ sin(ϕ[23] − ϕ[13] + ϕ[12]) − σ [sin(ϕ[13] + ϕ[12]) + sin(ϕ[13] + ϕ[23] − ϕ[34])],
·ϕ[23] = ω̂[23] − σ sin(ϕ[23] − ϕ[13] + ϕ[12]) − σ [sin(ϕ[23] − ϕ[12]) + sin(ϕ[13] + ϕ[23] − ϕ[34])],
·ϕ[34] = ω̂[34] − σ [sin(ϕ[34]) − sin(ϕ[13] + ϕ[23] − ϕ[34])],



If we define a higher-order Kuramoto model on  

n-simplices,  

(let us say links, n=1) a key question is: 

What is the dynamics induced  

on (n-1) faces and (n+1) faces? 

i.e. what is the dynamics induced on nodes and triangles?



Projected dynamics on  
n-1 and n+1 faces

A natural way to project the dynamics is to use the 
incidence matrices obtaining 

ϕ[+] = B⊤
[n+1]ϕ

ϕ[−] = B[n]ϕ

Discrete curl

Discrete divergence



Projected dynamics on  
n-1 and n+1 faces

Thanks to Hodge decomposition, 


the projected dynamics 


on the (n-1) and (n+1) faces 


decouple

·ϕ[+] = B⊤
[n+1]ω̂ − σL[down]

[n+1] sin(ϕ[+])
·ϕ[−] = B[n]ω̂ − σL[up]

[n−1] sin(ϕ[−])



Simplicial Synchronization 
transition

R[+] =
1

Nn+1

Nn+1

∑
α=1

e ϕ[+]
α𝕚 𝕚R[−] =

1
Nn−1

Nn−1

∑
α=1

e ϕ[−]
α



Order parameters using the 
n-dimensional phases

R =
1
Nn

Nn

∑
α=1

e ϕα𝕚



Order parameters using the 
n-dimensional phases

R↑ =
1
Nn

Nn

∑
α=1

e ϕ↑
αR↓ =

1
Nn

Nn

∑
α=1

e ϕ↓
α𝕚 𝕚

ϕ↓ = Ldown
[n] ϕ ϕ↑ = Lup

[n]ϕ

R
↑

R
↓



Only if we perform  

the correct topological filtering  

of the topological signal  

we can reveal higher-order synchronisation



Explosive simplicial 
synchronisation

We propose the Explosive Higher-order Kuramoto model 


defined as 


·ϕ = ω̂ − σR[−]B[n+1] sin B⊤
[n+1]ϕ − σR[+]B⊤

[n] sin B[n]ϕ



Projected dynamics
The projected dynamics on 


(n+1) and (n-1) are now coupled 


by their order parameters

·ϕ[+] = B⊤
[n+1]ω̂ − σR[−]L[down]

[n+1] sin(ϕ[+])
·ϕ[−] = B[n]ω̂ − σR[+]L[up]

[n−1] sin(ϕ[−])



The explosive  
simplicial synchronisation transition

0 2 4
0

0.2

0.4

0.6

0.8

1

Simple
Explosive

0 2 4
0

0.2

0.4

0.6

0.8

1



Order parameters 
associated to n-faces
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Higher-order synchronisation 
on real Connectomes

Homo sapiens Connectome 

C.elegans Connectome
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Coupling topological signals 
of different dimension
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Explosive synchronisation of 
globally coupled topological signals

·ϕ = ω̂ − σR[+]
1 R0B⊤

[n] sin B[n]ϕ

−σR[−]
1 B[n+1] sin B⊤

[n+1]ϕ

·θ = ω − σR[−]
1 B[1] sin B⊤

[1]θ

NGF s=-1 d=3 Simplicial  
Configuration model



Annealed solution on 
random networks

The annealed solution  
captures  

the backward transition 

Reveals that the transition  
is discontinuous 

Gives very reliable results  
for connected networks 
that are not too sparse   

Poisson network Power-law network



Dirac synchronisation
Dirac synchronization  

couples topological signals  

of different dimensions locally and topologically  

using the Dirac operator

Dirac synchronisation is explosive  
with a thermodynamically histeresis loop 

The order parameter involves 
 a linear combination of  

signals of the nodes and signals of the links  
(projected on the nodes) 



Dirac synchronisation
Dirac synchronisation leads  

to the emergence of rhythmic phase in which 
the order parameter acquires spontaneously  

a dynamical phase in the rotating frame, 

i.e. in the frame 


in which in average the intrinsic phases 

have zero average.


The rhythmic phase in the Dirac synchronisation  
sheds  light  

on topological mechanisms  
for the emergence of brain rhythms



Higher-order structure and dynamics
Higher-order 

networks

Simplicial 
 Topology

Simplicial 
Geometry

Higher-order 
dynamics

Combinatorial 
Statistical 
 Properties



Co-location and non-linear infection 
kernels in epidemic spreading processes

Co-location affects epidemic spreading  

It can be modelled  
by a temporal hypergraph 

Threshold effects are  
important factors that can lead to  

non-linear infection kernels 

G. St-Onge et al. Phys. Rev. Lett. (2021)



Multiplex Hypergraphs

(d)

(e)

(f)

(a)

(b)

(c)

Multiplex Hypergraphs  
are formed by layers each capturing 

 interaction of a given order 

Higher-order percolation problems  
including cooperative effects  

are discontinuous 

H. Sun  and GB PRE (2021) 



Triadic interactions induce  
blinking and chaos  

in connectivity of higher-order networks

Node 

Structural link 

Positive regulation 

Negative regulation
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Conclusions
Simplicial synchronisation  

is able to capture the synchronisation of 
topological signals of higher dimension. 

It can be detected by monitoring 
 the irrotational and the solenoidal components of 

the topological signal. 

Dirac synchronisation coupling locally 
topologically signals of different dimensions 

 is explosive  
and gives rise of rhythmic phase



References and collaborators

The Dirac operator 
Bianconi, Ginestra. "The topological Dirac equation of networks and simplicial 
complexes." JPhys Complexity 2, 035022 (2021). 

Higher-order simplicial Kumamoto model 
Millán, A.P., Torres, J.J. and Bianconi, G., 2020. Explosive higher-order Kuramoto 
dynamics on simplicial complexes. Physical Review Letters, 124(21), p.218301. 

Globally Coupled dynamics of nodes and links 
Ghorbanchian, Reza, Juan G. Restrepo, Joaquín J. Torres, and Ginestra Bianconi. 
"Higher-order simplicial synchronization of coupled topological signals." 
Communications Physics 4, no. 1 (2021): 1-13. 

Topological synchronization is explosive 
Calmon, Lucille, Juan G. Restrepo, Joaquín J. Torres, and Ginestra Bianconi. 
"Topological synchronization: explosive transition and rhythmic phase." arXiv 
preprint arXiv:2107.05107 (2021). 


